
HAL Id: hal-01156443
https://hal.science/hal-01156443v1

Preprint submitted on 27 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance evaluation of the Mojette erasure code for
fault-tolerant distributed hot data storage

Dimitri Pertin, Didier Féron, Alexandre van Kempen, Benoît Parrein

To cite this version:
Dimitri Pertin, Didier Féron, Alexandre van Kempen, Benoît Parrein. Performance evaluation of the
Mojette erasure code for fault-tolerant distributed hot data storage. 2015. �hal-01156443�

https://hal.science/hal-01156443v1
https://hal.archives-ouvertes.fr

Performance evaluation of the Mojette erasure code for fault-tolerant
distributed hot data storage

Dimitri Pertin
Université de Nantes
IRCCyN UMR 6597

Rozo Systems

Didier Féron
Rozo Systems

Alexandre Van Kempen
Université de Nantes
IRCCyN UMR 6597

Benoı̂t Parrein
Université de Nantes
IRCCyN UMR 6597

Abstract

Packet erasure codes are today a real alternative to repli-
cation in fault tolerant distributed storage systems. In
this paper, we propose the Mojette erasure code based
on the Mojette transform, a formerly tomographic tool.
The performance of coding and decoding are compared
to the Reed-Solomon code implementations of the two
open-source reference libraries namely ISA-L and Jera-
sure 2.0. Results clearly show better performances for
our discrete geometric code compared to the classical al-
gebraic approaches. A gain factor up to 2 is measured in
comparison with the ISA-L Intel . Those very good per-
formances allow to deploy Mojette erasure code for hot
data distributed storage and I/O intensive applications.

1 Introduction

Storage systems rely on redundancy to face ineluctable
data unavailability and component failures. For its sim-
plicity, data replication is the de facto standard to pro-
vide redundancy. For instance, three-way replication is
the storage policy adopted by major file systems such
as Hadoop Distributed File System [11] and Google File
System [1]. While being straightforward to implement,
plain replication typically incurs high storage overheads.
It has now been acknowledged that erasure codes can sig-
nificantly reduce the amount of redundancy compared to
replication while offering the same data protection [13].

However, these storage savings come at a price in
terms of additional complexity, as data must be encoded
during write operations, and decoded during read oper-
ations. Very efficient coding operations are thus keys to
maintain transparent operations for I/O intensive applica-
tions. Since data replication has higher storage costs but
performs faster than erasure codes, storage systems tend
to differentiate between cold data (i.e. not frequently ac-
cessed, such as in long term storage) and hot data, typi-
cally data that is frequently accessed. In practice, plain

replication is used for I/O intensive applications due to
fast data accesses while erasure codes are limited to long-
term storage because of their extra complexity.

Reed-Solomon (RS) are the most popular codes as
they provide deterministic general-purpose codes with-
out limit on the parity level. They are mostly imple-
mented in their systematic form, meaning that the in-
formation data is a part of the encoded data. In addi-
tion, they are known to be Maximum Distance Separable
(MDS) thus providing the optimal reliability for a given
storage overhead. The former definition of RS codes are
based on Vandermonde matrices and expensive Galois
field operations. Implementing such codes in an effi-
cient manner is therefore challenging. One of the best
known implementation is provided by Jerasure [9], an
open-source library that relies on Cauchy generating bit-
matrices to only perform XOR operations, thus avoiding
the costly multiplications. Recently, Intel released ISA-
L, a performance-oriented open-source library [4] that
implements RS codes leveraging SIMD instructions. To
the best of our knowledge, these two are the most effi-
cient implementations publicly available.

In this paper, we propose to use the Mojette trans-
form [2], a formerly tomographic tool, to implement a
high-performance erasure code. The Mojette transform
is a discrete and exact version of the Radon transform
and relies on discrete geometry, contrary to the classic
algebraic code definition. By nature, the Mojette trans-
form provides a non-systematic erasure code. The geo-
metric approach coupled with an optimized implemen-
tation help to perform very fast encoding and decoding
operations, handling I/O intensive applications such as
virtualization or databases, that access small blocks of
data (4 KB or 8 KB) in a random pattern [8]. Those
block sizes fit the general-purpose file systems require-
ments such as ext4 or Btrfs.

433

4 2 1

2 0 5

3 1 4

4
0

4
4

4 1
1

2
3

3

(0,1)

(-1,1) (1,1)

3
1
0
0
3
2
1

(2,1)
Q

P

Figure 1: Mojette transform of a 3× 3 image for direc-
tions (p,q) in the set {(−1,1),(0,1),(1,1),(2,1)}. Ad-
dition is done here modulo 6.

2 The Mojette Erasure Code
This section presents how the Mojette transform is used
to encode data, the uniqueness conditions of the recon-
struction solution and its inverse algorithm enabling the
decoding. Finally, the end of this section details how the
Mojette transform is used as an erasure code in practical
systems.

2.1 Forward Mojette Transform

The forward Mojette transform is a linear operation that
computes a set of 1D projections at different angles, from
a discrete image f : (k, l) 7→N, composed of P×Q pixels.
A projection direction is defined by a couple of co-prime
integers (p,q). Projections are vectors of variable sizes
whose elements are called bins. A bin in the Mojette
transform of f is characterised by its position b in the
projection which corresponds to a discrete line of equa-
tion b = −kq+ l p. Its value is the sum of the centered
pixels along the line:

(M(p,q) f)(b) =
P−1

∑
k=0

Q−1

∑
l=0

f (k, l)[b =−kq+ l p], (1)

where, [·] is the Iverson bracket ([P] = 1 whenever P is
true, 0 otherwise). The number of bins B of a projection
depends on the projection direction (p,q) and the lattice
size P×Q:

B(p,q,P,Q) = |p|(Q−1)+ |q|(P−1)+1. (2)

Figure 1 gives an example of the forward Mo-
jette transform for a 3× 3 integer image. The pro-
cess transforms the 2D image into a set of I = 4
projections along the directions of the following set:

{(−1,1),(0,1),(1,1),(2,1)}. For the sake of this exam-
ple, addition is arbitrarily done modulo-6 (but any addi-
tion works). The complexity O(PQI) is linear with the
number of projections and the number of grid elements.
Note that some border bins are the exact copy of some
pixels. This remark will help to understand how starts
the inverse transform algorithm.

2.2 Inverse Mojette Transform
In this section, we first expose the reconstruction crite-
rion on the projection set which yields to a unique recon-
structed image. Then, we detail how is implemented the
reconstruction algorithm.

Reconstruction Criterion Katz has shown that for a
P×Q lattice, the reconstruction is possible given a pro-
jection set SI if one of the following criterion is veri-
fied [5]:

P≤
I−1

∑
i=0
|pi| or Q≤

I−1

∑
i=0
|qi|, (3)

where I is the number of projections involved in the re-
construction process.

In the example of the Figure 1, we see that each sub-
set of 3 projections {(p0,q0), . . . ,(p2,q2)} is such that
∑

2
i=0 |qi| = 3. Thus, the 4 projections in Figure 1 de-

picts a redundant representation of the image, where any
3 projections among these 4 can be used for reconstruc-
tion.

Inverse Mojette Algorithm The reconstruction algo-
rithm aims at finding a reconstructible bin and to write
its value in the image by back-projection. Bins are re-
constructible when they result from a unique pixel of the
image. Once a bin is reconstructed, its contribution is
subtracted from all the projections involved in the recon-
struction, thus paving the way to reconstruct further bins.
As the forward algorithm, the Mojette inverse is linear
with the number of projections I and the number of ele-
ments P×Q in the grid.

Observing that the reconstruction propagates from the
image corners to its center, Normand et al. [6] showed
that given an image domain and a projection set, a de-
pendency graph between the image pixels can be found.
Within this graph, considering that a single projection is
dedicated to the reconstruction of a single line of the im-
age, a reconstruction path can be pre-determined. We
refer the interested reader to [6] due to lack of space.

2.3 Properties of the Mojette Erasure Code
The Mojette erasure code extends the application of the
Mojette transform, originally designed for images, to any

2

type of data. As the Mojette transform creates a redun-
dant representation, it appears to be an appealing candi-
date to provide failure tolerance in storage systems. In
classic coding theory words, we consider the k lines of
the Mojette array as the input data packets, and we com-
pute n projections as the set of encoded packets. The
Mojette erasure code is therefore non-systematic here.
Note that a systematic version of the Mojette is currently
under development. Since the size of projection varies
with the parameters (p,q) we consider for each projec-
tion that qi = 1 to limit the bin overhead (as proposed
in [7]). Then the Katz criterion proves that if we get any
k out of the n projections, it is possible to exactly recon-
struct the array. This way, the storage system is able to
face the unavailability of up to any n− k storage nodes.

In practice, we can observe that some bins are never
used during reconstruction whatever the projection set
used for the process [12]. Removing these bins from
the encoding process, particularly when p increases, sig-
nificantly limits the projection size variation and there-
fore yields to a negligible storage overhead relative to
the MDS case.

3 Erasure Code Micro-benchmark

In this section, we evaluate the performance of our new
erasure code compared to the Jerasure and ISA-L li-
braries. Firstly, we describe our Mojette implementation
and then present our two competitors. Secondly, we de-
tail the experiment setup to finally depict the results and
analysis in the last section.

Mojette We implemented a non-systematic version of
the Mojette erasure code in C. In practice, pixel size
should fit a computer word to improve performance
based on XOR operations. Since x86 architectures pro-
vide Streaming SIMD Extensions (SSE) instruction set,
pixel and bin sizes are set to 128 bits to benefit from high-
performance XOR computations. The Mojette encoding
requires at most k−1 XORs per computed bin (and zero
XOR for bins at projection edges). Similarly for decod-
ing, at most k−1 XORs are required per reconstructible
pixel. The progressive reconstruction from left to right
of connected pixels (as proposed in [6]), coupled with a
drastic reduction of updates, guarantees spatial memory
locality, thus high-performance computation.

Jerasure The first competitor is the systematic Van-
dermonde implementation of RS codes from the open-
source Jerasure 2.0 library [9]. We choose their Van-
dermonde implementation since it performs better than
their Cauchy-based implementation for such small pack-
ets size. The Galois field size is set to w = 8 to fit our
erasure code configuration (n,k).

Intel ISA-L The second competitor is the RS im-
plementation provided in Intel ISA-L open-source
library [4]. It is one of the fastest systematic erasure
code implementation since it makes intensive usage of
the x86 architecture features such as xmm registers and
SSE instructions.

3.1 Experiment Setup
We conducted all experiments on small data blocks of
BlockSize equals to 4 KB and 8 KB (that fit block-based
file-system like ext4). For encoding, we consider a sin-
gle data block filled with random data. For decoding, we
record the performance as we increase the number of era-
sures up to the failure tolerance. With systematic codes
(implementations of ISA-L and Jerasure), erasures only
concern data packets (no decoding otherwise).

Two erasure code configurations are considered for
the benchmark: (n,k) equals (6,4) and (12,8), prevent-
ing from 2 and 4 failures respectively. All the com-
putations are performed in memory, with no disk I/O
operation. Furthermore, we do not take into account
pre-computations such as the matrix inversion or de-
terministic reconstruction path respectively for the RS
and Mojette implementations. Since we measure opti-
mized encoding and decoding functions that are mostly
computation-bounded, with the data entirely located in
L1 and L2 cache, we use the RDTSC instruction that re-
turns the time stamp counter (TSC) which is incremented
on every CPU clock cycle [3]. For all tested implemen-
tations, the standard deviation is too negligible to be rep-
resented (less than 1%).

All the experiments are done on a single processor
running Linux 3.2 and Debian Wheezy over an x86-64
architecture. It embeds a 1.80 GHz Intel Xeon proces-
sor, with 16 GB of RAM and cache sizes of 32, 256 and
10240 KB for respectively L1, L2 and L3 cache levels.

3.2 Results
We now present the results of encoding and decoding
throughput for various BlockSize and code parameters.
For the sake of comparison, we plot the optimal perfor-
mance recorded by the memcpy(). More precisely, the
optimal encoding is given by the memcpy() of n pack-
ets of BlockSize

k bytes while the optimal decoding is the
memcpy() of only k packets among the n encoded. Once
again, note that the Mojette is implemented as a non-
systematic code, thus increasing the overall computation
compared to the two other systematic codes.

Encoding Figure 2 shows the encoding performance
recorded for 4 KB (top) and 8 KB (bottom) data blocks
for the (6,4) and (12,8) codes. The first observation is
that the Mojette erasure code outperforms the two other

3

(6,4) encoding (12,8) encoding

0

5,000

10,000

507 665
1,193

2,0722,312
2,971

4,088

11,163
C

PU
cy

cl
es

memcpy()

Mojette

ISA-L

Jerasure

(6,4) encoding (12,8) encoding

0

5,000

10,000

15,000

980 1,077

2,648

5,705
4,553

5,7475,810

15,267

C
PU

cy
cl

es

memcpy()

Mojette

ISA-L

Jerasure

Figure 2: Encoding performance for an input data block
of 4 KB (top) and 8 KB (bottom) depending on the code
parameters (n = 6,k = 4) or (n = 12,k = 8).

implementations in every tested settings. For example, to
encode a 4 KB block with a (6,4) code, the Mojette im-
plementation divides the number of CPU cycles by a fac-
tor of 1.94 and 3.42 when respectively compared to ISA-
L and Jerasure. While the Mojette implementation still
provides the closest performance from the optimal value
of the memcpy(), the improvements are mitigated for the
code (12,8), and especially versus ISA-L for a block of
8 KB. This is mainly due to our non-systematic design.
Indeed, to encode a 8 KB block with a (12,8) code, the
encoder splits 8 KB into 8 packets of one kilobyte and
produces 4 encoded packets for systematic codes, while
non-systematic codes have to compute 12 encoded pack-
ets thus performing 3 times more computations. Finally,
we notice that, as expected, the CPU cycles number lin-
early increases with the BlockSize, as well as with the
number of blocks to be encoded thus experimentally con-
firming the linear complexity of the Mojette transform.

Decoding We respectively plot in Figures 3 and 4 the
number of CPU cycles required to decode the data for
the same codes as before, depending on the number of

0 1 2
0

2,000

4,000

6,000

8,000

768 768 769
375

1,698
2,324

1,235

3,664

8,359

C
PU

cy
cl

es

Mojette

ISA-L

Jerasure

0 1 2
0

5,000

10,000

1,750 1,636 1,624

640

3,248

4,544

1,152

4,414

10,215

Number of erasures

C
PU

cy
cl

es

Mojette

ISA-L

Jerasure

Figure 3: Decoding performance of a (n = 6,k = 4) code
for an input data block of 4 KB (top) and 8 KB (bottom)
depending on the number of failures. The dashed line
depicts the optimal value of the memcpy() respectively
measured at 336 (4 KB) and 603 (8 KB).

failures. We still emphasize here the differences be-
tween systematic and non-systematic implementations.
Since RS codes are systematic, when no failure occurs,
they should achieve optimal performance (equivalent to
a memcpy()) as the decoding process boils down to the
copy of k data blocks in memory. For example, we see
that ISA-L delivers the optimal performance for every 0-
erasure settings. Note that our ongoing implementation
of the Mojette in systematic-form would also provide the
same results.

We now focus on the results in the presence of fail-
ures, when decoding operations are therefore involved
(i.e. we do not just retrieve the data packets in memory).
Results for the code (n = 6,k = 4) on a 4 KB block, de-
picted on top of the Figure 3 show that the number of
CPU cycles is divided by a factor of 2.2 and 4.8 when
respectively compared to ISA-L and Jerasure for a single
failure. These factors are even higher when two erasures
occurred. In fact, due to its non-systematic form, the

4

0 1 2 3 4
0

5,000

10,000

15,000

20,000

1,
45

0

1,
47

8

1,
49

4

1,
47

6

1,
49

4

44
6 1,

74
7

2,
32

7

2,
49

7

2,
98

8

1,
29

3

4,
74

0

12
,2

52

16
,0

91

20
,1

15

C
PU

cy
cl

es

Mojette

ISA-L

Jerasure

0 1 2 3 4
0

10,000

20,000

3,
31

6

4,
13

8

4,
13

8

4,
08

0

4,
15

6

76
6

3,
30

6

4,
51

9

4,
86

5

5,
85

5

1,
34

1

5,
57

0

14
,5

93

19
,0

97

24
,5

86

Number of erasures

C
PU

cy
cl

es

Mojette

ISA-L

Jerasure

Figure 4: Decoding performance of a (n = 12,k = 8)
code for an input data block of 4 KB (top) and 8 KB
(bottom) depending on the number of failures. The
dashed line depicts the optimal value of the memcpy()
respectively measured at 411 (4 KB) and 711 (8 KB).

set of projections used has no influence on the decoding
performances of the Mojette. On the contrary, the per-
formances of Jerasure and ISA-L progressively decrease
with the number of erasures. Although this performance
gap is reduced for the code (n = 12,k = 8), especially
versus ISA-L, results presented in Figure 4 still confirm
the above observations.

4 Conclusion
Erasure codes are well known to incur a high compu-
tational penalty due to their inherent coding operations,
thus preventing them from being deployed in I/O inten-
sive applications. In this paper, we advocated that the
Mojette transform is a particularly suitable tool to design
high-performance erasure code. We implemented and
evaluated our new erasure code compared to the best-
known implementations, namely ISA-L and Jerasure.

Results show that this paradigm shift towards a geomet-
ric approach enables the Mojette-based implementation
to significantly improve the throughput of coding and
decoding operations. As non-systematic, the proposed
code can still bring better throughputs in a foreseeable
future. A Mojette erasure code implementation is cur-
rently deployed in an open-source project RozoFS [10].
We believe that this new code paves the way to the use
of erasure codes in I/O intensive applications.

5 Acknowledgements
This material is based upon work supported by the
Agence Nationale de la Recherche (ANR) through the
project FEC4Cloud (ANR-12-EMMA-0031-01).

References
[1] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google

file system. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2003),
SOSP ’03, ACM, pp. 29–43.

[2] GUÉDON, J. P., AND NORMAND, N. The Mojette transform:
The first ten years. In Discrete Geometry for Computer Imagery,
E. Andres, G. Damiand, and P. Lienhardt, Eds., vol. 3429 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 79–91.

[3] INTEL. Using the RDTSC instruction for performance monitor-
ing. Tech. rep., Intel Corporation, 1997.

[4] ISA-L. https://01.org/intel%C2%AE-storage-acceleration-
library-open-source-version.

[5] KATZ, M. Questions of uniqueness and resolution in reconstruc-
tion from projections. Springer-Verlag Berlin ; New York, 1978.

[6] NORMAND, N., KINGSTON, A., AND ÉVENOU, P. A geom-
etry driven reconstruction algorithm for the Mojette transform.
In DGCI, vol. 4245 of LNCS. Springer Berlin Heidelberg, 2006,
pp. 122–133.

[7] PARREIN, B., NORMAND, N., AND GUÉDON, J. P. Multiple
description coding using exact discrete Radon transform. In Pro-
ceedings of the Data Compression Conference (Washington, DC,
USA, 2001), DCC ’01, IEEE Computer Society, pp. 508–.

[8] PERTIN, D., DAVID, S., ÉVENOU, P., PARREIN, B., AND
NICOLAS, N. Distributed file system based on erasure coding
for I/O-intensive application. The 4th International Conference
on Cloud Computing and Services Science, CLOSER 2014, 13-16
(Apr. 2014).

[9] PLANK, J. S., AND GREENAN, K. M. Jerasure: A library
in C facilitating erasure coding for storage applications–version
2.0. Tech. rep., Technical Report UT-EECS-14-721, University
of Tennessee, 2014.

[10] ROZOFS. https://github.com/rozofs/rozofs.
[11] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.

The Hadoop distributed file system. In Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on (May
2010), pp. 1–10.

[12] VERBERT, P., RICORDEL, V., AND GUÉDON, J. P. Analy-
sis of Mojette transform projections for an efficient coding. In
Workshop on Image Analysis for Multimedia Interactive Services
(WIAMIS) (Lisboa, Portugal, Apr 2004), pp. –.

[13] WEATHERSPOON, H., AND KUBIATOWICZ, J. Erasure coding
vs. replication: A quantitative comparison. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems
(London, UK, 2002), IPTPS ’01, Springer-Verlag, pp. 328–338.

5

