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1 Rue de la Noé, B.P. 92101, 44321 Nantes Cedex 3, France
Fax: 332 40 37 25 23; E-Mail: Alain.Clement@ec-nantes.fr

ABSTRACT

The Green function of linear time-domain hydrodynamics has been recently proven to satisf y a simple
fourth order ordinary differential equation (ODE) [5]. As a fist application of this remarkable property,
the present paper shows how it can be used to evaluate the kernel of the convolution integrals in the BEM
solution of seakeeping problems, in the linear time-domain approach. The Green function is obtained by
integrating these ODE from one time-step to another instead of being computed by the usual methods.
Several Runge-Kutta algorithms were tested and compared; it is shown how an optimal time step can be
derived from a stability analysis. The cpu-time savings brought by this new method are then evaluated.
Numerical results are given for three test cases: the heaving hemisphere, a standard series-60 ship hull,
and a TLP offshore platform. Impulse response functions are calculated and Fourier transformed to
recover the classical frequency domain hydrodynamic coefficients as a check for validity and accuracy.

INTRODUCTION

The solution of time-domain seakeeping problems
in the framework of linear potential flow theory
generally requires to resolve a boundary integral
problem involving convolution integrals. These
integrals may be regarded as the memory of the
* free-surface fluid; their kernel features the time-
domain Green-function of linear free-surface hy-
drodynamics, and its spatial gradient. The nu-
merical evaluation of this function, analytically
defined as an integral over an unbounded domain,
is quite time consuming by itself. Furthermore,
since the convolution integrals extend from the
initial state of rest up to the current time ¢, the
mass storage and cpu time required for their com-
putation grow roughly quadratically with time.
Since 1995 (3], we are developing a ”system” ap-
proach to the problem, which is aimed at speed-
ing up these calculations and at reducing the
storage demand. It is based on a major result
stating that the time-domain Green-function of
linearized free-surface hydrodynamics satisfies an
exact fourth order ordinary differential equation
[4, 5]. If the coefficients of this ODE were con-
stant with respect to the time variable, the con-
volution integrals could be completely suppressed
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and replaced by a simple filtering numerical pro-
cess. Unfortunately, the ODE coefficients being
polynomial with respect to the time variable, such
a simplification does not occur. Nevertheless, this
differential property provides us with an alterna-
tive method for the on-line computation of the
Green function during the calculation of the con-
volution integrals. In this paper, we present an
application of this approach to the computation
of the free-surface flow resulting from an impul-
sive motion of a floating body around its equilib-
rium position; the practical output of such com-
putations being the matrix of impulse response
functions (IRFs) of the body. The aim of this
very first application of our ODEs was primarily
to establish the feasibility of the method, and to
estimate the savings it could bring in terms of
computation time. The problem is posed in the
linear potential theory, and solved by a direct, ze-
roth order, BEM method. The Green functions
in the kernel of the convolution integrals are com-
puted by either the classical series expansion, a
tabulation procedure, or integrating the new or-
dinary differential equation. The computational
aspects of these three methods are presented and
compared. '




MATHEMATICAL FORMULATION

Let us make the usual assumptions of linearized
potential flow theory. = We shall denote by
®(z,y,z;t) the velocity potential which depends
on the nondimensional space variables (z,y, 2)
and the time variable . The fluid velocity at
a field point M(z,y,2);z < 0 is then given by
V = V&. All space variables will be reduced
by a typical length h, and the time variables by
Vv h/g, g being the gravity acceleration.

‘We shall focus here on the impulsive wave radi-
ation problem which may be formulated as : given
a floating body at rest in its equilibrium position
C, it is impulsively set into motion, at t = 0, in
one of its six degrees of freedom. The resulting
velocity potential associated with the waves radi-
ated from the body will be the unknowns of the
problem. Let us denotes by V; the velocity vector
for a motion on the ith mode.

The velocity potential is sought as the solu-
tion, in the fluid domain D, of the following initial
boundary value problem (IBVP).

Laplace’s equation
A®(z,y,z;t)=0 ; MeD,t>0 (1)

Free-Surface condition:

0%®(z,y,0;t)  0%(z,y,0;t)
Be2 5. 0 it20 ()
No-Flux body boundary condition:
02(z,y,z:t) _ (, .
n =V;n ;Me(C (3)
Initial conditions:
Q(x’y’z;t)=&ﬂz,_y,_z_;i_)=0 s MED,t<0

ot

(4)
Let us now introduce the Green function of the
impulsive source problem which satisfies intrin-
sically Laplace’s equation (1), the linearized free
surface condition (2) and the initial conditions
(4). It may be written as the sum of an impulsive
part and a memory part, like :

G(M,t, M, ¥') = —f; [6(¢ ~ ¢)Go(M, M')]

1 ’ 1 o4t
— o [HE =) F (M8, M,0)] (%)

where § and H refer respectively to the Dirac and
to the Heaviside distributions. Full expressions
of this function, together with some interesting
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differential properties, will be given in the next
section. Applying the Green’s formula to the un-
known potential ® and to this function yields the
following Fredholm-Volterra integral equation :

&A;’t—)'—/‘/‘c@(M’,t)-é%Go(M,Ml)dC=

_ / /C Go(M, M'YV;.n(M',)dC

t
’ 1 I__a_ ‘4
+/0 dt //C [@(M,t)an, (M, t, M',t')

- F(M,t,M' t")V;n(M',t"]dC (6)

A direct Boundary Element Method may then be
derived from this integral equation by discretizing
the body surface into plane panels, and represent-
ing the unknown functions over each panel by a
suitable functional approximation. The details of
the numerical solution of (6) will be presented in
a later section. :

The j** component of the transient hydrody-
namic forces consecutive to the i*# impulsive mo-
tion can be computed afterwards by integrating
the potential over the body surface, namely :

150 = [ [eoron0riee @

and differentiating with respect to the time vari-
able to return to the pressure on the body sur-
face :

Lij(t) = / /c a@g‘t/p’t)‘”:‘ (ar')de = 2Misl)

ot
(8)
This impulse response function (IRF) is homo-
geneous to a force and will be given, in the
following sections, as a coefficient defined by :
CL;; = Lij/pgh3.

Before examining the numerical method for the
solution of the boundary integral equation (6),
let us first recall some important results about
the impulsive time-domain Green function and its
differential properties.

THE TIME-DOMAIN GREEN FUNC-
TION

The function (5) which satisfies (1), (2) and (4)
is the basic element of the so-called Kelvin BEM
methods. Its impulsive part Gy is nothing but the



free space Green-function associated with its anti-
mirror image about the linearized free-surface,
namely :

=il oL
GO(M)M)—R Rl (9)
where : r = /(z—2)2+(@y-¥)? , R =

VG R = T T P

while the memory part is given by :

F(M,t, M',t') = F(r,¢,t) = B *F(u,7) (10)

with F(u,7) =

2 / Jo (,\\/1 - ;ﬂ) e~*4/Xsin (\/Xr) dX
0
(11)
The set of variable (r,{ = z-+2',1) will be referred
to as the initial variables, while (u, ), defined as:

z+ 2

p=-—F and T=t//R1 (12
1

will be named the natural variables of the func-
tion. One may notice that the geometric param-
eter u lies in the bounded range [0, 1]. Approach-
ing this limit, the function is more and more os-
cillating but remains convergent at infinity, as il-
lustrated by fig.1. In the limit 4 = 0, where both
source and field points belong to the free-surface
z = 0, and only in this case, it is divergent, lin-
early in ¢.

Figure 1: The Green function (eq.11) in natural
variables (u, T)

In a recent paper [5], we derived a general lemma
stating that the family of functions A,(u,7) of
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the form:
o0
A7) = / M 7, (A/T = 12 sin(vVAr)dA
_ 0

satisfy a fourth order differential equation with
polynomial coefficients of second degree with re-
spect to the time variable. The time-domain
Green function and its space derivatives belong-
ing to the family, they are shown to satisfy the
following ODEs:

8 F 83F 2 8°F -
2 NY * bl h
(7 +¢) o — Gt 5 +(4 4<)

a
Tt OF
+20  2r=0 (13)
0*F, 0%F, 12 6%F,
(r2+C2)7§t4——Ct 5 T (z——6{> 5
11t 0F, 21
+—4_%9T + zFr =0 (14)
0*F, 83F, 12 . 0?F,
2 2 ¢ _ ¢ L ¢
"+ )5 —Cm +(4 6C)—8t2
11¢ 8F, & 25
Tt TR0 (15)

where F, (resp. F¢) denotes the horizontal (resp.
vertical) gradient of F(r,{,t). The initial con-
ditions, also derived in their general form in {5],
become in this case:

( F(r,(,0)=0

oF —
o (00 =2 o

| ZE(r¢,00=0

at
2°F o r2=2¢2
| B0 =250
( Fo(r,(,0)=0
8F, —_ T
\ Tf(r’c’O)—fim 9
8L (r,¢,0)=0

8°F, _ ar(4¢®=r?
| 5F(r¢0) =622

Fe(r,¢,0)=0

8F¢ — A¢-2r?
G (r¢,0) (-f,;'g,jg?
g5(r¢,0)=0

2_op3
&R (r,¢,0) = 65 =2)

(2403

We shall see in a later section that the major
part of the computation time required to solve the




integro-differential integral equation (6) is spent
in evaluating this function (and its gradient) a
huge number of time (*O(108)). Then, the choice
of the method for the calculation of F, F, and
F¢ requires a particular attention if one wants to
keep the global cpu-time within reasonable lim-
its. Two families of methods were available up to
now. The new method proposed here constitutes
a third alternative .

eseries ezxpansions method. Obviously, the
original expression (11) is not well suited for di-
rect numerical evaluation; then, from the early
eighties, several authors [12, 15, 13, 20, 19] have
developed numerical procedures to compute the
Green function in its natural variables. The best
choice among all the available methods is local in
both space and time; it depends on the values of
u and 7. Asymptotic expansions are used in the
large time range, series expansions for moderate
¢ and 7, Filon quadrature for moderate 7 and
larger u, and finally recursive Bessel relations in
the vicinity of u = 1 (see [13] for details). Fol-
lowing B.W. King (1987), a set of subroutines
devoted to this task has been developed in our
laboratory, and will be used in the sequel as the
first alternative for the numerical solution of (6).

stabulation method. A second numerical
method for the evaluation of (11) is based on
a bi-linear interpolation in a pre-computed ta-
ble [9, 16]. This is made possible by the fact,
first pointed out by Jami (1981), that the Green
function is a function of only two natural vari-
ables (u,7), the first one varying in a bounded
domain. Because the maximum of the 7 vari-
able reached during a given computation is not
known a priori, the table must be quite large in
that direction, and the preceeding (series expan-
sion) method must be also available in case of
the function should be evaluated beyond the table
boundary 7imer. Nevertheless, we shall see later
that this method yet allows considerable saving
in cpu-time compared to the first one.

sODE-integration method. Because eq. (6)
is to be solved sequentially in a time marching
procedure from given initial conditions, the above
set of ODEs may be used to update the right
hand side from a time step to the next one rather
than evaluating the Green function by one of the
two above mentionned methods as usual. Runge-
Kutta ODE integration algorithms are used for
this purpose in the present study. Details about
the stability of this new method will be given in
a forthcoming section.
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SOLUTIONS TO THE BOUNDARY IN-
TEGRAL PROBLEM

Since the early eighties, several authors have pro-
posed numerical algorithms to solve the above
boundary integral equation, or some variants[15,
13, 14, 9, 17, 2, 1]. From (6), one may consider
the potential in the fluid domain as generated by
a distribution of both sources and doublets with
density distributions : ¢ = gi, resp v = —®, on
the body surface C. Discretizing this surface into
simple sub-elements and approximating the un-
known functions on each one by some low-order
functional, the continuous integral equation (6)
is transformed into a discrete set of linear alge-
braic equations which can be solved numerically
afterwards. Various order of approximations for
both the type of geometric sub-element and the
functional representation of the solutions may be
found in the related literature.

The present implementation of the method fol-
lows a previous work done by Ferrant (1988b),
who used a zeroth order direct BEM method
with constant singularity distributions (o, v} over
quadrilateral and/or triangular plane panels. Be-
cause his code has served as a starting basis in the
present study, this constant distribution option
was kept . Furthermore, a step velocity excitation
of the body hull, V; = n;H(t), is considered here
for numerical convenience; the hydrodynamic re-
sponses for an actually impulsive velocity input
then follow straithforwardly by simple differenti-
ation. Due to the constant density distribution
over the panels, the discretized integral equation
(6) is written at the centroid of each panel, lead-
ing to the discrete set of linear algebraic equa-
tions :

[Di3][v; (0)] = —H() [Si] [05(0)] -

- [ sttNiosonar+ [ laste- by e
0 0
o)
where :
Di; _// = Go(M;, M;)dC;

on;

Sij:/c Go(M,’,Mj)de (18)
]

,,t)_// —}'M t, M;,0)dC;



ss) = [ [ Forn5,005  (9)

The constant coefficient matrices [D;;] and [S;;]
are computed by the classical Hess & Smith for-
mula. Being time independent, they can be evalu-
. ated once for all at the onset. Furthermore, [D;;]
is inverted once for all by a Gaussian procedure,
and stored. '

The time variable is also discretized into equal
time-steps. The solution of (17) at each time step
is then obtained by a simple matrix product after
updating the RHS. This later task requires the
computation of convolution products of the past
solution on the body with the Green function and
its gradient. The convolution integrals are com-
puted by a simple trapezoidal rule, and, in this
very first application of the method, the surface
integrals in (19) are computed by means of sin-
gle point Gauss quadrature. Despite of these low
order algorithms, these computations remain the
most time consuming part of the overall numer-
ical process due to the complexity of the Green
function [14, 17]. All the memory coefficients (19)
from the first to the current time step are theoret-
ically needed to perform the time integration in
(17). The best choice is therefore to keep all these
coefficient matrices in RAM memory during the
execution, as long as the computer memory size
permits doing so; when it does not, which essen-
tially occur when running the tabulation method
"on a small computer, we are constrained to store
them on disk, resulting in slowing down the pro-
gram by multiplicating disk input/output (I/O)
(see fig.9left).

In the present study, the three above mentioned
computational methods were implemented. In
the series ezpansion approach, several methods
are used to compute the Green function in its nat-
ural variables, depending on the values of pu and
7. These methods do not share the same perfor-
mances in terms of cpu-time, and during the same
time step, the choice of an algorithm may be dif-
ferent from one couple of points to an other due to
the dependency of the time variable 7 = t/+/Ry
upon the relative position of field point and source
point. The local cpu time thus depends on time
and meshing, making the global cpu time quite
unpredictible.

_In the tabulation method, the Green function
F(u,7) is precomputed on a grid of the (g, 7)
plane and stored in a permanent file. In the
present study, a (1000, 24000) grid was used with
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du = 0.001 and 67 = 0.005, resulting in a
96Mbyte file in single precision, in order to cover
the whole time-range in the simulations. This
long time range tabulation avoids the algorithm
to switch to asymptotic expansion method in
long time simulations, and permits a better com-
parison with the ODE-integration method after-
wards. The table has to be implemented in RAM
memory during execution to avoid to much disk
access ; then, depending upon the total memory
available to him, the user may be obliged to store
the memory coefficient matrices (19) on disk files
as mentioned above. We happened to be in that
case in the computations reported herein, as we
shall see later.

STABILITY AND CONVERGENCE
ODE integration scheme ‘

The new method proposed above for the on-
line evaluation of the Green function is based on
the numerical integration of ordinary differential
equations featuring time-varying polynomial co-
efficients. In the wide choice of numerical schemes
available to perform this task, we payed a special
attention to the class of Runge-Kutta algorithms
which has the advantages of being sufficiently ro-
bust and which does not require the knowledge of
previous values to advance in time as it is the case
with predictor-corrector method. Furthermore,
the evaluation stage of the ODEs right hand side,
in the present case, is so unexpensive (in term of
cpu time indeed) that economizing the number
of evaluations is not a key point as it may be in
other circumstances. (see matrix eq.20).

0.8
0.6
0.4
0.2

Green

0.2
0.4

0 10 20 30 40 0 0
T

Figure 2: Typical instabilities in the determina-
tion of the Green function by ODE integration
(p = 0.5, dr = 0.1), method=RK4

The most important point to be investigated
carefully here is the stability of the integration
scheme which must be ensured whatever the kind
of body being tested and the level of mesh re-




Figure 3: stability limits RK2 method

finement.The figure (2) shows a typical instabil-
ity occuring at T ~ 62 when computing f(O.S, T)
by a standard fourth order Runge-Kutta method.
Such an instability will occur systematically at
some (large) value of the time variable 7 for
a given value of the geometrical parameter p.
Then, before using this method to compute the
whole set of s;; and d;; influence coefficients, one
must address the problem of finding the optimum
time step to avoid such a phenomenon in a given
computation range 0 < t < g5, for a given
meshing of the floating body.

Figure 4: stability limits RK5 method

Fisrt of all, one must remember that the Green
function is a function of two variables in the sys-
tem of natural variables (,7) defined by (12),
and of three variables (r, {,t) when we considered
the function in its initial set of variables. The
computation of the convolution integral in (17)
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-Figure 5: stability limits RK4 method

must be performed in the later one while the sta-
bility can be investigated in the former one. The
natural variable 7 depends on the time variable

t through the relation 7 = ¢ (r2 +C2)_%; there-
fore, it is scaled by the space variables depend-
ing on the couple of source and field points being
considered. It means that the maximum (natu-
ral) time step Arpn,. determined by the stabil-
ity analysis has to be converted into a maximum
(system) time step At;q, by considering the min-
imum value of the distance R; among all the cou-
ples of points defined by the hull panelization.

Usually, the stability analysis of differential
equations starts from examining some basic fea-
tures of the matrix [A] defined by expressing the
high order differential equation as a system of first
order ODE, namely:

F=[A]F
For the Green function ODE (13) under consider-

ation, the so-called companion matrix [A] would
read:

0 1 0 0
0 0 1 0

[Al=] 0 o 0 1 (20)
-5 (w-%) -

The most common stability criterion requires all
the eigenvalues of [A] to have a negative real part.
But this theorem holds only for constant coeffi-
cients matrix systems, and not for varying matri-
ces as in the present case (see [18] p113). This
prevent us to proceed to the standard analysis
straigthforwardly.

Nevertheless, this point is not crucial because
the Green function, which is the solution we are



concerned with, is known to be stable everywhere
except at 4 = 0. Furthermore, this parameter p
belongs to the bounded range [0,1].

The stability of the various Runge-Kutta in-
tegration algorithms was therefore investigated
from this argument, by numerical experiments in
the (g, 7) plane. Three schemes were tested: a
second order (RK2) a fourth order (RK4) and a
fifth order (RK5). The first and the second one
are the classical algorithms which can be found
in the literature. According to Press et al. [21]
we chose the set of Cash-Karp parameters for the
fifth order scheme. This permits a precise time
step optimization by using an embedded fourth
order formula and the Fehlberg method. The
coefficients for this fifth order scheme are given
in Appendix. With each method, the parame-
ter range 0 < p < 1 was thoroughly swept, and
the time step leading to the stability limit was
determined numerically for each couple (&, Tmaz)
by detecting instabilities like in fig:2. The corre-
sponding results are plotted in figures 3, 5 and 4
for RK2, RK4 and RK5 methods respectively. In
these plots, the labels on the curves indicates the
time step. As it can be observed, we recover the
expected behaviour : the smaller the time step,
the later the divergence for a given RK scheme,
and also : the higher the scheme order, the later
the divergence for a given time step. Consider-
ing now the behaviour in the vicinity of the axis
p = 0, the fourth order scheme appears to be far
more robust than the two others. This point is
important and it must be kept in mind when one
designs the time-step maximization algorithm, as
we did in the following manner. As a starting
point, the mesh and the maximum simulation
time are given by the user. From the former, one
may derive the minimum value of Ry, and then,
from both of them, a map of all the points in the

2.5
| l Pe
g
o 2 - = - RK2 =
w15 RKS -
o 1 =
O o5 /1«
0 3 12 16 20

T

Figure 6: Heaving hemisphere. comparison of
overall cpu time using various RK schemes to in-
tegrate the Green function ODEs.
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scheme | maximum | local error
time-step
RK2 .083 0(7.107%)
RK4 A1 0(1.5-107%)
RKb5 .15 O(7.6 - 10~°)

Table 1: stability limit time-steps and error
magnitude for the three considered Runge-Kutta
methods. 4*25 panels, floating hemisphere.

(Tmaz, p) plane may be established. Now, for a
given RK scheme, a (d7, ) map may be drawn
with the help of the corresponding figure 3, 5 or
4 depending on the algorithm being considered;
returning, at last, to the (dt, #) map, the smaller
valué of dt ensuring the stability over the whole
mesh can be determined easily.

A preprocessor of our time-domain code
ACHIL3D was built on this model. When ap-
plied to the heaving hemisphere test problem dis-
cretized into 4*25 panels, it gave the stability
limit time-steps shown in table 1. Nevertheless,
the final choice of a method cannot be based on
these items only. The natural advantage of RK5
should be moderated by the fact that this scheme
needs six evaluations of the RHS of the ODE
while it is four with RK4 and only two with RK2.
Therefore, the comparisons must be done on the
overall computation time to obtain a more ob-
jective ranking. Figure 6 finally shows that RK4
and RK5 are practically equivalent in terms of
cpu time when each method is run at its sta-
bility limit time-step (minus epsilon of course!).
The choice left to the user is therefore based on
other arguments like time-integration accuracy,
which gives the leadership to RK5, or robust-
ness of the time-step maximization which rather
favours RK4 (compare fig.5 and 4). Furthermore,
the accuracy argument in favour of the fifth order
scheme, should be moderated by consistancy con-
sideration, if we remember that we have chosen a
geroth order BEM with one Gauss point by panel
for this first implementation of our ODE method .
The two RK algorithms were finally implemented
in our code in such a way that the user may eas-
ily switch from one to the other; the fourth order
algorithm is the most commonly used.

Convergence with mesh refinement

Being a well documented test case, the floating
hemisphere was chosen as the first model body for
the convergence tests. The two geometric symme-
tries of this simple hull were naturally taken into
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Figure 7: Floating hemisphere : impulse response
function / mesh refinement

account and only a quarter-body was meshed.
The impulse response function for an impulsive
heave motion C L33 was selected as the output
for checking the overall accuracy. Several differ-
ent meshing were used with 16, 25, 36, 49 and 64
panels on a quarter-body, and the convergence
with regard to the mesh size (characterized by
the average panel area) was investigated. The
curves of C'Lz3(t) (eq.8) and CM33(t) (eq.7) are
plotted in figure 7. The accuracy was checked
by comparing with the same result obtained with
144 panels by Korsmeyer (1988) [14]. An excel-
lent agreement was observed. Zooming around
the first peak at C'L33(1.475) (see fig.7) revealed
that a 1% local relative error was achieved with
100 panels (4x25) on the hemisphere. The os-
cillations observed in the tail of the response for
t > 6 are the time-domain counterpart of the well
known “irregular frequencies”, and arise from the
same origin. Since we were mainly interested here
in cpu time statistics, we did not tried to suppress
this phenomenon by the help of the usual dedi-
cated methods. This is left as a further develop-
ment of the code. A linear convergence rate was
observed when plotting the error on the impulse
response fonction CL as a function of the typi-
cal average area of the panels (at the peak value
where a maximum discrepancy is expected). The
same convergence tests were also achieved on the
ISSC TLP and the results are plotted in figure
8 which illustrates this linear behaviour perfectly
well.
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Figure 8: ISSC TLP impulse response fonction
in heave and sway. Global convergence with re-
spect to typical panel size (n the total number of
panels)

CPU-TIME
METHOD

SAVING WITH ODE

The fist goal of this study was to assess the
feasibility of the ODE-integration method. The
results presented in the previous section show
that it has been reached. The second one was
to give a first estimate of the savings it can
bring in terms of computing time. The three
methods were then implemented in three paral-
lel “brother” codes differing only by this point,
and tested intensively varying the mesh, the time-
step, the Runge-Kutta method order,... Impulse
response functions were computed not only for
the floating hemisphere, but also on the ISSC
TLP platform (fig.12) and a standard Series60-
06 ship hull (fig.14).

To sets of curves are plotted in Fig:9. On the
left side, the total cpu-time including the system
part is shown, whereas the user part only is plot-
ted in the right figure. The difference between
these two measures is spent mainly in I/O oper-
ations to and from the disk storage. As pointed
earlier, we were obliged to write the coefficient
matrices (19) on disk files when using the tabula-
tion method, whereas they stayed in memory in
the two other approaches. This explains the dif-
ferences between the dashed lines in the left and
in the right frames of figure 9. For the two other
methods, the time spent in I/O is negligible and
the curves are quite the same in both sides. In
other words, one may assume that the right view
of figure 9 can always be obtained provided one
run a computer with a sufficient amount of mem-
ory. Let us thus focus on this view as a basis for
comparisons.

The structure of the convolution process sug-
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Figure 9: Floating Hemisphere (4x49 panels; §t=0.025) ; left : total cpu-time (user+1/0) ; right : user

cpu-time only.

gests a quadratic growth of the computing time.
Such a behaviour can be observed with both
the tabulation and the ODE-integration methods,
whereas the series expansion method presents two
different regimes. For ¢ < 18, we observe a quasi-
linear growth of the cpu-time. In that range,
the Green function is evaluated by different al-
gorithms, according to the relative position of
source and field points as explained before. These
methods are far more time consuming than the
asymptotic expansion which is used later, when
r > 14. So, once all the couples of points sat-
isfy this condition, the program speeds up and a
quadratic behaviour is recovered. The benefit of
using the two other methods is clearly illustrated
by Fig:9. Between them, the advantage go to
the ODE-integration method ; the cpu-time ratio

with the tabulation method lies in the range [2,4],

depending on wether or not you can keep all the
arrays in RAM during the program execution.

In the present comparison all the methods
were run using the same constant time-step dt =
0.025. We limit ourselves to RK2 and RK4 meth-
ods; RK5 was disregarded. The fourth-order,
four steps Runge-Kutta method requires twice as
many floating operations as the second order two
steps method. Nevertheless, the tiny difference
. between the RK4 and RK2 curves in Fig:9 proves
that, with the ODE-integration method, the time
spent in Green function evaluations has became
marginal compared with the time for the over-
all process. On the contrary, it means that, by
selecting RK5 algorithm, we could increase the
precision of the ODE integration at practically
no extra cpu cost.

One should notice that these curves correspond
to quite long simulations. In the present case of
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a heaving hemisphere, a simulation up to t = 20
should be sufficient from a practical point of view
(see Fig:7). It would result in computing times
shown in the table below, when running a DEC
Alpha 500 workstation, at 330MHz.

Method | user+1/0 | user (sec)
Series 3408 3405
Tabulation 356 164
ODE-RK4 88 87
ODE-RK2 82 82

Table 2. cpu-time requirements (sec), floating
hemisphere (4x49 panels), t=20.

The ISSC Tension Leg Platform

The computer code was used afterwards to com-
pute the IRFs of a more realistic body. Results
for the ISSC platform in heave and surge motions
were presented by Ferrant (1988)[9]. We there-
fore selected it as a test geometry for our code
ACHIL3D. Several meshes were generated using
the mesh generator MACAO. All the results re-
ported here were obtained with a 912 panels mesh
illustrated by Fig:12. The fourth-order Runge-
Kutta integrator was used with a fixed time step
&t =0.02.

As a check for the computer code, our
surge/surge impulse response function CLy
(fig.10a) was compared with the results obtained
by Ferrant using a 1200 panels mesh; the agree-
ment was found excellent.

In figures 10b and 11, the diagonal IRF for
heave, roll and yaw motions are presented to-
gether with their Fourier transform which are
nothing but the classical added mass and damping
coefficients of the frequency domain approach to
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the seakeeping problem, the correspondence be-
ing given by :

A,-J-(w) = M,'j(O) + ‘/0‘°° L,‘j(i) cos(wt)dt

-

Bij(w) _

[ ratsnena
0

These frequency domain coefficients CA;;
CB;;, deduced from the present time-domain ap-
proach by Fourier transformation have been com-
pared to those obtained directly by running fre-
quency domain panel codes like AQUADYN (ECN)
and WAMIT (MIT) (datain [10]). The agreement is
again excellent, within a few percent. In figure 13,
the off-diagonal IRF coefficients CLgs and CLyo
and the difference between them (ten times mag-
nified) are presented. These coefficients should
theoretically be equal; the gap between is there-
fore a good measure of the overall accuracy of
the computation method. In the present case, the
maximum difference is approximately one percent
of the maximum of the C'Las/CL42 curve.
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Figure 14: $60-06 meshing; 2x245 panels

SERIES60-06 SHIP HULL

The bodies used in the previous section have two
symmetry plane. This property was naturally ex-
ploited to reduce the number of unknowns, hence
the system matrix size. The computer code was
afterwards extended to bodies with a single sym-
metry plane. The standard Series 60-06 ship
(fig.14) hull was then used as a test case for
this further release. The hull was panelized with
2x245 plane quadrilateral panels.

The optimal time step determined by the pre-
processor as explained previously was found to
be §t = 0.00484 when the ship length is taken as
the reference length. A RKS5 scheme was used in
the reported computations. The impulse response
functions were computed up to 7" = 10 which
was found sufficient to reach a quasi-null response
state as shown in fig.15 to 20. These time-domain
results were then Fourier transformed by (21) in
order to be compared to those obtained directly in
the frequency domain by the diffraction-radiation
code AQUADYN (7, 8] developped at LMF labo-
ratory in the eigthies. In terms of order of ap-
proximation, this code is equivalent to ACHIL3D
but in the frequency domain. It solves the lin-
earized (to the first order) seakeeping problem by
a zeroth-order BEM featuring a mixed sources-
dipoles distribution of Kelvin type Green function
on the discretized hull.

Time-domain and frequency domain results are
plotted in figures 15 to 20 hereafter. We give only
diagonal coefficients here, to save space, but the
whole set of non-zero responses has, of course,
been computed.

The fit between the frequency domain and
the time-domain approaches is generally ex-

“cellent (O(1072)), except near the “irregular”

frequencies already mentionned in this paper.
This phenomenon is particularly sensitive on the
frequency-domain results for heave and pitch mo-
tions, in figures 17 and 19. These results con-
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Figure 11: ISSC Tension Leg Platform - 912 panels

firm that the present time-domain approach can
be used as a robust alternative method to obtain
the usual frequency domain hydrodynamic coef-
ficients. The opposite is not true due to the slow
asymptotic decrease of these coefficients as the
wavenumber tends to infinity (see fig.15 to 20).
The inverse Fourier transform which has to be
performed numerically from these data imposes a
truncation at very high frequencies where the con-
vergence of the frequency domain solution would
surely be problematic. :

CONCLUSION

A new method for the calculation of the Green
function during the computation of convolution
integrals occuring in time-domain seakeeping
simulations has been proposed. It is based on
differential properties of the time-domain Green
function which are used to speed up this numer-
ical process. The performance, in terms of cpu
time requirements, of the new alternative method
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.was compared with the two usual approaches to

the problem, based either on series expansions or
tabulation of the Green function. The proposed
ODE-integration method runs faster than the
tabulation method, in a ratio between two and
four, depending on the memory capacity of the
computer. The stability analysis of the Green
function ODE provides a mean to optimize the
choice of the time step depending on the RK
algorithm finally selected. The accuracy of the
code has been checked by tests on well docu-
mented bodies as the hemisphere, the ISSC TLP
platform and a serie60-06; the frequency domain
coefficients of these bodies were recovered by
Fourier transform with an excellent accuracy.

This work was financially supported by the Di-
rection des Recherches, Etudes et Techniques of
the French Ministry of Defence (DGA).
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Yaw/Yaw hydrodynamic coefficients
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APPENDIX. COEFFICIENTS OF THE
5TH ORDER RUNGE-KUTTA SCHEME

The differential equation being symbolically writ-
ten as
() = f(t,9)

and the time step being denoted by h. Let us
define the i*"stage of the method by:

i-1
ki=hf (in +aih, yn + st‘jkj)

i=1

and the final estimate as
I
Yn+l = Yn -+ Zciki
i

The Cash-Karp coefficient set of the fifth order
Runge-Kutta scheme we have selected is given in




the tables below [21]. Applying the stared co-
efficients ¢} provides the embedded fourth-order

estimation necessary to optimize the time-step by
the Fehlberg method. ’ -
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