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ABSTRACT
In this paper, we propose a technique to factorize any ma-
trix into multiple sparse factors. The resulting factorization,
called Flexible Approximate MUlti-layer Sparse Transform
(FAµST), yields reduced multiplication costs by the matrix
and its adjoint. Such a desirable property can be used to
speed up iterative algorithms commonly used to solve high di-
mensional linear inverse problems. The proposed approach is
first motivated, introduced and related to prior art. The com-
promise between computational efficiency and data fidelity is
then investigated, and finally the relevance of the approach is
demonstrated on a problem of brain source localization using
simulated magnetoencephalography (MEG) signals.

Index Terms— Inverse problems, Deconvolution, Matrix
factorization, Fast algorithms, Brain source localization

1. INTRODUCTION
We consider the classical linear inverse problem setting where
parameters γ ∈ Rn are to be estimated from data y ∈ Rm

assuming a linear model with a matrix X ∈ Rm×n:

y ≈ Xγ. (1)

The model is often further constrained by assuming that the
data dimension (or number of measurements) is way smaller
than the number of parameters: m � n. This configura-
tion results in under-determined linear systems, for which
the sparsest solution is often sought. Iterative algorithms de-
signed to solve such problems involve many multiplications
by the operator X and its transpose XT . Their computational
cost [1] is thus dominated by such multiplications. In high
dimension (1 � m � n), such operations that cost O(mn)
flops for dense matrices can be impractical.

However, there exist dense matrices for which such prod-
ucts can be done way more efficiently. Indeed, popular
transforms (Fourier, wavelets, DCT...) are associated with
fast algorithms allowing to perform matrix/vector products
in O(n log n) or O(n) flops (these transform matrices are
square, m = n). Such fast algorithms can be seen as M con-
secutive multiplications of the input vector by sparse matrices
Sj (see, e.g., [2, Appendix A]), indicating that the transform
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matrices take the form1: T =
∏M

j=1 Sj . This multi-layer
sparse structure is what allows for efficient algorithms.

Inspired by this structure, the objective of this paper is to
approximate arbitrary dense matrices X such as those arising
in inverse problems by multi-layer sparse forms:

X ≈
M∏
j=1

Sj . (2)

Provided the factors Sj are sparse enough, the resulting Flex-
ible Approximate MUlti-layer Sparse Transform (FAµST) al-
lows to compute approximate products with X or XT much
more quickly. A FAµST can thus be used in any algorithm
for solving the inverse problem in a computationally efficient
way. The relative complexity of a FAµST with respect to the
dense form somehow quantifies the computational gains:

Definition 1.1. The Relative Complexity (abbreviated RC) is
the ratio between the total number of non-zero entries in the
FAµST and the number of non-zero entries of X:

RC :=

∑M
j=1 ‖Sj‖0
‖X‖0

, (3)

where ‖ · ‖0 counts the total number of non-zero entries of its
argument. The Relative Complexity Gain (RCG) is simply the
inverse of the Relative Complexity (RCG = 1/RC).

The condition for the FAµST to be beneficial in terms of
complexity compared to the dense form then writes mathe-
matically: RC� 1 or equivalently RCG� 1. There is a nat-
ural tradeoff with the fidelity to the original operator which
can be measured through the relative operator norm error:

RE =

∥∥X−∏M
j=1 Sj

∥∥
2

‖X‖2
, (4)

where ‖ · ‖2 is the operator norm.
We proposed in a recent paper [3] an algorithm that hi-

erarchically factorizes an arbitrary input matrix X of interest
into M sparse matrices, using the Proximal Alternating Lin-
earized Minimization (PALM) method of [4]. Our contribu-
tion in this paper is to demonstrate the potential of this al-
gorithm to speed up linear inverse problems, with controlled
impact on the quality of the retrieved solutions.

1The product being taken from right to left:
∏N

i=1 Ai = AN · · ·A1



Related work. Other approaches to speed up sparse solvers
in the context of linear inverse problems have been recently
proposed in [5–7]. The principle is to adapt weights of a com-
putational network corresponding to a fixed number of itera-
tions of a recovery algorithm. Sparse solutions are then ob-
tained in a fixed number of computations. In the present pa-
per, instead of fixing the number of iterations, the strategy is
to lower the cost of these iterations. These two ideas are com-
plementary since they act on different components of the re-
covery algorithms, and could actually be combined together.
The proposed factorization method can also be seen as a gen-
eralization of certain constrained dictionary learning methods
imposing structures such as double-sparsity [8] or product of
sparse convolutions [9], see [3] for a literature review.

2. ALGORITHM
The idea of the algorithm we recently introduced [3] is to
factorize X into two factors first, and then iteratively factor-
ize the leftmost factors into two factors, in order to increase
the number of factors until the desired number M is attained
(the factorization could also be carried out from the right just
by transposing the input matrix). Each factorization is con-
strained in a way that imposes sparse factors. A global opti-
mization step is inserted between each factorization into two
factors in order to keep a relation with the input matrix X.
A simplified high level overview of the algorithm is given in
Algorithm 1, where the constraint sets Ei and Ẽi impose spar-
sity, and are to be chosen carefully in order to obtain a good
approximation of X. For more details about the algorithm
(implementation details, convergence conditions), see [3] or
our technical report [2]. Practical examples of constraint sets
will be considered in the next section.

Algorithm 1 Hierarchical factorization

Input: Operator X; desired number of factors M ; constraint
sets Ei and Ẽi, i ∈ {1 . . .M − 1}.

1: T0 ← X
2: for i = 1 to M − 1 do
3: Factorize the residual Ti−1 into 2 factors:

Ti−1 ≈ TiSi with Ti ∈ Ẽi and Si ∈ Ei
4: Update Ti and Sj , j ∈ {1 . . . i} to fit X:

X ≈ Ti

∏i
j=1 Sj with Ti ∈ Ẽi and Sj ∈ Ej , ∀j

5: end for
6: SM ← TM−1

Output: The estimated factorization: {Sj}Mj=1.

3. EXPERIMENTS
In the present work, we explore the use of FAµST in the con-
text of functional brain imaging using magnetoencephalog-
raphy (MEG) and electroencephalography (EEG) signals.
Source imaging with MEG and EEG delivers insights into the
active brain at a millisecond time scale in a non-invasive way.
To achieve this, one needs to solve the bioelectromagnetic
inverse problem. It is a high dimensional ill-posed regression

problem requiring proper regularization. As it is natural to
assume that a limited set of brain foci are active during a cog-
nitive task, sparse focal source configurations are commonly
promoted using convex sparse priors [10, 11]. The bottleneck
in the optimization algorithms are the dot products with the
forward matrix X and its transpose. This matrix is computed
using the MNE software [12] implementing a BEM.

3.1. Factorization compromise
The objective of this first set of experiments is to see what
tradeoffs between relative complexity and accuracy are
achievable. To this end, an MEG gain matrix X ∈ R204×8193

(m = 204 and n = 8193) was factorized into M sparse
factors using Algorithm 1 with different settings. The way to
set the constraint sets Ei and Ẽi in order to make complexity
savings is evoked in [3]. Indeed, denoting Li =

∏M
j=i+1 Sj , a

simple calculation shows that if we constrain each Sj to have
O(h) non-zero entries per row, then Li will not have more
than O(hM−(i+1)) non-zero entries per row. This suggests to
decrease exponentially the number of non-zero entries in Ti

with i in Algorithm 1.
Settings. The rightmost factor S1 was set of the same di-
mension than X, but with k-sparse columns, which corre-
sponds to the constraint set E1 = {A ∈ R204×8193, ‖al‖0 ≤
k, ‖A‖F = 1}. The other factors Sj , j ∈ {2, . . . ,M}
were set square, with a global sparsity constraint controlled
by the parameter s, and the residual at each step Ti, i ∈
{1, . . . ,M − 1} was also set square, with a global sparsity
constraint imposing a number of non-zero entries exponen-
tially decreasing with i, controlled by the parameters ρ and
P , and normalized columns for i = 1. This corresponds
to the constraint sets Ẽ1 = {A ∈ R204×204, ‖al‖2 = 1},
and Ei = {A ∈ R204×204, ‖A‖0 ≤ sm, ‖A‖F = 1},
Ẽi = {A ∈ R204×204, ‖A‖0 ≤ Pρi−1, ‖A‖F = 1} for
i ∈ {2, . . . ,M − 1} . The controlling parameters are set to:
• Number of factors: M ∈ {2, . . . , 10}.
• Sparsity in the first factor: k ∈ {5, 10, 20, 30}.
• Sparsity in the other factors: s ∈ {2, 4, 8}.
• Rate of decrease of the residual sparsity: ρ = 0.8.
The parameter P controlling the sparsity in the residual was
found to have only limited influence, and was set to 2042 ×
1.4. Other values for ρ were tested, leading to slightly differ-
ent complexity/accuracy tradeoffs not shown here. The fac-
torization setting is summarized in Figure 1, where the spar-
sity of each factor is explicitly given.

Fig. 1: Factorization setting used. Each factor is represented
with its total sparsity.
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Fig. 2: Results of the factorization of a 204 × 8193 MEG matrix. The shape of the symbols denotes the number of factors M
(• :M = 2, # :M = 3, ∗ :M = 4, � :M = 5,9 :M = 6, � :M = 7, M:M = 8, × :M = 9, B:M = 10), and the color
the value of the parameter s.

Results. Factorizations were computed for 127 parameter
settings. The computation time for each factorization was
around (M−1)×10 minutes on a regular laptop. Figure 2 dis-
plays the tradeoff between speed (the RCG measure (3)) and
approximation error (the RE measure (4)) of each obtained
FAµST. We observe that:

• The overall relative complexity of the obtained factor-
ization is essentially controlled by the parameter k. This
seems natural, since k controls the sparsity of the rightmost
factor which is way larger than the other ones.

• The tradeoff between complexity and approximation for
a given k is mainly driven by the number of factors M :
higher values of M lead to lower relative complexities, but
a too large M leads to a higher relative error. Taking M =
2 (black dots) never yields the best compromise, hence the
relevance of multi-layer sparse approximations.

• For a fixed k, one can distinguish nearby tradeoff curves
corresponding to different sparsity levels s of the interme-
diate factors. The parameter s actually controls the hori-
zontal spacing between two consecutive points on the same
curve: a higher s allows to take a higher M without in-
creasing the error, but in turn leads to a higher relative
complexity for a given number M of factors.

In summary, one can distinguish as expected a tradeoff be-
tween relative complexity and approximation error. The con-
figuration exhibiting the lowest relative error for each value
of k is highlighted on Figure 2, this gives X̂25, X̂16, X̂8, X̂6,

where the subscript indicates the achieved RCG (rounded to
the closest integer). For example, X̂6 can multiply vectors
with 6 times less flops than X (saving 84% of computation),
and X̂25 can multiply vectors with 25 times less flops than X
(96% savings). These four matrices will next be used to solve
an inverse problem and compared to results obtained with X.

3.2. Source localization
Let us now assess the FAµST approximations of the MEG
gain matrix X ∈ R204×8193 regarding a specific application,
namely a brain source localization problem on simulated data.
For this experiment, two brain sources chosen uniformly at
random were activated with gaussian random weights, giving
a 2-sparse vector γ ∈ R8193, whose support encodes the lo-
calization of the sources. The experiment then amounts to
solving the inverse problem to get γ̂ from the measurements
y = Xγ ∈ R204, using either X or a FAµST X̂ during
the recovery process. We used Orthogonal Matching Pursuit
(OMP) [13] (choosing 2 atoms) as recovery method. Note
that two other recovery methods (`1-regularized least squares
(l1ls) [14] and Iterative Hard Thresholding (IHT) [15]) were
tested, with qualitatively similar results. We present here only
the results for OMP for the sake of conciseness. The matrices
used for the recovery are the actual matrix X and its FAµST
approximations X̂25, X̂16, X̂8 and X̂6 just described. The
expected computational gain of using a FAµST instead of the
true dense operator is of the order of RCG, since the compu-
tational cost of OMP is dominated by products with XT .
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Fig. 3: Source localization performance, measured in distance between actual and retrieved source, obtained with different
distances between actual sources and matrices.

Three configurations in term of distance d (in centimeters)
between the sources were considered. For each configuration,
500 vectors y = Xγ were generated, and OMP was run using
each matrix. The distance between each actual source and the
closest retrieved source was measured. Figure 3 displays the
statistics of this distance for all scenarios:
• As expected, localization is better when the sources are

more separated, independently of the choice of matrix.

• Most importantly, the performance is almost as good when
using FAµSTs X̂6 and X̂8 than when using the actual
matrix X, although the FAµSTs are way more computa-
tionally efficient (6 and 8 times less computations). For
example, in the case of well separated sources (d > 8),
the FAµSTs allow to retrieve exactly the sought sources
more than 75% of the time, which is almost as good as
when using the actual matrix X. The performance with
the two other FAµSTs X̂16 and X̂25 is a bit poorer, but
they are even more computationally efficient matrix (16
and 25 times less computations). For example, in the case
of well separated sources (d > 8), they allow to retrieve
exactly the sought sources more than 50% of the time.
These observations indicate that there is a compromise
between computational efficiency and localization perfor-
mance, and that FAµSTs can be used in an inverse problem
framework without a large precision loss.

3.3. Runtime vs Relative Complexity
In the experiments performed in the two previous subsections,
computational efficiency is predicted through the Relative

Complexity (RC) defined in (3). However, a Relative Com-
plexity Gain (RCG) of, e.g., 10, does not necessarily mean
that the matrix/vector product will be 10 times quicker using
the multi-layer sparse approximation instead of the dense
form. Indeed, the runtime using an interpreted language like
matlab is not exactly proportional to the number of flops.

In order to illustrate this phenomenon, we performed an
experiment to compare the actual runtime to the expected
one considering RCG. For this experiment, a square matrix
A ∈ Rn×n, with n = 2M was generated as the product of M
sparse matrices: A =

∏M
j=1 Sj , each Sj being square, full-

rank and having exactly 2 non-zero entries per row and per
column. This configuration gives RCG = n

2M . A gaussian
random vector z ∈ Rn was then generated, and the runtime
needed to multiply z by A was measured using the dense form
and the FAµST. This experiment was repeated for different
values of M ∈ {1, . . . , 14}, 1000 times for each dimension,
and the results are given in Figure 4.

Several comments are in order:

• The FAµSTs are quicker than dense forms in high dimen-
sion (n ≥ 512) but not in low dimension (top plot), al-
though RCG > 1 (for example, RCG ≈ 9 for n = 128).

• The empirical runtime gain R̂CG (bottom plot) does not
fully achieve the predicted gain (RCG), but becomes closer
to it as the dimension grows, indicating the existence of
higher constant computational costs in the multi-layer
sparse implementation used here. A rule of thumb seems
to be R̂CG ≈ RCG/5 for large matrix dimensions.



This can be explained by the very optimized implementa-
tion of the matrix product in matlab (built on LAPACK and
BLAS), compared to the rudimentary home made implemen-
tation of the multi-layer sparse matrix product used here. A
more careful low-level implementation of FAµST is expected
to yield a better fit between R̂CG and RCG. It could also
speed up the factorization process itself.
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Fig. 4: Vector multiplication runtime comparison, averaged
over 1000 repetitions. The bottom plot indicates for each di-
mension RCG and the empirical runtime gain R̂CG.

4. CONCLUSION
In this paper, we proposed to approximate matrices arising in
linear inverse problems by Flexible Approximate MUlti-layer
Sparse Transforms (FAµST) in order to accelerate resolution
algorithms. A hierarchical factorization algorithm based on
non-convex optimization techniques was given. The benefit
of the approach was experimentally assessed on an MEG gain
matrix. The first set of experiments allowed to exhibit the ex-
istence of a flexible tradeoff between computational complex-
ity and fidelity to the original matrix. Second, the usability
of FAµSTs was assessed on a brain source localization task,
with up to 25 times speedup with controlled accuracy. Finally,
a discussion on the discrepancy between relative complexity
of multi-layer sparse approximations and actual runtime was
presented, pointing out the need for an optimized implemen-
tation for multi-layer sparse matrices.

In the future, one interesting development would be to
combine the ideas of this paper (accelerating matrix/vector
product) with those of the previous papers aimed at accelerat-
ing the resolution of inverse problems (considering the recov-
ery algorithm as a computational network). This could lead to
even more computationally efficient recovery algorithms for
sparsity-regularized inverse problems.
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