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DISTRIBUTION OF POSTCRITICALLY FINITE POLYNOMIALS

II: SPEED OF CONVERGENCE

by

Thomas Gauthier & Gabriel Vigny

Abstract. — In the moduli space of degree d polynomials, we prove the equidistribution
of postcritically finite polynomials toward the bifurcation measure. More precisely, using
complex analytic arguments and pluripotential theory, we prove the exponential speed of
convergence for C2-observables. This improves results obtained with arithmetic methods by
Favre and Rivera-Letellier in the unicritical family and Favre and the first author in the
space of degree d polynomials.
We deduce from that the equidistribution of hyperbolic parameters with (d − 1) distinct
attracting cycles of given multipliers toward the bifurcation measure with exponential speed
for C

1-observables. As an application, we prove the equidistribution (up to an explicit
extraction) of parameters with (d− 1) distinct cycles with prescribed multiplier toward the
bifurcation measure for any (d− 1) multipliers outside a pluripolar set.
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1. Introduction

In a holomorphic family (fλ)λ∈Λ of degree d ≥ 2 rational maps, Mañé, Sad ans Sulli-
van [MSS] studied quite precisely the notion of J-stability. In particular, they related the
instability of critical orbits under small perturbations of the dynamics and instability of
periodic cycles (see also [Ly]).

This description has been enriched by DeMarco [DeM1] who introduced a current Tbif

which is supported exactly on the bifurcation locus. This current and its self-intersections
reveal to be an appropriate tool to study bifurcations from a measurable viewpoint. Now,
consider the particular case of the moduli space Pd of critically marked complex polyno-
mials of degree d modulo conjugacy by affine transformations. In that space, the maximal
self-intersection of the bifurcation current induces a bifurcation measure µbif, introduced
by Bassanelli and Berteloot [BB1], which may be considered as the analogue of the har-
monic measure of the Mandelbrot set when d ≥ 3. The support of this measure is where
maximal bifurcation phenomena occur. Recall that a polynomial is postcritically finite if
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all its critical points have finite orbit, it is postcritically finite hyperbolic if all its critical
points are periodic cycle (the Julia set of such polynomials is then hyperbolic). Recall
that a polynomial is postcritically finite if all its critical points have finite orbit. Using the
bifurcation measure, it is proved in [BB1] that its support is accumulated by postcriti-
cally finite hyperbolic parameters (which are in a certain way the most stable parameters)
and that it coincides with the closure of parameters having a maximal number of neutral
cycles. Still using the bifurcation measure, the first author also showed in [G1] that its
support has maximal Hausdorff dimension.

As the bifurcation locus of the moduli space Pd is a complicated fractal set, a natu-
ral approach is to study it on some dynamical slices. In particular, one can study the
maps having a superattracting orbit of fixed period n. The study of such a set is difficult
and involves naturally arithmetic, combinatorics, topology and complex analysis (see e.g.
[M2]). Furthermore, to understand the global geography of the moduli space Pd, it is
useful to approximate the bifurcation current (resp. the bifurcation measure) by dynam-
ically defined hypersurfaces (resp. finite sets). Following the topological description of
the bifurcation locus given by [MSS], one can try to approximate the bifurcation currents
by different types of phenomena: existence of critical orbit relations or periodic cycles of
given nature.

Let us focus first on the simplest case of the unicritical family, i.e. the family defined
by pc(z) := zd + c, c ∈ C. Consider the set Per(n) := {c ∈ C ; pnc (0) = 0} of parameters
that admit a superattractive periodic point of period dividing n. Recall that the Multibrot
set Md is defined by Md := {c ∈ C ; Jc is connected}. Beware that Md is a non-polar
connected compact set. Finally, let µMd

be the harmonic measure of Md. Then, the first
result in this direction goes back to Levin [Le]. In the quadratic family (d = 2), he proved
that the measure equidistributed on the set Per(n) converges to the harmonic measure
of the Mandelbrot set, as n → ∞. Favre and Rivera-Letelier [FRL] gave a quantitative
version of Levin’s in the unicritical family, using arithmetic methods. Namely, they proved
that there exists C > 0 such that for any n ≥ 1 and ϕ ∈ C1

c (C):
∣∣∣∣∣∣

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd

∣∣∣∣∣∣
≤ C

( n

dn

) 1
2 ‖ϕ‖C1 .

Using complex analytic potential theory, we prove here the following.

Theorem A. — Let d ≥ 2. Then, there exists a constant C > 0 depending only on d
such that for any ϕ ∈ C2

c (C) and any n ≥ 1,
∣∣∣∣∣∣

1

dn−1

∑

c∈Per(n)

ϕ(c)−
∫

C

ϕµMd

∣∣∣∣∣∣
≤ C

n

dn
‖ϕ‖C2 .

A classical interpolation argument immediately gives Favre and Rivera-Letelier’s above
result. We shall also give a similar estimate for non-postcritically finite hyperbolic param-
eters in Section 4.

More recently, this subject has been intensively studied in the moduli space Pd for
d ≥ 3. As the critical points are marked, i.e. can be followed holomorphically in the whole
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moduli space Pd, the bifurcation current decomposes as Tbif =
∑

P ′(c)=0 Tc (see §2.1 for

the definition of Tc). For n > k ≥ 0, let

Perc(n, k) := {[P ] ∈ Pd ; Pn(c) = P k(c)} .

Refining Levin’s approach, Dujardin and Favre prove in [DF] that for any sequence k(n)
satisfying 0 ≤ k(n) < n, the sequence d−n[Perc(n, k(n))] converges to Tc in the weak sense
of currents on Pd. Recently, Okuyama [Oku1] gave a simplified proof of their result in
the case k(n) = 0.

Compared to the unicritical family, a significant difficulty comes from the fact that
two distinct critical points can very well be, at some parameter, in the immediate Fatou
component of the same attractive periodic point. To overcome that, for n ≥ 1 and w ∈ C,
we let

Per∗(n,w) := {[P ] ∈ Pd ; P has a cycle of multiplier w and exact period n} .

The set Per∗(n,w) happens to be a complex hypersurface of degree (d− 1)dn ∼ (d− 1)dn,
where dn ≥ 1 is defined by induction by d1 = 1 and dn =

∑
k|n dk for n ≥ 2. It is known

that, for a fixed w ∈ C, the sequence d−n[Per∗(n,w)] converges weakly to Tbif on the moduli
space Pd. The case |w| ≤ 1 has been established by Bassanelli and Berteloot [BB3] using
an approximation formula for the Lyapunov exponent (see also [BB2]). The more delicate
case |w| > 1 has been proved recently by the first author in [G2] (see also [BG2] for the
case of quadratic polynomials with changing multipliers).

Building on arithmetic methods, Favre and the first author [FG] proved that post-
critically finite hyperbolic parameters with (d − 1) distinct super-attracting cycles (resp.
strictly postcritically finite parameters with given combinatorics) equidistribute towards
the bifurcation measure. The proof developped in that work is only qualitative, since there
exists no effective version of Yuan’s arithmetic equidistribution Theorem. It also raises
the question to know whether the result is of purely arithmetic nature or not. We consider
the present work as a continuation of [FG].

Statement of the main results. — Our main goal here is twofold. First, we want
to establish a quantitative equidistribution theorem for postcritically finite hyperbolic
parameters. Second, we aim at giving a simpler proof than the one of [FG], relying only
on pluripotential theoretic and complex analytic arguments. To our purposes, as in the
recent works [DF, BB3, G2, FG], we shall use the following “orbifold” parametrization
of the moduli space Pd. For (c, a) = (c1, . . . , cd−2, a) ∈ C

d−1, we let

Pc,a(z) :=
1

d
zd +

d−1∑

j=2

(−1)d−jσd−j(c)
zj

j
+ ad , z ∈ C ,

where σℓ(c) is the monic symmetric polynomial of degree ℓ in (c1, . . . , cd−2). Observe that
the canonical projection (c, a) ∈ C

d−1 7→ {Pc,a} ∈ Pd is a finite branched cover of degree
d(d− 1) and that the critical points of Pc,a are exactly c0, c1, . . . , cd−2 with the convention
that c0 := 0 (see Section 5.1 for details). For an integer n ∈ N

∗, we let σ(n) be the sum
of its divisors σ(n) :=

∑
k|n k. The function σ is known to be bounded from above by

Cn log log n for some constant C > 0 independent of n.
Our main result may be stated as follows.

Theorem B. — Let d ≥ 3. Then there exists a constant C > 0 depending only on d such
that for any (d−1)-tuple of pairwise distinct positive integers n = (n0, . . . , nd−2) with n0 ≥
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2 and every test function ϕ ∈ C2
c (C

d−1), if µn is the probability measure equidistributed on

the set of parameters in C
d−1 for which the critical point ci is periodic of exact period ni

for all i, we have

∣∣∣∣
∫

Cd−1

ϕµn −
∫

Cd−1

ϕµbif

∣∣∣∣ ≤ C max
1≤j≤d−1

(
σ(nj)

dnj

)
‖ϕ‖C2 .

The first ingredient of the proof is a (slight generalization) of a very general dynamical
property established by Przytycki: if a critical point c of a rational map f does not lie in
an attracting basin f , the points c and fn(c) can not be to close (see Lemma 3.1). The
idea to use Przytycki estimate in this context has been introduced by Okuyama [Oku1]
(see also [Oku2]) and constitutes the starting point of our work. Combined with known
global properties of the family (Pc,a)(c,a)∈Cd−1 , this allows us to have precise pointwise
estimates outside some specific “bad” hyperbolic components. The second important tool
is a transversality result for critical periodic orbit relations proved in [FG] and relying
on Epstein’s transversality theory (see [E]). The last important ingredient we use is a L1

estimate for specific solutions of the Laplacian in a bounded topological disk of an affine
curve of Cd−1, which proof crucially relies on length-area estimates (see Theorem 3.2). This
allows us to replace an estimate involving the diameter of hyperbolic components with
their volume. This actually is a key step, since even in the quadratic family, estimating
the diameter of hyperbolic components is a very delicate problem related to the famous
hyperbolicity conjecture.

Nevertheless, notice that, in the context of the unicritical family, the equation pnc (0) = 0
is known to have simple roots so we do not need to exclude parameters with a periodic
critical point of period dividing n. As a consequence, we do not use transversality state-
ments à la Epstein. Hence, we will start by the proof of Theorem A which is simpler and
more efficient than in the general case. We may regard this as a model for the general
case.

Following the strategy of the proof of [FG, Theorem 3], we can deduce from The-
orem B a speed of convergence for the measure equidistributed on the (finite) set of
parameters admitting (d − 1) distinct attracting cycles of given respective multipliers
w0, . . . , wd−2 ∈ D and of given mutually distinct periods towards µbif. Let us be more
precise and pick a (d − 1)-tuple n := (n0, . . . , nd−2) of mutually distinct positive integers

and w := (w0, . . . , wd−2) ∈ C
d−1. When the set

⋂d−2
i=0 Per∗(ni, wi) is finite, let

µn,w :=
1

(d− 1)!
∏

j dnj

d−2∧

j=0

[Per∗(nj, wj)] .

Notice that µn,w is a probability measure and that, when w ∈ D
d−1, the measure µn,w is

exactly the measure equidistributed on the set of parameters in C
d−1 having (d−1) cycles

of respective exact period n0, . . . , nd−2 and multipliers w0, . . . , wd−2.
The precise result we prove may be stated as follows.

Theorem C. — Pick d ≥ 3. Then there exists a constant C > 0 such that for every
w = (w0, . . . , wd−2) ∈ D

d−1 and every (d − 1)-tuple of pairwise distinct positive integers
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n = (n0, . . . , nd−2) with n0 ≥ 2, if µn,w is as above, we have

∣∣∣∣
∫

Cd−1

ϕµn,w −
∫

Cd−1

ϕµbif

∣∣∣∣ ≤ C

(
max

0≤j≤d−2

{
σ(nj)

dnj
,

−1

dnj log |wj |

}) 1
2

‖ϕ‖C1 ,

for any test function ϕ ∈ C1
c (C

d−1).

Combining Theorem C with techniques from pluripotential theory (see e.g. [DTV] and
[DS3]), we can actually prove that for all (d−1)-tuples of multipliers w := (w0, . . . , wd−2)
lying outside a pluripolar set of Cd−1, the measure µn,w equidistributed on parameters hav-
ing (d− 1) cycles of respective multipliers w0, . . . , wd−2 converges towards the bifurcation
measure, as soon as the periods of the given cycles grow fast enough:

Theorem D. — Pick any sequence nk = (n0,k, . . . , nd−2,k) of (d − 1)-tuples of pairwise

distinct positive integers such that the series
∑

k maxj{n−1
j,k} converges. Then there exists

a pluripolar set of E ⊂ C
d−1 such that for any w = (w0, . . . , wd−2) ∈ C

d−1 \ E, the set⋂d−2
i=0 Per∗(ni,k, wi) is finite for any k and the sequence (µnk ,w)k converges to µbif in the

sense of measures.

As an obvious corollary, we can deduce that if we only assume minj{nj,k} → ∞, then,
for w outside a pluripolar set, up to extraction (µnk,w)k converges to µbif in the sense of
measures. Here is another immediate and interesting consequence of Theorem D.

Corollary E. — Pick any sequence nk = (n0,k, . . . , nd−2,k) of (d − 1)-tuples of pairwise

distinct positive integers such that the series
∑

k maxj(n
−1
j,k) converges. Then, for almost

any Θ = (θ0, . . . , θd−2) ∈ R
d−1, if w(Θ) = (e2iπθ0 , . . . , e2iπθd−2), the sequence (µnk,w(Θ))k

converges to µbif in the sense of measures.

Notice that Bassanelli and Berteloot [BB2] proved a weaker version of Corollary E: they
prove that the average measures

∫
]0,1[d−1 µnk,w(Θ)dm(Θ) converge weakly to the bifurcation

measure. Contrary to ours, their proof also works in any codimension.

We view these results as parametric analogues of important dynamical phenomena.
Indeed, Theorem B is an analogue of the equidistribution of repelling periodic points
of a holomorphic endomorphism F of Pk towards its maximal entropy measure µF , and
Theorem D is an analogue of the equidistribution of preimages of a generic points, again
towards the measure µF (see [Lj, BD]).

Perspectives. — The questions we discuss here may be addressed in a more general
setting. A first natural generalization is the case when critical points can have the same
period. In that case, the transversality theory à la Epstein fails at parameters admitting
multiple critical points and we a priori have no control of the multiplicity of intersection
at those parameters.

A second natural question is concerned with the case of the moduli space of degree d
rational maps. Even in the case of quadratic rational maps which is much better under-
stood that the general case, important difficulties occur. The main problem comes from
the fact that, contrary to the case of polynomials, the support of the bifurcation measure
is not compact in the moduli space of quadratic rational maps and that the collection of
relatively compact hyperbolic components cluster at infinity (see [BG1]).

We shall study both cases in future works.
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On the other hand, in a more recent preprint ([GV]), instead of focusing on the distribu-
tion of hyperbolic postcritically finite parameters, we study the distribution of Misiurewicz
parameters (as is also done in [FG]). In this preprint, we study this problem using this
time combinatorial tools developped by Kiwi [K] and Dujardin-Favre [DF], enlightening
slightly different, though related, phenomena.

Structure of the article. — Section 2 is devoted to needed material. In Section 3,
we establish two preliminary results: Przytycki distance estimate and the L1 estimate for
solutions of the Laplacian. We then present the proof of Theorem A and its corollaries in
Section 4. The initial estimates relying on Przytycki Lemma are established in Section 5.
Section 6 is dedicated to the proof of the main Theorem B and Section 7 to proving
Theorems C and D. Finally, in Section 8, we investigate other approximation phenomena.
We try here to understand the distribution of maps for which the critical points are sent
to some prescribed target (and not necessarily themselves). We are especially interested
in a theorem of Dujardin [Du] that proves the convergence outside some pluripolar set.
We give here some convergence estimates and show that in some cases, the pluripolar set
can be described explicitly.

Acknowledgment. — The research of both authors is partially supported by the ANR
project Lambda ANR-13-BS01-0002. We would like to thank Vincent Guedj for very
helpful discussions concerning L1 estimates for solutions of the Laplacian and François
Berteloot and Charles Favre for useful comments on preliminary versions.

2. Background material

In this section, we want to recall briefly background material on bifurcation currents and
on classical complex analytic tools we will rely on in the whole paper.

2.1. Holomorphic families with marked critical points

Let us recall classic facts concerning holomorphic families of rational maps.
A holomorphic family (fλ)λ∈Λ of degree d ≥ 2 rational maps parametrized by Λ is a

holomorphic map
f : Λ× P

1 −→ P
1

such that the map fλ := f(λ, ·) : P1 → P
1 is a degree d rational map, or equivalently if

the map f : λ ∈ Λ 7−→ fλ ∈ Ratd is holomorphic.

Definition 2.1. — We say that a holomorphic family (fλ)λ∈Λ is with a marked critical
point if there exists a holomorphic map c : Λ → P

1 such that f ′
λ(c(λ)) = 0 for all λ ∈ Λ.

We say that a marked critical point c is passive at λ0 ∈ Λ if there exists a neighborhood
U ⊂ Λ of λ0 such that the sequence Fn of holomorphic maps defined by Fn(λ) := fn

λ (c(λ))
is a normal family on U . We say that c is active at λ0 if it is not passive at λ0. The
activity locus of c is the set of parameters λ0 ∈ Λ such that c is active at λ0.

Let ωP1 be the Fubini-Study form of P1 normalized so that
∫
P1 ωP1 = 1.

Theorem 2.2 (Dujardin-Favre). — The sequence d−n(Fn)
∗ωP1 converges in the weak

sense of currents to a closed positive (1, 1)-current Tc on Λ which is supported by the
activity locus of c.
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More precisely, there exists a locally uniformly bounded sequence of continuous function
un : Λ×P

1 → R such that 1
dn (Fn)

∗ωP1 = Tc+
1
dndd

cun, see e.g. [DF, Proposition-Definition
3.1] or [DeM1]. It is also known that Tc ∧ Tc = 0 (see [G1, Theorem 6.1]).

Let us also recall that, when a holomorphic family is with 2d− 2 marked critical points

c1, . . . , c2d−2, the current Tbif :=
∑2d−2

i=1 Tci is supported by the bifurcation locus in the
sense of Mañé, Sad and Sullivan (see [DeM2]).

Definition 2.3. — We define the bifurcation measure of a family (fλ)λ∈Λ as

µbif :=
1

m!
Tm
bif , m = dimΛ .

This measure detects, in a certain sense, the strongest bifurcations which occur in Λ.
Finally, when (fλ)λ∈Λ is a holomorphic family of polynomials with d − 1 marked critical
point c1, . . . , cd−1 : Λ → C, we let

gλ(z) := lim
n→∞

d−n log+ |fn
λ (z)| ,

for λ ∈ Λ and z ∈ C. The current Ti is then given by Tci = ddcgλ(ci(λ)) (see e.g. [DF]).
We also can remark that it actually can be considered as equipped with 2d − 2 marked
critical points letting cd ≡ · · · ≡ c2d−2 ≡ ∞ and that Ti = 0 for all d ≤ i ≤ 2d− 2.

2.2. Polynomials with a specific periodic point

For the material of the present section, we refer to [Si, §4.1] and to [BB2, BB3, M1]
(see also [FG, §6]). We follow the notations of [FG].

We let (fλ)λ∈Λ be a holomorphic family of degree d polynomials parametrized by a
quasi-projective variety Λ. For any n ≥ 1, the n-th dynatomic polynomial of fλ is defined
as

Φ∗
n(λ, z) :=

∏

k|n

(
fk
λ (z)− z

)µ(n/k)
,

where µ stands for the Moebius function. This defines a polynomial map Φn : Λ×C −→ C

satisfying Φn(λ, z) = 0 if and only if

– either z is periodic under iteration of fλ with (fn
λ )

′(z) 6= 1 and its exact period is n,
– or z is periodic under iteration of fλ with (fn

λ )
′(z) = 1 and its exact period is k|n

and (fk)′(z) is a primitive n/k-th root of unity.

When (fλ)λ∈Λis endowed with (d − 1) marked critical point c0, . . . , cd−2 : Λ → C, we
may apply this construction to those marked critical points cj . We let

Pn,j(λ) := Φ∗
n(λ, cj(λ)) , λ ∈ Λ .

By the above, we have

Lemma 2.4. — Pick m ≥ 1, 0 ≤ j ≤ d − 2 and λ ∈ Λ. Then Pm,j(λ) = 0 if and only if
cj(λ) is periodic under iteration of fλ with exact period m.

We also can describe the set of parameters admitting a cycle of given period an multi-
plier. For n ≥ 1, set

pn(λ,w) :=
(
Resz(Φ

∗
n(λ, z), (f

n
λ )

′(z)− w
)1/n

, (λ,w) ∈ Λ× C .

This defines a polynomial pn : Λ× C −→ C. Again, we find
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Lemma 2.5. — Pick n ≥ 1 and w ∈ C. Then pn(λ,w) = 0 if and only if one of the
following occurs:

– if w 6= 1, fλ has a cycle of exact period n and multiplier w,
– if w = 1, there exists k|n such that fλ has a cycle of exact period k and multiplier ρ

a primitive n/k-root of unity.

2.3. A specific family

Recall that the moduli space Pd of degree d polynomials is the space of affine conjugacy
classes of degree d polynomials with d − 1 marked critical points. We define a finite
branched cover of Cd−1 → Pd as follows. For c = (c1, . . . , cd−2) ∈ C

d−2 and a ∈ C, let

Pc,a(z) :=
1

d
zd +

d−1∑

j=2

(−1)d−j σd−j(c)

j
zj + ad , z ∈ C ,

where σk(c) is the monic elementary degree k symmetric polynomial in the ci’s. This
family is known to be a finite branched cover (see e.g. [DF, §5]). Remark also that the
critical points of Pc,a are exactly c0, . . . , cd−2, where we set c0 := 0, and that they depend

algebraically on (c, a) ∈ C
d−1.

We define a continuous psh function G : Cd−1 → R+ by setting

G(c, a) := max
0≤j≤d−2

gc,a(cj) , (c, a) ∈ C
d−1.

It is known that the connectedness locus

Cd := {(c, a) ∈ C
d−1 ; Jc,a is connected}

is compact and satisfies Cd = {G = 0}, where Jc,a := ∂{gc,a = 0} is the Julia set of Pc,a

(see [BH]). Moreover, the bifurcation measure, in this actual family, coincides with the
Monge-Ampère mass of G, i.e.

µbif = (ddcG)d−1

as probability measures on C
d−1. It is also known that

G(c, a) = log+max{|c|, |a|} +O(1) ,

where we set |c| := max1≤j≤d−2 |cj | , and that the function G is the pluricomplex Green

function of Cd. In particular, µbif = (ddcG)d−1 is supported by the Shilov boundary ∂SCd
of Cd (see [DF, §6]). In particular, the estimates of [DF] give

Lemma 2.6. — There exists a constant C > 0 independent of (c, a) such that for any
(c, a) ∈ C

d−1, any z ∈ C and any n,
∣∣∣∣
1

dn
log+ |Pn

c,a(z)| − gc,a(z)

∣∣∣∣ ≤
d−n+1

(d− 1)
· (log+max{|c|, |a|} + C) .

Proof. — First, let us show that
∣∣∣∣
1

d
log+ |Pc,a(z)| − log+ |z|

∣∣∣∣ ≤ log+max{|c|, |a|} + C
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for some constant C ≥ 0 depending only on d. As observed in the proof of [DF, Lemma

6.4], there exists C̃ ≥ 1 such that |Pc,a(z)| ≤ C̃max{|c|, |a|, |z|}d , hence
1

d
log+ |Pc,a(z)| ≤ log+ |z|+ log+max{|c|, |a|} + log C̃

for all (c, a, z) ∈ C
d. On the other hand, if |z| ≥ d · max{|c|, |a|, 1}, one clearly has

|Pc,a(z)| ≥ C ′|z|d for some C ′ > 0 depending only on d and

1

d
log+ |Pc,a(z)| ≥ log+ |z| − log+max{|c|, |a|} + logC ′.

Finally, if |z| ≤ d ·max{|c|, |a|, 1}, we directly find

1

d
log+ |Pc,a(z)| ≥ 0 ≥ log+ |z| − log+ max{|c|, |a|} − log d,

and the conclusion follows.
Now, an immediate induction gives
∣∣∣∣

1

dn+k
log+ |Pn+k

c,a (z)| − 1

dn
log+ |Pn

c,a(z)|
∣∣∣∣ ≤

1

dn
(
log+max{|c|, |a|} + C

) k−1∑

j=0

d−j

for all n ≥ 1 and all k ≥ 1 and the conclusion follows making k → ∞.

2.4. Complex analytic tools

We will denote in what follows dP1 the classical spherical distance on P
1, normalized so

that P1 has diameter 1. For a C1 selfmap f , we denote f# the spherical derivative of f :

∀z ∈ P
1, f#(z) := lim

d
P1 (z,y)→0

dP1(f(z), f(y))

dP1(z, y)
.

Recall that if A is an annulus and if A is conformally equivalent to A′ = {z ∈ C ; r <
|z| < R} with 0 < r < R < +∞, the modulus of A is the same as the modulus of A′:

mod(A) = mod(A′) =
1

2π
log

(
R

r

)
.

We will rely on the following classical estimate (see [BD, Appendix]).

Lemma 2.7 (Briend-Duval). — For any k ≥ 1, there exists a constant τk > 0 depend-
ing only on k such that for any holomorphic disks D1 ⋐ D2 ⋐ C

k, and any hermitian
metric α on C

k,

(diamα(D1))
2 ≤ τ · Areaα(D2)

min(1,mod(A))
,

where A is the annulus D2 \D1 and areas and distances are computed with respect to α.

We also rely on the following classical integration by part formula, which can be stated
as follows (see [Dem, Formula 3.1 page 144]).

Lemma 2.8. — Let Ω ⋐ Ω′ ⊂ C
k be bounded open sets. Assume that Ω has smooth

boundary. Let u, v be psh functions on Ω′ and let T be a closed positive (k − 1, k − 1)-
current on Ω′ such that ddcu ∧ T and ddcv ∧ T are well-defined. Then

∫

Ω
(vddcu− uddcv) ∧ T =

∫

∂Ω
(vdcu− udcv) ∧ T .
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3. Preliminary results

In this section, we establish the two main technical estimates we will rely on. The first
one is of dynamical nature and follows very closely a classical result of Przytycki. The
second is of more geometric nature and might be of independent interest.

3.1. Local dynamical estimates

We shall use the following estimate in a crucial way. Though we will need it only in the
case of families polynomials, we state and prove the estimate for general familes of rational
maps for sake of completeness. The proof follows very closely that of [P, Lemma 1]. The
idea to use this result for proving equidistribution phenomena in parameters spaces first
appeared in the recent work [Oku1] of Okuyama.

Lemma 3.1. — Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps and let
c : Λ → P

1 be a marked critical point of (fλ)λ∈Λ. Assume that c(λ) does not lie persistently
in a parabolic basin of fλ, i.e. there exists λ0 ∈ Λ such that c(λ0) is not attracted by a
parabolic cycle of fλ0. There exists a universal constant 0 < κ < 1 and a continuous
function M : Λ →]1,+∞[ such that, for any n ≥ 1 and any λ ∈ Λ,

– either c(λ) lies in the immediate basin of an attracting cycle of period p dividing n,
– or dP1(fn

λ (c(λ)), c(λ)) ≥ κ ·M(λ)−n.

In particular, when c(λ) ∈ Jλ, then dP1(fn
λ (c(λ)), c(λ)) ≥ κ ·M(λ)−n.

Proof. — Notice that the functions M1,M : Λ →]1,+∞[ defined by

M1(λ) := sup
z∈P1

f#
λ (z) ∈]1,+∞[

and

M(λ) := M1(λ)
2

are continuous on Λ. Moreover, the map fλ : P1 → P
1 is Lipschitz with constant M1(λ)

with respect to dP1 , i.e.

dP1(fλ(z), fλ(w)) ≤ M1(λ)dP1(z, w) ,

for any z, w ∈ P
1 and any λ ∈ Λ. We rely on the following.

Claim. — There exists a constant κ > 0 such that for every λ ∈ Λ and any n ≥ 1 if
fn
λ (c(λ)) 6= c(λ) and dP1(c(λ),Jλ) < κM(λ)−n, then

dP1(fn
λ (c(λ)), c(λ)) ≥ κM(λ)−n .

Fix λ ∈ Λ and n ≥ 1. We now assume all along the proof that c(λ) does not belong to
an attracting basin of period p|n. In particular, fn

λ (c(λ)) 6= c(λ). When c(λ) ∈ Jλ, the
above Claim implies

dP1(fn
λ (c(λ)), c(λ)) ≥ κ ·M(λ)−n ,

as required. Assume now c(λ) /∈ Jλ. There are two distinct cases to treat. First, assume
c(λ) lies in a parabolic basin of fλ. Since c(λ) is not persistently in such a component,
the critical point is active at λ, hence there exists λk → λ with c(λk) ∈ Jλk

by Montel
Theorem. By continuity of the function λ 7→ dP1(fn

λ (c(λ)), c(λ)) − κ ·M(λ)−n, we find

dP1(fn
λ (c(λ)), c(λ)) − κ ·M(λ)−n = lim

k→∞

(
dP1(fn

λk
(c(λk)), c(λk))− κ ·M(λk)

−n
)
≥ 0
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in that case, i.e. dP1(fn
λ (c(λ)), c(λ)) ≥ κ ·M(λ)−n.

In any other case, by assumption, fn
λ (c(λ)) lies in a different Fatou component of fλ

than c(λ). Then, either dP1(c(λ),Jλ) < κ ·M(λ)−n which, by the Claim, implies

dP1(fn
λ (c(λ)), c(λ)) ≥ κM(λ)−n ,

or dP1(c(λ),Jλ) ≥ κ ·M(λ)−n and we have

dP1(fn
λ (c(λ)), c(λ)) ≥ dP1(c(λ),Jλ) ≥ κ ·M(λ)−n

and the proof is complete.

We are left with proving the Claim.

Proof of the Claim. — In what follows, we let B(z, r) (resp. Be(z, r)) denote the spherical
(resp. euclidean) ball of center z and radius r. Recall that the group of (holomorphic)
isometries for the spherical metric acts transitivelly on P

1. Pick some parameter λ and let
A and B be such isometries. Then for r > 0:

diam fλ(B(c(λ), r)) = diamA◦fλ◦B(B−1(B(c(λ), r))) = diamA◦fλ◦B((B(B−1(c(λ)), r))).

Choosing A and B such that A(fλ(c(λ))) = 0 and B−1(c(λ)) = 0 gives

diam fλ(B(c(λ), r)) = diamA ◦ fλ ◦B((B(0, r))).

Let g be the rational map of P1 defined by g := A ◦ fλ ◦B so that g(0) = 0. As A and B

are isometries, we have g#(z) = f#
λ (B(z)) so that supz∈P1 g#(z) = supz∈P1 f

#
λ (z). Hence

g is M1(λ)-Lipschtiz. Set now r0 :=
1

2M1(λ)
(< 1/2), then:

∀z ∈ B(0, r0), dP1(g(z), g(0)) = dP1(g(z), 0) ≤ 1

2
,

so that g(B(0, r0)) ⊂ B(0, 1/2). As the spherical metric and the euclidean metric are
comparable on B(0, 1/2), there exists c > 1 such that for all r ≤ 1/2,

B
e (0, r) ⊂ B(0, r) ⊂ B

e(0, cr).

In particular,

B
e

(
0,

1

2M1(λ)

)
⊂ B

(
0,

1

2M1(λ)

)
.

so that :

g

(
B
e

(
0,

1

2M1(λ)

))
⊂ B(0, 1/2) ⊂ B

e(0, c/2).

Whence g : Be
(
0, 1

2M1(λ)

)
→ B

e(0, c/2) is holomorphic. Applying Cauchy’s inequality for

g′ we find

‖g′′‖∞,Be(0, 1
4M1(λ)

) ≤
‖g′‖∞,Be(0, 1

2M1(λ)
)

(4M1(λ))−1
≤ c′M1(λ)

2 = c′M(λ)

where c′ does not depend on λ and we used that |g′| ≤ cg# on B
e(0, 1

2M1(λ)
). Since

g′(0) = 0, up to replacing c′ by c2c′, we deduce that ‖g′‖∞,Be(0,cr) ≤ c′M(λ)r, and so

g(Be(0, cr)) ⊂ B
e(0, c′M(λ)r2), for all r ≤ 1

4cM1(λ)
. Summing up, we have:

g(B(0, r)) ⊂ B(0, c′M(λ)r2), for all r ≤ 1

4cM1(λ)
.
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Going back to fλ and taking the diameter we deduce (using that M1(λ) ≤ M(λ)):

(1) ∀r ≤ 1

4cM(λ)
,diam fλ(B(c(λ), r)) ≤ c′M(λ)2r2,

where c and c′ are constants that depend neither on λ nor on r.
We now follow the proof of [P, Lemma 1]. Take κ so that κ ≤ 1

4c′ and κ ≤ 1
8c (c and

c′ are the constants in (1)). Assume, by contradiction, that dP1(c(λ),Jλ) < κM(λ)−n,
dP1(fn

λ (c(λ)), c(λ)) < κM(λ)−n and fn
λ (c(λ)) 6= c(λ).

Choose

ǫ := max{dP1(c(λ),Jλ), dP1(c(λ), fn
λ (c(λ)))} > 0 .

Then B(c(λ), ǫ)∩Jλ 6= ∅. Since fλ is M1(λ)-Lipschitz with respect to dP1 , we get for j ≥ 2:

diam f j
λ(B(c(λ), 2ǫ)) ≤ M1(λ)diam f j−1

λ (B(c(λ), 2ǫ)).

By our choice of κ, we have that 2ǫ ≤ 1
4cM(λ) , so combining with (1) gives:

diam fn
λ (B(c(λ), 2ǫ)) ≤ 4c′M1(λ)

n+1ǫ2 ≤ 4c′M(λ)nǫ2 < ǫ .

In particular, fn
λ (B(c(λ), 2ǫ)) ⊂ B(c(λ), 2ǫ) and fkn

λ (B(c(λ), 2ǫ)) ⊂ B(c(λ), 2ǫ) follows for

any k ≥ 1 by an immediate induction. By Montel’s Theorem, the sequence (fkn
λ )k≥1 is a

normal family on B(c(λ), 2ǫ), which is a contradiction, since Jλ ∩ B(c(λ), 2ǫ) 6= ∅.

3.2. L1-estimate for local solutions of the Laplacian on affine curves

Our aim, in the present, is to give the following L1-estimate for solutions of the Laplacian
in disks of algebraic curves. We let β be the standard hermitian metric on C

k. Precisely,
we want to prove the following.

Theorem 3.2. — Pick k ≥ 1. There exists a constant C > 0 depending only on k such
that for every affine algebraic curve S ⊂ C

k, every simply connected bounded domain of
Ω in S satisfying Ω ∩ Ssing = ∅, every z0 ∈ Ω and every f ∈ C(Ω,C) holomorphic on Ω
satisfying ddc log |f | = δz0 on Ω, we have

‖log |f |‖L1(Ω,β) ≤ Cmax
{
‖log |f |‖L∞(∂Ω) , 1

}
Areaβ(Ω) .

Proof. — Set u := log |f |. First, if f vanishes somewhere on ∂Ω, then the estimate is
trivial since ‖u‖L∞(∂Ω) = +∞ then. We thus assume f(ζ) 6= 0 for all ζ ∈ ∂Ω.

Let h : Ω → D be a biholomorphic map with h(z0) = 0. It is clear that |h| extends
continuously to ∂Ω with |h| = 1 on ∂Ω. We set χ := log |h| and K := max

{
‖u‖L∞(∂Ω), 1

}
.

The function χ is subharmonic on Ω, satisfies ddcχ = δz0 and χ ≤ 0. The functions h/f
and f/h are holomorphic on Ω and satisfy

∣∣∣∣
f

h

∣∣∣∣ ≤ exp(K) and

∣∣∣∣
h

f

∣∣∣∣ ≤ exp(K) both on ∂Ω .

Using twice the maximum principle, we get χ−K ≤ u ≤ K + χ ≤ K − χ on Ω. Define

Ω′ := {z ∈ Ω ; χ(z) < −3K} and Ω′′ :=

{
z ∈ Ω ;χ(z) < −5

2
K

}
.
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We can decompose ‖u‖L1(Ω) as follows

‖u‖L1(Ω) =

∫

Ω
|u|β ≤

∫

Ω
(K − χ)β ≤ KAreaβ(Ω)−

∫

Ω
χβ

≤ KAreaβ(Ω)−
∫

Ω\Ω′

χβ −
∫

Ω′

χβ

≤ 4KAreaβ(Ω)−
∫

Ω′

χβ .

We are thus left with estimating
∫
Ω′ χβ from below. Writing v(z) := ‖z− z0‖2, where ‖ · ‖

is the euclidean norm of Ck, we have β = ddcv and by Stokes (see Lemma 2.8):
∫

Ω′

χβ =

∫

Ω′

v ddc log |h| −
∫

∂Ω′

v dc log |h|+
∫

∂Ω′

log |h| dcv .

As ddc log |h| = δz0 , d
c log |h|2 = dc|h|2/|h|2 and by definition of Ω′, we find

∫

Ω′

χβ = −3K

∫

∂Ω′

dcv −
∫

∂Ω′

v dc log |h|

= −3KAreaβ(Ω
′)− 1

2
exp(6K)

∫

∂Ω′

v dc|h|2 .

Applying again Stokes yields
∫

∂Ω′

v dc|h|2 =

∫

Ω′

v ddc|h|2 −
∫

Ω′

|h|2 β +

∫

∂Ω′

|h|2 dcv

≤
∫

Ω′

v ddc|h|2 + exp(−6K)Areaβ(Ω
′)

since |h| ≤ 1 and v ≥ 0.
All the above estimates summarize as follows

0 ≥
∫

Ω′

χβ ≥ −4K ·Areaβ(Ω′)− 1

2
exp(6K)

∫

Ω′

vddc|h|2 ,(2)

since K ≥ 1 and |h| ≥ 0. Since v(z) = ‖z − z0‖2, we can bound it in Ω′ from above by
(diamβ(Ω

′))2. We now apply Lemma 2.7 to Ω′
⋐ Ω′′ and find

∫

Ω′

vddc|h|2 ≤ (diamβ(Ω
′))2 ·

∫

Ω′

ddc|h|2 = (diamβ(Ω
′))2 ·

∫

D(0,e−3K)
β(3)

≤ (diamβ(Ω
′))2 · π exp(−6K)

≤ π exp(−6K)τ · Areaβ(Ω
′′)

min
{
1,mod(Ω′′ \Ω′)

} .

Since h is a biholomorphism and since K ≥ 1, we have

mod(Ω′′ \ Ω′) = mod(D(0, e−5K/2) \D(0, e−3K)) =
K

2π
≥ 1

2π
.

Taking C := 8 + π2τ (K ≥ 1) ends the proof.

Remark. — Although it seems that all the analysis can be made directly on D, in (3) we
need to work on Ω′ to bound v by the euclidean diameter of Ω′.
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4. Speed of convergence in the unicritical family

This section is devoted to the proof of Theorem A. The method we use can be seen as a
toy-model for the proof of Theorem B. Our idea consists in giving estimates in L1

loc for
the sequence c 7→ d−n+1 log |pnc (0)| − gMd

of DSH functions (difference of subharmonic
functions) and then to deduce Theorem A from these estimates.

4.1. Preliminaries

Let d ≥ 2. Recall that the Multibrot set Md is defined by

Md := {c ∈ C ; Jc is connected} .

Observe that 0 on C is the unique marked critical point of pc (other than ∞). According
to the notation introduced in section 2.1, the Green function should be denoted by g0, we
shall instead use the notations gc which is more classical in that setting. In particular,
Md coincides with the set {c ∈ C ; gc(0) = 0}. The bifurcation locus of the family (pc)c∈C
is known to coincide with the boundary ∂Md of the Multibrot set. In this family, the
bifurcation measure is given by

ddcgc(0) =
1

d
ddcgc(c) =

1

d
ddcgMd

where gMd
is the Green function of the compact set Md (see e.g. [St]). In particular,

ddcgMd
= µMd

is the equilibrium measure (and the harmonic measure) of Md.

Let us first prove the following.

Lemma 4.1. — There exists C1 > 0 depending only on d such that
∣∣d−n+1 log |pnc (0)| − gMd

(c)
∣∣ ≤ n

dn−1
C1 ,

for any c ∈ C \Md and any n ≥ 1.

Proof. — Let n ≥ 1 and set un(c) := d−n+1 log |pnc (0)|, c ∈ C. A classical and easy
computation shows that, for any c ∈ Md, one has |pnc (0)| ≤ 2(e.g. [DH1]). Let M1 :=
supc∈∂Md

M(c), where M(c) is the constant given by Lemma 3.1. Then, for all c ∈ ∂Md,

− 1

dn−1
(n logM1 − log κ) ≤ un(c) − gMd

(c) ≤ 1

dn−1
log 2 ,

since gMd
(c) = 0. Setting C1 := 2max{κ−1,M1, 2}, we get for any c ∈ ∂Md

− n

dn−1
logC1 ≤ un(c)− gMd

(c) ≤ n

dn−1
logC1 .(4)

Now, as c → ∞, by definition of pc, one has

lim
c→∞

(un(c)− log |c|) = lim
c→∞

(
d−(n−1) log

∣∣∣cdn−1
∣∣∣− log |c|

)
= 0 .

As gMd
(c) = log |c| + o(1) as c → ∞ (by definition of the Green function), the function

un−gMd
extends continuously on the xhole P1\Md. Moreover, hn := un−gMd

is harmonic
on C \Md.

The function h is thus subharmonic and continuous on P
1 \Md. Moreover, since hn is

harmonic on C \Md, one has supp(∆hn) ∩ (P1 \Md) ⊂ {∞}. As hn is continuous at ∞,
it can not have a Dirac mass here, hence ∆hn = 0 on P

1 \ Md, i.e. hn is harmonic on
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P
1 \ Md. By the maximum principle, applied successively to hn and −hn, (4) gives the

wanted estimate.

4.2. In the Multibrot set

For every n ≥ 1, we denote vn := log |pnc (0)| (hence un = d−n+1vn). We will prove that:

Theorem 4.2. — There exists C > 0 depending only on d such that for any n ≥ 1,

‖vn‖L1(Md) ≤ C · n ·Area(Md) .

The next lemma will be use in the proof of Theorem 4.2. Though it is classical, we
include a proof for the sake of completeness.

Lemma 4.3. — The polynomial pnc (0) ∈ C[c] has only simple roots in C.

Proof. — Let Qn(c) := pnc (0) ∈ Z[c]. By definition, Qn(c) = Qn−1(c)
d + c, hence Q′

n =

dQ′
n−1Q

d−1
n−1 +1. In particular, the discriminant ∆(Qn) = Res(Qn, Q

′
n) is the determinant

of a matrix with entries divisible by d below the diagonal and equal to 1 on the diagonal.
Hence reducing modulo d, it is upper triangular with 1 on the diagonal, i.e. ∆(Qn) ≡
1 (mod d). In particular, if Qn(c0) = 0, then Q′

n(c0) 6= 0 and the point c0 is a simple root
of Qn.

Let n ≥ 1. We denote by Hn the union of connected components Ω of the interior of
Md such that Per(n)∩Ω 6= ∅. For Ω such a connected component, recall that Ω is simply
connected and there exists only one cΩ ∈ Ω for which pncΩ(0) = 0 (see [DH2]).

Remark. — This can be seen using the multiplier map ρ : Ω → D which is a branched
cover of degree d− 1 which is totally ramified at {cΩ} := ρ−1{0} = Per(n) ∩ Ω.

The proof of Theorem 4.2 is an application of Theorem 3.2.

Proof. — We decompose ‖vn‖L1(Md) as follows

‖vn‖L1(Md) =

∫

Md

|vn|β =

∫

Md\Hn

|vn|β +

∫

Hn

|vn|β .

Let U be a connected component of the interior of Md \ Hn. By Lemma 4.1 (recall that
gMd

(c) = 0 in Md), we have that |vn| ≤ nC1 on ∂U . As vn is harmonic on U , by the
maximum principle, the estimate extends to U :

|vn| ≤ nC1 on U.

Hence: ∫

Md\Hn

|vn|β ≤ nC1Areaβ(Md \ Hn) .

Now, let Ω be a connected component of Hn. Then, by Lemma 4.3, the function vn
satisfies ddcvn = δcΩ where cΩ is the center of the component Ω. Hence using Theorem 3.2
and Lemma 4.1 gives (take log |f | = vn):

‖vn‖L1(Ω) ≤ Cmax
{
‖vn‖L∞(∂Ω) , 1

}
Areaβ(Ω) ≤ CnC1Areaβ(Ω) ,

where C is a universal constant that depends only on d. Summing on all the connected
components Ω of Hn gives: ∫

Hn

|vn|β ≤ CnC1Areaβ(Hn) .
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Summing over Hn and Md \ Hn ends the proof.

4.3. Proof of Theorem A

Let us now explain how to deduce Theorem A from Theorem 4.2.

Proof of Theorem A. — Let n ≥ 1. Recall that un(c) = d−n+1 log |pnc (0)| = d−n+1vn. Let
ϕ ∈ C2

c (C). Then, by Stokes formula:

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd
=

∫

C

ϕ ddcun −
∫

C

ϕ ddcgMd
=

∫

C

(un − gMd
) ddcϕ .

We cut the integral into two parts

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd
=

∫

Md

(un − gMd
)ddcϕ+

∫

C\Md

(un − gMd
)ddcϕ .

Now, as ϕ is C2, we have (up to a constant that depends on the choice of the C2-norm)
that ‖ϕ‖C2ωP1 ± ddcϕ ≥ 0, where ωP1 is the Fubini-Study form on P

1 (normalized so that
ωP1(P1) = 1), hence we can write
∣∣∣∣∣∣

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd

∣∣∣∣∣∣
≤ ‖ϕ‖C2

(∫

Md

|un − gMd
|ωP1 +

∫

C\Md

|un − gMd
|ωP1

)
.

As ωP1 ≤ β, where β is the standard hermitian metric on C,
∣∣∣∣∣∣

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd

∣∣∣∣∣∣
≤ ‖ϕ‖C2

(∫

Md

|un − gMd
|β +

∫

C\Md

|un − gMd
|ωP1

)
.

By Lemma 4.1, we have the bound:
∫

C\Md

|un − gMd
|ωP1 ≤ n

dn−1
C1

∫

P1

ωP1 =
n

dn−1
C1.

Now, by Theorem 4.2, there exists C > 0 depending only on d such that for any n ≥ 1,

‖vn‖L1(Md) ≤ C · n · Area(Md) .

Hence ∫

Md

|un − gMd
|β = d−n+1

∫

Md

|vn|β

≤ Area(Md) ·
C ′n

dn
,

where C ′ depends only on d. Combining the estimates gives that there exists a constant
C that depends only on d such that:

∣∣∣∣∣∣
1

dn−1

∑

c∈Per(n)

ϕ(c)−
∫

C

ϕµMd

∣∣∣∣∣∣
≤ Cn

dn
‖ϕ‖C2 .

This ends the proof.

Remark. — 1. Observe that in fact, one can replace in Theorem A the norm ‖ϕ‖C2

by the L∞ norm of ddcϕ.



DISTRIBUTION OF POSTCRITICALLY FINITE POLYNOMIALS II: SPEED OF CONVERGENCE 17

2. On the other hand, as the measures

1

dn−1

∑

c∈Per(n)

δc and µMd

all have supports in Md, if θ denotes a cut-off function equal to 1 in a neighborhood
of Md then for all ϕ:

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd
=

1

dn−1

∑

c∈Per(n)

θ(c)ϕ(c) −
∫

C

θϕµMd
.

Then, one easily gets that ‖θϕ‖C2 ≤ A‖ϕ‖C2(K) where K = supp(θ) and A is a

constant that depends only on θ. Then we have the estimate, for all ϕ ∈ C2(C):
∣∣∣∣∣∣

1

dn−1

∑

c∈Per(n)

ϕ(c) −
∫

C

ϕµMd

∣∣∣∣∣∣
≤ CA

n

dn
‖ϕ‖C2(K) .

4.4. An application in the spirit of Theorem C

We here want to extend the C1-estimate to non-postcritically finite but hyperbolic param-
eters, i.e. parameters c ∈ Md for which pc has a cycle of period k|n and multiplier wk/n

where w ∈ D
∗ has been fixed. Let us be more precise: For any n ≥ 1 and any w ∈ C, let

Rn(c, w) := Resz (p
n
c (z)− z, (pnc )

′(z) = w) and

Per(n,w) := {c ∈ C ; Rn(c, w) = 0} .

By the above section § 2.2, we have

Per(n,w) = {c ∈ C ; ∃z ∈ C , pnc (z) = z and (pnc )
′(z) = w}

=
⋃

k|n

Per∗(k,wn/k) .

Our precise statement is the following.

Theorem 4.4. — For any integer n ≥ 1, the set Per(n,w) is a finite set of cardinal dn−1

(resp. (d − 1)dn−1) if w = 0 (resp. w ∈ D
∗). Moreover, there exists a constant C > 0

depending only on d such that
∣∣∣∣∣∣

1

dn−1

∑

c∈Per(n,w)

ϕ(c)

(d− 1)
−
∫

ϕµMd

∣∣∣∣∣∣
≤ C

( n

dn

) 1
2
max

{
1,

1

log(|w|−1)

} 1
2

‖ϕ‖C1 ,

for any w ∈ D
∗, any ϕ ∈ C1

c (C) and any n ≥ 1.

The proof of Theorem 4.4 uses Lemma 2.7, i.e. the length-area estimates of Briend and
Duval [BD] in a crucial way. Notice that we may instead use Koebe Distortion estimates,
but we again want to present the proof of Theorem 4.4 as a toy model for that of Theorem
C.

Notice that, though this estimate looks weaker than the one obtained in Theorem C,
it is actually more general. Indeed, the set Per(n,w) as we defined it here is the set of
parameters c for which there exists a cycle of period dividing n and multiplier a root of
w. Hence, this is a much bigger set than the one involved in Theorem C.

In general, the set Per(n,w) with w ∈ C is finite and has cardinal at most (d− 1)dn−1,
see e.g. [Si].
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Proof. — Let us first prove that Per(n,w) is finite and determine its cardinal. If c ∈
Per(n,w), then pc has an attracting cycle of exact period k|n and multiplier wk/n ∈ D.
But the set of parameters c admitting a k-cycle of multiplier t ∈ D is finite and its cardinal
is dk−1 if t = 0 and (d−1)dk−1 otherwise. In particular, Per(n,w) is finite and has cardinal∑

k|n dk−1 = dn−1 if w = 0 and
∑

k|n(d − 1)dk−1 = (d − 1)dn−1 otherwise (recall that dn
was defined in the introduction).

Pick ϕ ∈ C1
c (C) and let

µn :=
1

dn

∑

c∈Per(n)

δc and µn,w :=
1

(d− 1)dn

∑

c∈Per(n,w)

δc .

Recall that we want to estimate |〈µn,w, ϕ〉 − 〈µMd
, ϕ〉|. Let us remark that, by a classical

interpolation argument, Theorem A gives

|〈µn, ϕ〉 − 〈µMd
, ϕ〉| ≤ C1

( n

dn

)1/2
‖ϕ‖C1 ,

where C1 depends only on d. Pick w ∈ D
∗ and n ≥ 1. We are left with estimating

|〈µn, ϕ〉 − 〈µn,w, ϕ〉|. For any c0 ∈ Per(n), let us denote by Ωc0 the hyperbolic component

containing c0 and let c1w, . . . , c
d−1
w be the d− 1 parameters cjw ∈ Ωc0 ∩ Per(n,w). Let also

Ω′
c0 be the open set

Ω′
c0 :=

⋂

|t|<|w|

Per(n, t) ∩ Ωc0 ⋐ Ωc0 .

By Cauchy-Schwarz inequality,

|〈µn, ϕ〉 − 〈µn,w, ϕ〉| ≤ 1

(d− 1)dn

∑

c0∈Per(n)

d−1∑

j=1

|ϕ(c0)− ϕ(cjw)|

≤ 1

dn

∑

c0∈Per(n)

‖ϕ‖C1Diamβ

(
Ω′
c0

)

≤ 1

dn/2
‖ϕ‖C1




∑

c0∈Per(n)

(
Diamβ(Ω

′
c0)
)2



1/2

Recall that Per(n) =
⋃

k|nPer
∗(k) where Per∗(k) denote the set of parameters admitting

a super-attracting cycle of exact period k. Moreover, if k|n and c0 ∈ Per∗(k),

Ω′
c0 = ρ−1

(
D(0, |w|k/n)

)
,

where ρ : Ωc0 −→ D is the map which, to c, associates the multiplier of the attracting
cycle of pc. Recall that ρ is a (d−1)-branched cover ramifying exactly at c0. In particular,

mod
(
D \ D(0, |w|k/n)

)
= (d− 1) ·mod(Ωc0 \ Ω′

c0) ,

whence mod(Ωc0 \ Ω′
c0) =

−k
2πn(d−1) log |w| ≥ −1

2πn(d−1) log |w|. By Lemma 2.7, we deduce

|〈µn, ϕ〉 − 〈µn,w, ϕ〉| ≤ 1

dn/2
‖ϕ‖C1




∑

c0∈Per(n)

τ

min(1, −1
2πn(d−1) log |w|)

Areaβ(Ωc0)




1/2

.
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On the other hand, since Ωc0 ∩ Ωc′0
= ∅ for c0 6= c′0 ∈ Per(n) and Ωc0 ⊂ Md ⊂ D(0, 2),

∑

Per(n)

Areaβ(Ωc0) ≤ Areaβ(D(0, 2)) = 4π .

Combined with the above, this gives

|〈µn, ϕ〉 − 〈µn,w, ϕ〉| ≤ 2
√
πτ

dn/2
‖ϕ‖C1 max

{
1,

2πn(d− 1)

log(|w|−1)

}1/2

,

which, letting C := C1 + 2π
√

2(d − 1)τ , finally gives the wanted result.

5. Initial estimates in the moduli space of polynomials

We aim, here, at giving estimates in the spirit of the one provided by Lemma 4.1. We begin
the section with preliminaries on the Moebius function and dynatomic polynomials Pm,j .
We then give estimates using Lemma 3.1 for the potentials of the currents [Per∗j(m)] =
ddc log |Pm,j | (renormalized by their mass) at suitable parameters.

5.1. Basics

Let d ≥ 3. Recall that, for 0 ≤ j ≤ d− 2 and m ≥ 1, we defined in § 2.2 the polynomials
Pm,j of period m for the critical point cj by

Pm,j(c, a) :=
∏

k|m

(
P k
c,a(cj)− cj

)µ(m/k)
,

where µ stands for the Moebius function, and that Pm,j(c, a) = 0 if and only if cj is
periodic under iteration of Pc,a with exact period m. The degree of Pm,j is equivalent to
dm. It does not depend on j so we denote it by dm as we have the formula:

(5) dm =
∑

k|m

µ(m/k)dk = dm +
∑

k|m, k 6=m

µ(m/k)dk.

Recall that the function σ : N∗ → N
∗ is the sum of divisors: We also let Per∗j(m) be the

algebraic variety

Per∗j(m) := {(c, a) ∈ C
d−1 ; Pm,j(c, a) = 0}

defined by (c, a) ∈ Per∗j(m) if and only if the critical point cj is periodic under iteration
of Pc,a with exact period m. We shall use in the sequel the following result (see [FG,
Theorem 6.1]).

Theorem 5.1 (Favre-Gauthier). — Let m = (m0, . . . ,md−2) be a (d−1)-tuple of pair-
wise distinct positive integers such that m0 ≥ 2. If the hypersurfaces {Per∗j (mj)}0≤j≤d−2

intersect at (c, a) ∈ C
d−1, their intersection at (c, a) is smooth and transverse.

Let Hn be the open set of hyperbolic parameters (c, a) for which, for all j, the critical
point cj is in the immediate basin of an attracting cycle of exact period nj. For (cc, ac) ∈
∩jPer

∗
j(nj), we let Ωcc,ac be the connected component of the interior of Cd that contains

(cc, ac) which is the center of the component Ωcc,ac . In the case where all nj are distinct, it
is known that the set Ωcc,ac is simply connected and contains only one postcritically finite
parameter, the parameter (cc, ac). Notice that, according to Theorem 5.1 and to Bézout
Theorem, the set Hn has Card(

⋂
j Per

∗
j (nj)) =

∏
j dnj

distinct hyperbolic components.
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5.2. Przytycki’s estimates in the space of polynomials

We first give estimates for the functions d−n log |Pn
c,a(cj) − cj | that will enable us to deal

with the dynatomic polynomials. The two next lemmas are consequences of [DF, §6]
and of Lemma 3.1. These two lemmas intend to play the role, in the present setting, of
Lemma 4.1. Since the parameter space is now several dimensional, the proofs are more
elaborate than in the unicritical family.

A few explanations are in order. In turn, lemma 5.4 says that the growth of the function
d−n log |Pn

c,a(cj) − cj | is bounded above by the escape rate of the critical point cj , up to
exponential error term, at least when cj is the fastest escaping critical point. These
estimates follow directly from classical estimates (see [DF, S 6]). To be more precise, we
use the following two lemmas in the sequel (see [DF, Lemmas 6.4 & 6.5]).

Lemma 5.2. — There exists a constant C > 0 depending only on d(1) such that

gc,a(z) ≤ log+max{|z|, |c|, |a|} + C

for all z ∈ C and all (c, a) ∈ C
d−1.

Lemma 5.3. — For all z ∈ C and all (c, a) ∈ C
d−1, we have

max{gc,a(z), G(c, a)} ≥ log |z − δ| − log 4,

where δ =
∑d−2

j=1 cj/(d − 1).

The main difficulty is to get a uniform constant in the error term.
On the other hand, lemma 5.5 focuses on bounding from below the growth of

d−n log |Pn
c,a(cj)− cj | by the escape rate of the critical point cj . Though the bound from

below can not hold in full generality when (c, a) ∈ Cd (indeed, the critical point could be
periodic for example), we manage to derive the wanted estimate when the critical point
is active from Lemma 3.1.

Lemma 5.4. — There exists a constant C1 > 0 depending only on d such that for any
(c, a) ∈ C

d−1 and any j such that gc,a(cj) = G(c, a), for any n ≥ 1, then

1

dn
log |Pn

c,a(cj)− cj | − gc,a(cj) ≤ C1
1

dn
.

Proof. — The proof breaks in two distinct parts: we first treat the case G(c, a) = 0 and,
in a second time, we focus on the case when G(c, a) > 0 and gc,a(cj) = G(c, a).

Assume first that (c, a) ∈ Cd, i.e. G(c, a) = 0. Then for any j, gc,a(cj) = 0 = G(c, a).

Recall that |Pc,a(z)| ≥ 1
2 |z|2 as soon as |z| ≥ 2d2 max{|c|, |a|, 1} (see e.g. [I]). In par-

ticular, if |Pn
c,a(cj)| ≥ 2d2 max {|c|, |a|, 2} for some n ≥ 1 then |Pn+1

c,a (cj)| > 2|Pn
c,a(cj)|

and |Pn+1
c,a (cj)| ≥ 2d2 max {|c|, |a|, 2}. Iterating the argument shows that the sequence

(Pm
c,a(cj))m diverges so (c, a) /∈ Cd. We deduce that for all (c, a) ∈ Cd and all n ≥ 1:

|Pn
c,a(cj)− cj | ≤ |Pn

c,a(cj)|+ |cj | ≤ 4d2 max
(c,a)∈∂Cd

{|c|, |a|, 2} .

In particular, there exists a constant C, independent of n such that for all (c, a) ∈ Cd
and all n ≥ 1:

1

dn
log
∣∣Pn

c,a(cj)− cj
∣∣ ≤ C

dn
.

(1)observe that the statement of the lemma is incorrectly stated in [DF], and the constant C is actually
independent on (c, a).
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Since gc,a(cj) = 0 in Cd, the lemma follows in the case where (c, a) ∈ Cd.

We now consider the case where (c, a) ∈ C
d−1 \ Cd and pick R > 0 such that (c, a) ∈

{G = R} and gc,a(cj) = G(c, a) = R.
According to Lemma 2.6, since G(c, a) = log+ max {|c|, |a|} +O(1), there exist R0 > 0

such that for R ≥ R0, we can assume that for all n ≥ 1 :

|Pn
c,a(cj)| ≥ 2max{|c|, |a|} ≥ 2|cj | ≥ 1.

Assume first that R ≥ R0. Hence:

1

2
|Pn

c,a(cj)| ≤ |Pn
c,a(cj)− cj | ≤

3

2
|Pn

c,a(cj)|

and if δ = (d− 1)−1
∑

l cl, then

1

2
|Pn

c,a(cj)| ≤ |Pn
c,a(cj)− δ| .

Taking the logarithm of the above inequality, and dividing it by dn, and using
log |Pn

c,a(cj)| = log+ |Pn
c,a(cj)|, we find

1

dn
log+ |Pn

c,a(cj)| −
log 2

dn
≤ 1

dn
log+ |Pn

c,a(cj)− cj | ≤
1

dn
log+ |Pn

c,a(cj)|+
log 3

2

dn
.

By invariance, gc,a(cj) = d−ngc,a(P
n
c,a(cj)) = G(c, a) so that max{gc,a(Pn

c,a(cj)), G(c, a)} =

gc,a(P
n
c,a(cj)). Hence, by [DF, Lemma 6.5] (see Lemma 5.3), this gives a constant C ′′ > 0

depending only on d and R0 such that

gc,a(cj) = d−ngc,a(P
n
c,a(cj)) ≥ d−n

(
log |Pn

c,a(cj)− δ| − log 4
)

≥ d−n
(
log |Pn

c,a(cj)− cj | − C ′′
)
.

Assume now that 0 < R < R0. We treat two cases separately. Assume first that
|Pn

c,a(cj)| ≤ 1/2|cj | so that |Pn
c,a(cj)− cj | ≤ 3/2|cj |. In particular, taking the logarithm of

the above inequality, dividing it by dn and using that log ≤ log+, this implies:

1

dn
log |Pn

c,a(cj)− cj | ≤
1

dn
log |cj |+

log 3
2

dn
≤ 1

dn
G(c, a) +

C ′′

dn

where C ′′ > 0 is a constant that does not depend on (c, a) nor n and where we used that
G(c, a) = log+max{|c|, |a|} +O(1). In particular, since G ≥ 0 and n ≥ 0,

1

dn
log |Pn

c,a(cj)− cj | ≤ gc,a(cj) +
C ′′

dn
.

Assume now that |Pn
c,a(cj)| ≥ 1/2|cj | so that |Pn

c,a(cj)− cj | ≤ 3/2|Pn
c,a(cj)|. Proceeding as

above gives:

1

dn
log |Pn

c,a(cj)− cj | ≤
1

dn
log+ |Pn

c,a(cj)|+
log 3

2

dn
.

Using Lemma 2.6 and G(c, a) = R < R0 implies that there is a constant that depends
only on d and R0, but neither on (c, a) nor on n that we still denote C ′′ such that:

1

dn
log |Pn

c,a(cj)− cj | ≤ gc,a(cj) +
C ′′

dn
.

This concludes the proof in the case where 0 < R < R0.

The second lemma we will need is the following.
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Lemma 5.5. — Let d ≥ 3. Then there exists a constant C2 ≥ C1 > 0 depending only on
d such that for any (c, a) ∈ C

d−1 and any 0 ≤ j ≤ d− 2 with either gc,a(cj) = G(c, a) > 0
or (c, a) ∈ Cd ∩ supp(Tj) and any n ≥ 1, we have

1

dn
log |Pn

c,a(cj)− cj | − gc,a(cj) ≥ −C1
n

dn
.

Proof. — As above, we first treat the case G(c, a) = 0 and then focus on the case G(c, a) >
0. Consider first the case where (c, a) ∈ Cd ∩ supp(Tj). Hence cj is active at (c, a) and, in
particular, cj does not lie in an attracting basin. By Lemma 3.1, there exist a universal
constant 0 < κ < 1 and a continuous function C(c, a) > 1 such that:

|Pn
c,a(cj)− cj | ≥

|Pn
c,a(cj)− cj |√

1 + |Pn
c,a(cj)|2 ·

√
1 + |cj |2

= dP1(P
nj
c,a(cj), cj) ≥

κ

C(c, a)n
.

Hence, if C := max(c,a)∈∂Cd C(c, a) > 1, then

1

dn
log |Pn

c,a(cj)− cj | ≥ − n

dn
log

(
C

κ

)
+ gc,a(cj)

for any n ∈ N
∗, since gc,a(cj) = 0 on ∂Cd. This is the expected result in the case where

(c, a) ∈ Cd ∩ supp(Tj).

Assume now that (c, a) satisfies G(c, a) = gc,a(cj) = R > 0. Consider the compact
domain ΩR := {G ≤ R}. As above, since G(c, a) = log+max{|c|, |a|}+O(1), according to
Lemma 2.6, taking R0 large enough, we can assume that for all n ≥ 1 and all R ≥ R0:

|Pn
c,a(cj)| ≥ 2max{|c|, |a|} ≥ 2|cj | ≥ 1.

Assume first that R ≥ R0. Hence:

|Pn
c,a(cj)− cj | ≥

1

2
|Pn

c,a(cj)|.

Up to increasing R0, combining G(c, a) = log+ max{|c|, |a|} + O(1) and gc,a(cj) =
d−ngc,a(P

n
c,a(cj)) with [DF, Lemma 6.4] (see Lemma 5.2) gives for (c, a) and for any

n ≥ 1:

(6) d−n log |Pn
c,a(cj)| = d−n log+ |Pn

c,a(cj)| ≥ gc,a(cj) +O(d−n) ,

where the O is independent of n and (c, a). This gives a constant C ′′ (independent of
R ≥ R0) such that for all n ≥ 1:

gc,a(cj)− C ′′(d−n) ≤ 1

dn
log |Pn

c,a(cj)− cj |.

Assume now R < R0 and consider ΩR0 = {G ≤ R0}.
Claim. — There exists a constant C > 1 depending only on d and R0 such that, for all
(c, a) ∈ ΩR0, all n ≥ 1 and all 0 ≤ j ≤ d− 2 with G(c, a) = gc,a(cj) > 0, we have

dP1(Pn
c,a(cj), cj) ≥

κ

Cn
.

Let us first finish the proof of Lemma 5.5. As a consequence,

|Pn
c,a(cj)− cj |√

1 + |Pn
c,a(cj)|2 ·

√
1 + |cj |2

= dP1(P
nj
c,a(cj), cj) ≥

κ

Cn
.
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Taking the logarithm in tha above inequality, dividing it by dn and using Lemma 2.6
uniformly on ΩR0 imply:

− n

dn
log

C

κ
≤ 1

dn
|Pn

c,a(cj)− cj | −
1

2dn
log
√

1 + |Pn
c,a(cj)|2 −

1

2dn
log
(
1 + |cj |2

)

≤ 1

dn
|Pn

c,a(cj)− cj | − gc,a(cj) + C ′ 1

2dn
,

where C ′ is yet another constant that depends on d and R0 but neither on (c, a) nor on
n. This concludes the proof.

Proof of the Claim. — Let us first pick

C > sup
(c,a)∈ΩR0

(
sup
z∈P1

P#
c,a(z)

)2

> 1 .

We proceed by contradiction, assuming that for some n ≥ 2, dP1(Pn
c,a(cj), cj) <

κ
Cn .

As seen in the proof of Lemma 3.1, letting ε := dP1(Pn
c,a(cj), cj) and proceeding as in

the proof of the Claim of Section 3.1, we get

Pn
c,a (B(cj, 2ε)) ⊂ B(cj, 2ε) .

By Brouwer fixed point Theorem, Pn
c,a has a fixed point in B(cj , 2ε) and this ball is con-

tained in the Fatou set of Pc,a. Hence ∞ ∈ B(cj , 2ε), since cj lies in the attracting basin
of ∞ of Pc,a, i.e.

1√
1 + |cj |2

≤ dP1(∞, cj) ≤ 2dP1(cj , P
n
c,a(cj)) <

2κ

Cn
.

This may be rephrased as C2 < C2n < 4κ2
(
1 + C(R0)

2
)
where C(R0) = max(c,a)∈ΩR0

|cj |.
Up to increasing C, we may assume C2 ≥ 2κ2

(
1 + C(R0)

2
)
, which is a contradiction.

5.3. Estimates for the dynatomic polynomials

In the sequel, we shall use the notation

gn,j(c, a) :=
1

dn
log |Pn,j(c, a)| , (c, a) ∈ C

d−1, n ≥ 2 .

The following two propositions are keystones to the proof of Theorem B. These estimates
are direct consequences of Lemma 5.4, Lemma 5.5 and the maximum principle.

Proposition 5.6. — There exists a constant C ≥ 1 depending only on d such that for all
n ≥ 1, (c, a) ∈ C

d−1 and any 0 ≤ j ≤ d− 2 such that gc,a(cj) = G(c, a),

gn,j(c, a) − gc,a(cj) ≤ C
σ(n)

dn
.

In particular, for any 0 ≤ j ≤ d− 2 if (c, a) ∈ Cd, we have:

gn,j(c, a) ≤ C
σ(n)

dn
.

Proof. — By definition of Pn,j, we have:

log |Pn,j(c, a)| =
∑

k|n

µ(n/k) log
∣∣∣P k

c,a(cj)− cj

∣∣∣ ,
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Hence, dividing the above by dn and using (5), we deduce:

1

dn
log |Pn,j(c, a)| − gc,a(cj) =

∑

k|n

dk

dn
µ(n/k)

(
1

dk
log
∣∣∣P k

c,a(cj)− cj

∣∣∣− gc,a(cj)

)
.

Suppose that either gc,a(cj) = G(c, a) > 0 or (c, a) ∈ Cd ∩ supp(Tj). Then Lemmas 5.4
and 5.5 imply that: ∣∣∣∣

1

dk
log
∣∣∣P k

c,a(cj)− cj

∣∣∣− gc,a(cj)

∣∣∣∣ ≤ C
k

dk
,

for all k. Since µ(nj/k) = ±1 and by the definition of the σ function, we have:
∣∣∣∣gc,a(cj)−

1

dn
log |Pn,j(c, a)|

∣∣∣∣ ≤ C
σ(n)

dn
.(7)

This ends the proof in the case where gc,a(cj) = G(c, a) > 0 or (c, a) ∈ Cd ∩ supp(Tj).

Finally, suppose that (c, a) ∈ ∂SCd. As the Shilov boundary ∂SCd of Cd is contained in
∩jsuppTj, for all n ≥ 2 and all 0 ≤ j ≤ d− 2, we have

1

dn
log |Pn,j(c, a)| ≤ C

σ(n)

dn
.

that is, for all (c, a) ∈ ∂SCd, all n ≥ 2 and all 0 ≤ j ≤ d− 2,

|Pn,j(c, a)| ≤ exp (Cσ(n)) .

By the maximum principle, the bound extends to Cd, which gives

|Pn,j(c, a)| ≤ exp (Cσ(n)) ,

for any (c, a) ∈ Cd, n ≥ 2 and 0 ≤ j ≤ d− 2. Taking the logarithm in the above inequality
and dividing it by dn finishes the proof.

Observe that in the above proof, we proved the following crucial estimate (see (7)):

Proposition 5.7. — Let C ≥ 1 be the constant given by Proposition 5.6 and let n ≥ 1.
Assume that either gc,a(cj) = G(c, a) > 0, or (c, a) ∈ Cd ∩ supp(Tj). Then

gn,j(c, a) − gc,a(cj) ≥ −C
σ(n)

dn
.

5.4. Locating “bad” parameters

We shall now give two basic consequences of the above estimates which will be crucial
to our aim. Namely, the following is a consequence of Propositions 5.6 and 5.7. For any
(d− 1)-tuple n = (n0, . . . , nd−2) of positive integers, let

Bn :=

d−2⋂

j=0

{
(c, a) ∈ C

d−1 ; |gnj ,j(c, a)− gc,a(cj)| > C
σ(nj)

dnj

}
,

where C ≥ 1 is the constant given by Proposition 5.6.

Corollary 5.8. — For any (d− 1)-tuple n = (n0, . . . , nd−2) of positive integers,

Bn =

d−2⋂

j=0

{
(c, a) ∈ C

d−1 ; |Pnj ,j| < e−Cσ(nj)
}
⊂ Hn ⊂ Cd .
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Proof. — Let us first prove that the set

Bn =
d−2⋂

j=0

{
|gnj ,j(c, a) − gc,a(cj)| > C

σ(nj)

dnj

}

is contained in the connectedness locus Cd. Indeed, for every (c, a) ∈ C
d−1 \Cd, there exists

0 ≤ j ≤ d− 2 such that G(c, a) = gc,a(cj) > 0 . By Propositions 5.6 and 5.7, we have

−C
σ(nj)

dnj

≤ gnj ,j(c, a) − gc,a(cj) ≤ C
σ(nj)

dnj

,

so that (c, a) ∈ C
d−1 \ Bn. The same argument implies in fact that Bn is contained in

the interior of Cd, using the case (c, a) ∈ Cd ∩ supp(Tj) in Proposition 5.7 and ∂Cd =⋃
j Cd ∩ supp(Tj). Now from Proposition 5.6, we have that for all (c, a) ∈ Cd and all

0 ≤ j ≤ d− 2:

gnj ,j(c, a) ≤ C
σ(nj)

dnj

.

As gc,a(cj) = 0 in Cd, this implies:

Bn =
d−2⋂

j=0

{
gnj ,j < −C

σ(nj)

dnj

}
∩ Cd .

This can be rewritten as:

d−2⋂

j=0

{
|Pnj ,j| < e−Cσ(nj )

}
∩ Cd =

d−2⋂

j=0

{
|gnj ,j(c, a) − gc,a(cj)| > C

σ(nj)

dnj

}
.

Arguing as above, we see that the set
⋂d−2

j=0

{
|Pnj ,j| < e−Cσ(nj )

}
is contained in Cd: if not,

for some (c, a) in that set such that gc,a(cj) = G(c, a) > 0, we have

gnj ,j(c, a) − gc,a(cj) < gnj ,j(c, a) < −C
σ(nj)

dnj

,

which contradicts Proposition 5.7.
It remains to prove that Bn ⊂ Hn. Take a stable component U ⊂ Cd which is not

contained in Hn. Consider the plurisubharmonic function:

φn := max
j

(log |Pnj ,j|+ Cσ(nj)).

Then its Monge-Ampère (ddcφn)
d−1 is 0 on U by hypothesis (see e.g. [Dem]). On the

other hand, by Proposition 5.7, it is non negative in ∂U (∂U ⊂ ∂Cd ⊂ ∪jCd ∩ supp(Tj)).
The comparison principle of Bedford and Taylor [BT] implies that it is non negative on
U . Hence U ∩ Bn = ∅.

Here is a consequence of Corollary 5.8.

Corollary 5.9. — For any (d − 1)-tuple n = (n0, . . . , nd−2) of pairwise distinct positive
integers with n0 ≥ 2 and any connected component U of Bn, the map

Pn := (Pn0,0, . . . , Pnd−2,d−2) : C
d−1 −→ C

d−1

is a biholomorphism from U to the polydisk Dn :=
∏

j D(0, e
−Cσ(nj )).
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Proof. — By Corollary 5.8 and by the maximum principle, Pn maps U to Dn surjectively.
Moreover, by definition of U , the map Pn is also proper on U , hence is a finite branched
cover from U to Dn. Let (cc, ac) be the unique postcritically finite parameter of U . By
Theorem 5.1, the map Pn is a local biholomorphism at (cc, ac) and, since P−1

n {0} =
{(cc, ac)}, the degree of Pn is 1.

6. Distribution of postcritically finite hyperbolic polynomials

In the present section, we prove Theorem B. We adapt the strategy we used in the uni-
critical family (pc)c∈C in Section 4 to the present situation. We use all along the present
section the notations introduced in Sections 5.1 & 5.2. We assume from now on that
n = (n0, . . . , nd−2) is a (d− 1)-tuple of pairwise distinct integers with n0 ≥ 2. We also let
Dn > 0 be the integer

Dn :=

d−2∏

j=0

dnj
.

6.1. Estimates along specific curves

Recall that we denoted by Hn the union of hyperbolic components of Cd intersecting⋂
j Per

∗
j(nj). Let us first introduce some notations. For δ ∈ C, 0 ≤ j ≤ d− 2, we let

gδnj ,j :=
1

dnj

log |Pnj ,j − δ| , and T δ
nj ,j := ddcgδn,j .

For the rest of the section, we also shall write for 0 ≤ j ≤ d− 2,

gj(c, a) := gc,a(cj) , Tj := ddcgj , gnj ,j :=
1

dnj

log |Pnj ,j | and Tnj ,j := ddcgnj ,j .

The key step of our proof can be summarized in the following proposition.

Theorem 6.1. — Let C ≥ 1 be the constant given by Proposition 5.7. Let 0 ≤ j ≤ d− 2
and, for all 0 ≤ ℓ ≤ j − 1, pick δℓ ∈ D (0, exp(−Cσ(nℓ))). There exists a constant C ′ ≥ 1
which depends only on d such that for any ϕ ∈ C2

c (C
d−1), one has

∣∣∣∣∣∣

〈
∧

ℓ<j

T δℓ
nℓ,ℓ

∧
(
Tnj ,j − Tj

)
∧
∧

k>j

Tnk,k, ϕ

〉∣∣∣∣∣∣
≤ C ′‖ϕ‖C2

σ(nj)

dnj

.

Proof. — Fix 0 ≤ j ≤ d− 2. First, the support of
∧

ℓ<j T
δℓ
nℓ,ℓ

∧∧k>j Tnk,k is the algebraic
curve

Sj :=
⋂

ℓ<j

{Pnℓ,ℓ = δℓ} ∩
⋂

k>j

{Pnk ,k = 0} .
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Pick ϕ ∈ C2
c (C

d−1). Then

Ij(ϕ) :=

〈
∧

ℓ<j

T δℓ
nℓ,ℓ

∧
(
Tnj ,j − Tj

)
∧
∧

k>j

Tnk,k, ϕ

〉

=

∫
(gnj ,j − gj)dd

cϕ ∧
∧

ℓ<j

T δℓ
nℓ,ℓ

∧
∧

k>j

Tnk,k

=
dnj

Dn

∫

Sj

(gnj ,j − gj) dd
cϕ .

As ϕ is C2, we have (up to a constant that depends on the choice of the C2-norm) that
‖ϕ‖C2ω ± ddcϕ ≥ 0, where ω is the Fubini-Study form on P

d−1, hence we can write

|Ij(ϕ)| ≤ ‖ϕ‖C2

dnj

Dn

∫

Sj

|gnj ,j − gj |ω .

According to Corollary 5.8, the set Ej := Sj ∩ {|gnj ,j − gj | > Cσ(nj)/dnj
} is contained in

Sj ∩Hn and coincides with {(c, a) ∈ Sj ; |Pnj ,j | < e−Cσ(nj )}. Hence
∫

Sj

|gnj ,j − gj |ω ≤
∫

Ej

|gnj ,j|ω + C
σ(nj)

dnj

∫

Sj

ω .

By Corollary 5.9, the curve Sj is smooth in the open set Bn. By the maximum principle,
Ej is a finite union of Dn topological disks (see § 5.1), which are bounded since contained
in Cd. We now let uj := dnj

gnj ,j = log |Pnj ,j|. Then ddc(uj |Sj
) =

∑
αz0δz0 , for some

collection {αz0} of positive integers, where the sum ranges over Per∗j(nj)∩Sj. Moreover, by
Bézout, we see that the finite measure ddcuj ∧Sj has mass Dn. In particular, ddc(uj |Sj

) =∑
δz0 .
Let now Ωj be a connected component of Ej. According to Theorem 3.2, there exists

C1 > 0 universal such that∫

Ωj

|uj |ω ≤
∫

Ωj

|uj |β ≤ C1max{‖uj‖L∞(∂Ωj), 1}Areaβ(Ωj) .

Now, since gnj ,j = −C
σ(nj)
dnj

on the boundary ∂Ωj of Ωj in Sj, we have ‖uj‖L∞(∂Ωj) =

Cσ(nj) ≥ 1 and we find
∫

Ωj

|gnj ,j|ω ≤ C1C
σ(nj)

dnj

Areaβ(Ωj) .

Since Cd ⋐ B(0, 16
√
d− 1), see e.g. [DF, Proof of Proposition 6.3], we can find C2 > 0

depending only on d such that β ≤ C2ω on Cd. In particular, Areaβ(Ωj) ≤ C2Areaω(Ωj).
Summing up on the components Ωj of Ej gives

∫

Ej

|gnj ,j|ω ≤ C2C1C
σ(nj)

dnj

∫

Sj

ω .

Finally, by Bézout, the integral
∫
Sj

ω is equal the degree of the curve, i.e. Dn/dnj
(see e.g.

[C]). Summarizing what we did to now, we find

|Ij(ϕ)| ≤ ‖ϕ‖C2 (1 + C2C1)C
σ(nj)

dnj

,

which gives the wanted result since C ′ := (1 + C2C1)C depends only on d.
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6.2. Intermediate estimates

We introduce some notations. For all 0 ≤ j ≤ d− 2, we let

g̃nj ,j := max

{
gnj ,j,−2C

σ(nj)

dnj

}
, and T̃nj ,j := ddcg̃nj ,j .

Let us set δj(θ) := e−2Cσ(nj )+iθ, θ ∈ R. It is classical that

g̃nj ,j =
1

2πdnj

∫ 2π

0
log
∣∣Pnj ,j − δj(θ)

∣∣ dθ , and T̃nj ,j =
1

2π

∫ 2π

0
T
δj(θ)
nj ,j

dθ .

We now want to prove the following technical step of the proof of Theorem B.

Lemma 6.2. — Let C be the constant given by Proposition 5.7. Then, for any j ≥ 1,
any 0 ≤ r ≤ j − 1 and any ϕ ∈ C2

c (C
d−1), we have

∣∣∣∣∣∣

〈
∧

ℓ<r

Tℓ ∧ (Tr − T̃nr ,r) ∧
∧

r<q<j

T̃nq ,q ∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k, ϕ

〉∣∣∣∣∣∣
≤ 4C

σ(nr)

dnr

‖ϕ‖C2 .

Proof. — Let j ≥ 1. Pick ϕ ∈ C2
c (C

d−1) and let

Lj(ϕ) :=

〈(
∧

ℓ<r

Tℓ

)
∧ (Tr − T̃nr ,r) ∧



∧

r<q<j

T̃nq ,q


 ∧ (Tnj ,j − Tj) ∧



∧

k>j

Tnk,k


 , ϕ

〉

=

∫
(gr − g̃nr ,r)dd

cϕ ∧
(
∧

ℓ<r

Tℓ

)
∧



∧

r<q<j

T̃nq ,q


 ∧ (Tnj ,j − Tj) ∧



∧

k>j

Tnk,k


 .

As ϕ is C2, up to a constant that depends on the choice of the C2-norm, we have ‖ϕ‖C2ω±
ddcϕ ≥ 0, where ω is the Fubini-Study form on P

d−1, hence we can write

|Lj(ϕ)| ≤ ‖ϕ‖C2

∫
|gr − g̃nr ,r|ω ∧

(
∧

ℓ<r

Tℓ

)
∧



∧

r<q<j

T̃nq,q


 ∧ Tnj ,j ∧



∧

k>j

Tnk,k




+‖ϕ‖C2

∫
|gr − g̃nr,r|ω ∧

(
∧

ℓ<r

Tℓ

)
∧



∧

r<q<j

T̃nq ,q


 ∧ Tj ∧



∧

k>j

Tnk,k


 .

Each of the (1, 1)-currents Tℓ, Tnℓ,ℓ and T̃nℓ,ℓ having projective mass 1, by Bézout, we find

|Lj(ϕ)| ≤ 2‖ϕ‖C2 sup |gr − g̃nr ,r| ,(8)

where the supremum is taken over the support of the current

W :=

(
∧

ℓ<r

Tℓ

)
∧



∧

r<q<j

T̃nq,q


 ∧ (Tnj ,j + Tj) ∧



∧

k>j

Tnk,k


 .

Owing to (8), the next lemma ends the proof.

Lemma 6.3. — Let C > 0 be as above. For any (c, a) ∈ supp(W ), we have

|g̃nr ,r(c, a) − gr(c, a)| ≤ 2C
σ(nr)

dnr

.
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Proof. — On supp(W ), we have gℓ = 0 for all ℓ < r and all ℓ ≥ j. Indeed, for such l, by
definition of W we are in the set where the critical point cl has bounded orbit (observe that
if (c, a) ∈ suppTnl,l then the critical point has periodic hence bounded orbit). Moreover,

for any r < ℓ < j, we have |Pnℓ,ℓ| = e−2Cσ(nℓ). Let (c, a) ∈ supp(W ) such that gr(c, a) <
G(c, a). This implies the existence of r < ℓ < j such that G(c, a) = gℓ(c, a) > gr(c, a) ≥ 0.
Then, by Proposition 5.7:

−2C
σ(nℓ)

dnℓ

− gℓ(c, a) = gnℓ,ℓ(c, a) − gℓ(c, a) ≥ −C
σ(nℓ)

dnℓ

,

which implies gℓ < 0. This is a contradiction so we know that gr(c, a) = G(c, a) for all
(c, a) ∈ supp(W ).

Assume now that (c, a) ∈ supp(W ) satisfies gr(c, a) = 0. By the above, (c, a) ∈ Cd,
hence by Proposition 5.6:

gnr ,r(c, a) ≤ C
σ(nr)

dnr

so g̃nr,r(c, a) ≤ C
σ(nr)

dnr

.

Whence, by definition of g̃nr ,r(c, a):

−2C
σ(nr)

dnr

≤ g̃nr ,r(c, a) = g̃nr ,r(c, a)− gr(c, a) ≤ C
σ(nr)

dnr

.

Assume finally that (c, a) ∈ supp(W ) satisfies G(c, a) = gr(c, a) > 0. By Propositions 5.6
and 5.7, we find

|gnr,r(c, a) − gr(c, a)| ≤ C
σ(nr)

dnr

.

In particular, gnr ,r(c, a) = g̃nr ,r(c, a) and the estimate follows.

6.3. Speed of convergence: proof of Theorem B

We are now in position to prove Theorem B. Pick ϕ ∈ C2
c (C

d−1). We want to estimate

Λn(ϕ) :=
〈
µn − µbif, ϕ

〉
=

〈
d−2∧

j=0

Tnj ,j −
d−2∧

j=0

Tj , ϕ

〉
.

We shall decompose µn − µbif into several pieces using a classical finite telescoping sum
argument:

µn − µbif =
d−2∑

j=0



∧

ℓ<j

Tℓ ∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k


 =

d−2∑

j=0

Sj .(9)

For j ≥ 1, using Tj = T̃nj ,j + (Tj − T̃nj ,j), we rewrite the j-th term Sj of (9) and find

Sj =
∧

ℓ<j

T̃nℓ,ℓ ∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k

+
∑

r<j−1



∧

ℓ<r

Tℓ ∧ (Tr − T̃nr ,r) ∧
∧

r<q<j

T̃nq,q ∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k


 .
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According to Lemma 6.2, for j ≥ 1, we find

|〈Sj , ϕ〉| ≤

∣∣∣∣∣∣

〈
∧

ℓ<j

T̃nℓ,ℓ ∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k, ϕ

〉∣∣∣∣∣∣
+ 4C

∑

r<j

σ(nr)

dnr

‖ϕ‖C2 .

We now want to give an estimate for

Jj :=

〈
∧

ℓ<j

T̃nℓ,ℓ ∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k, ϕ

〉
.

To do so, we shall use the decomposition T̃nℓ,ℓ = (2π)−1
∫
[0,2π] T

δℓ(θ)
nℓ,ℓ

dθ and Fubini:

Jj =
1

(2π)j−1

∫

[0,2π]j−1

〈
∧

ℓ<j

T
δℓ(θℓ)
nℓ,ℓ

∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k, ϕ

〉
dθ0 · · · dθj−1 .

By Theorem 6.1, there exists a constant C ′ > 0 depending only on d such that

|Jj | ≤ 1

(2π)j−1

∫

[0,2π]j−1

∣∣∣∣∣∣

〈
∧

ℓ<j

T
δℓ(θℓ)
nℓ,ℓ

∧ (Tnj ,j − Tj) ∧
∧

k>j

Tnk,k, ϕ

〉∣∣∣∣∣∣
dθ0 · · · dθj−1

≤ 1

(2π)j−1

∫

[0,2π]j−1

C ′σ(nj)

dnj

‖ϕ‖C2dθ0 · · · dθj−1 = C ′σ(nj)

dnj

‖ϕ‖C2 .

All we have done so far summarizes as follows

d−2∑

j=1

|〈Sj , ϕ〉| ≤
d−2∑

j=1


C ′σ(nj)

dnj

+ 4C
∑

r<j

σ(nr)

dnr


 ‖ϕ‖C2 .

All which is left to do is to estimate 〈S0, ϕ〉. By Theorem 6.1, we have

|〈S0, ϕ〉| ≤ C ′σ(n0)

dn0

‖ϕ‖C2 ,

and we have finally proven

∣∣Λn(ϕ)
∣∣ ≤

d−2∑

j=0

|〈Sj , ϕ〉| ≤


(d− 1)C ′ + 4C

d−2∑

j=1

(j − 1)


 max

0≤j≤d−2

(
σ(nj)

dnj

)
‖ϕ‖C2 ,

which ends the proof, since (d − 1)C ′ + 4C
∑d−2

j=1(j − 1) = (d − 1)C ′ + 2C(d − 1)(d − 2)
depends only on d.

7. Distribution of polynomials with prescribed multipliers

The aim of this section is to derive Theorem C and Theorem D from Theorem B. We begin
with the proof of Theorem C which is based on the same idea as that of [FG, Theorem 3].
For our purpose, we have to refine the techniques used in [FG]. We then prove Theorem D
using DSH techniques (see e.g. [DTV]).
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7.1. Distribution of polynomials with (d− 1) attracting cycles

Pick any (d−1)-tuple n = (n0, . . . , nd−2) of pairwise distinct positive integers with n0 ≥ 2.
Let Ω be hyperbolic component of Cd. Assume the for any (c, a) ∈ Ω, the polynomial

Pc,a admits (d − 1) distinct attracting cycles C0, . . . , Cd−2 of respective exact periods
n0, . . . , nd−2 and let ρi(c, a) ∈ D be the multiplier of the attracting cycle Ci. We call the
map ρΩ := (ρ0, . . . , ρd−2) : Ω → D

d−1 the multipliers map of the component Ω where Dd−1

is the unit polydisk in C
d−1. It is known that it is a biholomorphism (see § 5.1).

Recall that we denoted Dn :=
∏

j dnj
and that there exists polynomials

pn : Cd−1 × C −→ C

detecting parameters having a cycle of exact period n and given multiplier w ∈ C (see
Lemma 2.5 in § 2.2). Moreover, we have

– degc,a pn(·, w) = (d − 1)dn for any w ∈ C. Indeed, degc,a pn(·, w) is independent of
w, we can write [pn(·, 0) = 0] =

∑
j [Per

∗
j (n)] and Per∗j(n) has degree dn,

– degw pn(c, a, ·) = dn/n for any (c, a) ∈ C
d−1 (see [BB3, §2.1]).

For w ∈ C and n ≥ 1, let

Per∗(n,w) := {(c, a) ∈ C
d−1 ; pn(c, a, w) = 0}.

Let w0, . . . , wd−2 ∈ D and let n1, . . . , nd−2 be pairwise distinct positive integers with n0 ≥
2. According to [FG, §6], for any (c, a) ∈ ⋂j Per

∗(nj , wj), the intersection between the

Per∗(nj, wj) is smooth and transverse at (c, a) and Card(
⋂

j Per
∗(nj , wj)) is independent

of (w0, . . . , wd−2). In particular, we have the following.

Proposition 7.1. — Let w0, . . . , wd−2 ∈ D and let n1, . . . , nd−2 be pairwise distinct pos-
itive integers with n0 ≥ 2. Then Card(

⋂
j Per

∗(nj, wj)) = (d− 1)!Dn .

Proof. — By the above, it is sufficient to estimate this cardinal for w0 = · · · = wd−2 = 0.

For n ≥ 1, it is easy to see that Per∗(n, 0) =
⋃d−2

j=0 Per
∗
j (n). In particular,

Card




d−2⋂

j=0

Per∗(nj, 0)


 =

∑

s∈Sd−1

Card




d−2⋂

j=0

Per∗s(j)(nj)


 ,

which ends the proof, since Card(
⋂d−2

j=0 Per
∗
s(j)(nj)) = Dn for any s ∈ Sd−1.

We are now in position to prove Theorem C. We deduce Theorem C from Theorem B.
Our strategy mixes arguments from the proof of Corollary 4.4 and from the proof of [FG,
Theorem 3].

Proof of Theorem C. — Let us first prove our result for w = (0, . . . , 0). The set of param-
eters (c, a) ∈ C

d−1 such that Pc,a has (d− 1) distinct super-attracting cycles of respective
exact periods n0, . . . , nd−2 coincides with

⋃

σ∈Sd−1

d−2⋂

j=0

Per∗σ(j)(nj) .
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As the intersection
⋂d−2

j=0 Per
∗
σ(j)(nj) is smooth and transverse for all σ ∈ Sd−1, the measure

µn,0 is the probability measure which is proportional to

∑

σ∈Sd−1

1

Dn

d−2∧

j=0

[Per∗σ(j)(nj)]

which has mass (d− 1)!. As a consequence, we have

µn,0 =
∑

σ∈Sd−1

1

(d− 1)!Dn

d−2∧

j=0

[Per∗σ(j)(nj)] .

Fix now ϕ ∈ C1
c (C

d−1). By a classical interpolation argument, Theorem B gives a constant
C1 depending only on d, such that

|〈µn,0, ϕ〉 − 〈µbif, ϕ〉| ≤ C1

(
max

j

(
σ(nj)

dnj

))1/2

‖ϕ‖C1 .

This is the wanted result when w = 0.

Pick now w ∈ D
d−1 \ {0} and ϕ ∈ C1

c (C
d−1). We write w[0] := (0, . . . , 0) and for any

1 ≤ j ≤ d−1, we set w[j] := (w0, . . . , wj−1, 0, . . . , 0) and µj := µn,w[j], so that w[d−1] = w,
µ0 = µn,0 and µd−1 = µn,w. To conclude, it is sufficient to prove that

|〈µj , ϕ〉 − 〈µj+1, ϕ〉| ≤ C ′

(
max

0≤i≤d−2

{
1

dnj

,
−1

dnj
log |wi|

})1/2

‖ϕ‖C1 ,

for some constant C ′ > 0 depending only on d. If wj = 0, there is nothing to prove, since
in that case w[j] = w[j + 1]. We thus may assume that wj 6= 0. we consider the algebraic
subvariety

Cj :=
⋂

h<j

Per∗(nh, wh) ∩
⋂

l>j

Per∗(nl, 0) .

Observe that Cj ∩Per∗(nj , 0) =
⋂

k Per
∗(nk, w[j]k) is finite, hence Cj is an algebraic curve

and that the intersections are smooth and transverse, by Proposition 7.1.
Let Xj :=

⋂
k Per

∗(nk, w[j]k). Pick any point (c, a) ∈ Xj , and let Ωc,a be the hyperbolic

component containing (c, a). Using [FG, Theorem 6.8], we define φc,a,j : D(0, |wj |−1/2) →
Ωc,a by setting

φc,a,j(t) := ρ−1
c,a(w0, . . . , wj−1, twj , 0, . . . 0) .

By construction, the disks

Dc,a,j := φc,a,j(D(0, |wj |−1/2)) and D
′
c,a,j := φc,a,j(D(0, 1)) ⋐ Dc,a,j

are included in Ωc,a ∩ Cj, φc,a,j(0) = (c, a) and φc,a,j(1) belongs to Xj+1. Any hyperbolic
component contains a unique point in Xj , hence the collection of disks Dc,a,j is disjoint.
Note also that any point in Xj+1 belongs to a hyperbolic component, and thus is equal to
φc,a,j(1) for a unique (c, a) ∈ Xj .
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By Cauchy-Schwarz inequality,

|〈µj , ϕ〉 − 〈µj+1, ϕ〉| ≤ 1

(d− 1)! ·Dn

∑

Xj

|ϕ(φc,a,j(0)) − ϕ(φc,a,j(1))|

≤ 1

(d− 1)! ·Dn
‖ϕ‖C1

∑

Xj

Diamβ

(
D
′
c,a,j

)

≤ ‖ϕ‖C1√
(d− 1)! ·Dn



∑

Xj

(
Diamβ(D

′
c,a,j)

)2



1/2

.

Recall that ρc,a is a biholomorphism for any (c, a) ∈ Xj . In particular,

mod
(
Dc,a,j \ D′

c,a,j

)
= mod(D(0, |wj |−1/2) \D) = −1

4π
log |wj | .

By Lemma 2.7, we deduce

|〈µj , ϕ〉 − 〈µj+1, ϕ〉| ≤ ‖ϕ‖C1√
(d− 1)! ·Dn




∑

(c,a)∈Xj

τ

min(1, −1
4π log |w|)Areaβ(Dc,a,j)




1/2

.

On the other hand, by Bézout, we have

deg(Cj) =

d−2∑

i=0

∑

σ∈Sd−1,
σ(j)=i

deg



⋂

k 6=j

Per∗σ(k)(nk)


 =

d−2∑

i=0

∑

σ∈Sd−1,
σ(j)=i

∏

k 6=j

dnk

=

d−2∑

i=0

∑

σ∈Sd−1,
σ(j)=i

Dn

dnj

= (d− 1)!
Dn

dnj

.

From which, since Ωc,a ∩ Ωc′,a′ = ∅ for (c, a) 6= (c′, a′) ∈ Xj and Dc,a,j ⊂ Ωc,a ∩ Cj, we
deduce

∑

(c,a)∈Xj

Areaω(Dc,a,j) ≤ Areaω(Cj) ≤ deg(Cj) = (d− 1)!
Dn

dnj

.

Now, since Ωc,a ⊂ Cd ⊂ B(0, 16
√
d− 1) (see the proof of Theorem B), there exists a

constant C2 > 0 such that β ≤ C2ω on Ωc,a, for all (c, a) ∈ Xj . Hence Areaβ(Dc,a,j) ≤
C2Areaω(Dc,a,j). Combined with the above, this gives

|〈µj , ϕ〉 − 〈µj+1, ϕ〉| ≤ 16
√

πτ(d− 1)C2√
Dn

‖ϕ‖C1

(
max

{
1,

√
−4π

log |wj |

})√
Dn

dnj

≤ C3‖ϕ‖C1

(
max

0≤ℓ≤d−2

{
1

dnℓ

,
−1

dnℓ
log |wℓ|

})1/2

,

where C3 = 32π
√

τ(d− 1)C2.
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7.2. Convergence for multipliers outside a pluripolar set: Theorem D

For the content of the present, we are inspired by the techniques of [DTV] (see also
[DS3]). Let ω be the Fubini-Study form on P

1 and let πj : (P1)k → P
1 be the canonical

projection to the j-th factor. We denote ωj := π∗
j (ω). We define a smooth probability

measure Ω on (P1)k by Ω := ω1 ∧ · · · ∧ ωk.
First, recall some facts on DSH functions. Let k ≥ 1. Recall that a probability measure

ν in (P1)k has bounded quasi-potentials (or is PB) if ν admits a negative quasi-potential
U (that is a negative (k − 1, k − 1) current U such that ddcU + Ω = ν in the sense of
current) such that |〈U,S〉| ≤ C for any positive smooth form S of bidegree (1, 1) and mass
1 ([DS1]). Such nmapping S 7→ 〈U,S〉 can be extended to any positive closed current of
bidegree (1, 1) and mass 1 with the same bound |〈U,S〉| ≤ C (using structural varieties
in the space of currents). An interesting example of PB measure is the tensor product
of measures in P

1 with bounded quasi-potentials (in which case, having bounded quasi-
potential is equivalent to the fact that the quasi-potential is bounded as a qpsh function).

We say that a function ϕ on (P1)d−1 is DSH if, outside a pluripolar set, it can be written

as a difference of qpsh functions (for example, ϕ ∈ C2). Let DSH
((

P
1
)d−1

)
be the space

of such functions. We write ddcϕ = T+ − T− where T± are positive closed currents of
bidegree (1, 1). Let ν be a PB measure on (P1)d−1. Then, the following defines a norm on

the space DSH
((

P
1
)d−1

)
:

‖ϕ‖ν := ‖ϕ‖L1(ν) + inf ‖T±‖
where the infimum is on all the decompositions ddcϕ = T+−T−. It turns out that taking

another PB measure ν ′ gives an equivalent norm on DSH
((

P
1
)d−1

)
(see e.g. [DS3, p.

283]).
Let ϕ be a C2 function on (P1)d−1, in particular ϕ is DSH and let n = (n0, . . . , nd−2)

be a (d− 1)-uple of pairwise distinct positive integers with n0 ≥ 2. Consider the function:

Φϕ
n : w = (w0, . . . , wd−2) ∈ C

d−1 7→ 〈ϕ, µn,w〉
where

µn,w :=
1

(d− 1)!
∏

j dnj

d−2∧

j=0

[Per∗(nj, wj)] .

This intersection is well defined outside an analytic (hence pluripolar) set En. So, if we
consider the pluripolar set E := ∪nEn, the map Φϕ

n is well defined outside E for all n.
Adding a pluripolar set if necessary, we can assume that this stands for w /∈ E and all j
then wj 6= 1.

For the rest of the subsection, we let ν be a smooth probability measure with support
in D(0, 1/2)d−1. Such a measure indeed exists and is PB, furthermore, we will be able to
apply uniform estimate for ν using Theorem C.

The main result we need here is the following.

Lemma 7.2. — There exists a constant Cϕ depending only on ϕ and on d such that for
all n, the function Φϕ

n is DSH with:

‖Φϕ
n − 〈µbif, ϕ〉‖ν ≤ Cϕmax

j

(
1

nj

)
.
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Proof. — Let Π1 (resp. Π2) denote the canonical projection from P
d−1 ×

(
P
1
)d−1

to P
d−1

(resp.
(
P
1
)d−1

). We let also π̃j :
(
P
1
)d−1 → P

1 be the canonical projection to the j-th

factor. Let ω1 (resp. ωd−1) denote the Fubini-Study form on P
1 (resp. P

d−1). Consider

in P
d−1 ×

(
P
1
)d−1

the (trivial extension of the) analytic set:

P(n, j) := {(c, a, w), (c, a) ∈ Per∗(n,wj−1)} .
Then (c, a, w) ∈ P(n, j) if and only if pn(c, a, wj−1) = 0 where the polynomials pn where
defined in the previous section. Recall that degw pn = dn/n and deg(c,a) pn = (d − 1)dn
(see Section 7.1).

In particular, the current of integration [P(n, j)] is cohomologous to

(d− 1)dnΠ
∗
1(ωd−1) +

dn
n
(π̃j ◦ Π2)

∗(ω1) .

Observe that the function Φϕ
n can be defined in C

d−1 \ E as the following slice (we refer to
[DS3, p. 280] for slicing on currents):

Φϕ
n(w) =

〈
Π∗

1(ϕ)
1

(d − 1)!
∏

j dnj

d−2∧

j=0

[P(nj , j + 1)],Π2, w

〉
.

Since the slicing commutes with the operator ddc, we have

ddcΦϕ
n =

〈
Π∗

1(dd
cϕ) ∧ 1

(d− 1)!
∏

j dnj

d−2∧

j=0

[P(nj , j + 1)],Π2, w

〉
.

Write ddcϕ = T+ − T−. As Π∗
1(T

±) is cohomologous to ‖T±‖ ·Π∗
1(ωd−1), the mass of

T ±
n :=

〈
Π∗

1(T
±) ∧ 1

(d− 1)!
∏

j dnj

d−2∧

j=0

[P(nj , j + 1)],Π2, w

〉

can be computed in cohomology. In particular, it is bounded from above:

‖T ±
n ‖ ≤ Cd · ‖T+‖ max

0≤j≤d−2

(
1

nj

)
,

for some constant Cd that depends only d (Cd = (d− 1)d/(d− 1)! works).
On the other hand, according to Theorem C above, for all w ∈ supp(ν), we have

|Φϕ
n(w)− 〈µbif, ϕ〉| ≤ C · ‖ϕ‖C1 · max

0≤j≤d−2

(
σ(nj)

dnj

)
≤ Cϕ max

0≤j≤d−2

(
1

nj

)

where C > 0 depends only on d and Cϕ > 0 depends only on d and ϕ. The result follows
since the function Φϕ

n is DSH and ddcΦϕ
n = T +

n − T −
n .

We finish the proof of Theorem D.

Proof of Theorem D. — We assume that the series

∑

k

max
j

(
1

nj,k

)

converges. Pick ϕ ∈ C2
c (C

d−1). By Lemma 7.2, Φϕ
nk

− 〈µbif, ϕ〉 ∈ L1(ν) and

‖Φϕ
nk

− 〈µbif, ϕ〉‖L1(ν) ≤ Cϕmax
j

(
1

nj,k

)
.
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Hence, it converges ν-almost everywhere to 0. As all DSH-norms are equivalent, we have
that for another PB measure ν ′, there exists a constant C ′ > 0 depending only on k such
that

‖Φϕ
nk

− 〈µbif, ϕ〉‖L1(ν′) ≤ C ′max
j

(
1

nj,k

)

and we can apply the same argument: it converges to 0, ν ′-a.e.
Finally, when a set E is of ν ′-measure 0 for all PB measure ν ′, it is pluripolar. Indeed,

its logarithmic capacity has to vanish. We deduce, in particular, that the sequence Φϕ
nk

−
〈µbif, ϕ〉 converges to 0 outside a pluripolar set of (P1)d−1.

By separability, we apply the same argument to a dense countable family in Cc(Cd−1) of
ϕ ∈ C2

(
(P1)d−1

)
. As a countable union of pluripolar sets is again pluripolar, we deduce

that outside a pluripolar set the measure µnk,w converges to µbif. This ends the proof of
Theorem D.

Remark. — 1. In the moduli space of quadratic rational maps (which is biholomorphic
to C

2), the curves Per∗(3, 1) and Per∗(2,−3) have a common irreducible component
(see [M1]). Such a behavior is expected to be impossible in the moduli space of degree
d polynomials Pd. We even expect the exceptional set E appearing in Theorem D to
be empty.

2. We also expect the convergence of Theorem D to hold for any sequence nk of (d−1)-
tuple, though we don’t know how to prove it.

We now give a quick proof of Corollary E.

Proof of Corollary E. — The Shilov boundary of Dd−1 is exactly (S1)d−1 and the pluri-
complex Green function of D

d−1, which is given by g = log+maxi{|zi|}, is continuous
and ν := (ddcg)d−1 coincides with the Lebesgue measure of (S1)d−1, hence does not give
mass to pluripolar sets. By Theorem D, for ν-a.e. w, the sequence (µnk,w)k converges to
µbif.

8. Distribution of parametric preimages

Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree d ≥ 2 on P
1 with dim(Λ) =

m. Let ωΛ be a Kähler form on Λ. Assume that c1, . . . , ck are marked critical points and
let T1, . . . , Tk be their respective bifurcation currents (see Section 2.1).

For 1 ≤ j ≤ k, we let vjn : Λ → P
1 be the map defined by vjn(λ) = fn

λ (cj(λ)) and set

vn := (v1n, . . . , v
k
n). Let ωj and Ω be defined as in Section 7. Then [Du, Theorem 0.3]

asserts that there exists a pluripolar set E ⊂ (P1)k such that if (z1, . . . , zk) ∈ (P1)k \E , the
following equidistribution statement holds:

1

dnk
[{fn

λ (c1(λ)) = z1} ∩ · · · ∩ {fn
λ (ck(λ)) = zk}] → T1 ∧ · · · ∧ Tk.

Observe that the equidistribution statement can be rewritten as:

1

dnk
(v1n)

∗(δz1) ∧ · · · ∧ (vkn)
∗(δzk) =

1

dnk
(vn)

∗(δ(z1,...,zk)) → T1 ∧ · · · ∧ Tk.

We want to give here some improved versions of that theorem with speed estimates.
The proof is quite elementary. Recall that PB measures were defined in the previous

section. Our precise result may be formulated as follows.
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Theorem 8.1. — Assume that the family (fλ)λ∈Λ is algebraic, i.e. that Λ is a quasi-
projective variety and let m := dim(Λ). Let K be a compact subset K ⋐ Λ, then with the
above notations and hypotheses we have:

1. Let ν be a probability measure on (P1)k with bounded potentials, then there exists
C(K) > 0 such that for any C2-form ϕ of bidegree (m− k,m− k) and support in K
and any n ≥ 1:

∣∣∣∣〈
1

dnk
(vn)

∗(ν)− T1 ∧ · · · ∧ Tk, ϕ〉
∣∣∣∣ ≤ C(K)

1

dn
‖ϕ‖C2(K) .

2. Let (an) be a sequence of positive number such that
∑

an < ∞, then there exists a
pluripolar set E ⊂ (P)k such that if (z1, . . . , zk) ∈ (P1)k\E, then there exists C(K) > 0
such that for any C2-form ϕ of bidegree (m − k,m − k) and support in K and any
n ≥ 1:

∣∣∣∣〈
1

dnk
(vn)

∗(δ(z1,...,zk))− T1 ∧ · · · ∧ Tk, ϕ〉
∣∣∣∣ ≤ C(K)

1

andn
‖ϕ‖C2(K) .

Proof. — Let us first prove the first point. Recall that if we let T j
n = d−n(vjn)∗(ω), then

T j
n−Tj = ddcV j

n where V j
n = O(d−n) on K (see e.g. [Du]) hence using the same arguments

than above, it is enough to prove the bound:

|〈 1

dnk
(vn)

∗(ν)− T 1
n ∧ · · · ∧ T k

n , ϕ〉| ≤ C(K)
1

dn
‖ϕ‖C2(K)

for any C2-form ϕ of bidegree (m− k,m− k) and support in K.
Write T 1

n∧· · ·∧T k
n = d−kn(vn)

∗(Ω) and let U be a quasi-potential of ν (i.e. ddcU+Ω = ν).
Applying Stokes formula (Lemma 2.8), we find

〈 1

dnk
(vn)

∗(ν)− T 1
n ∧ · · · ∧ T k

n , ϕ〉 = 〈 1

dnk
(vn)

∗(U), ddcϕ〉

= 〈U, 1

dnk
(vn)∗(dd

cϕ)〉.

Now, as ϕ is C2, we have ‖ϕ‖C2ωm−k+1
Λ ± ddcϕ ≥ 0. As we assumed that Λ is a quasi-

projective variety, the mass of the current d−n(k−1)(vn)∗(ω
m−k+1
Λ ) is uniformly bounded.

The fact that ν is PB gives the wanted result.
We now prove the second point. Let (an) be a sequence of positive numbers such that∑
an < ∞. Observe that the positive closed current S =

∑
n and

−n(k−1)(vn)∗(ω
m−k+1
Λ ) is

well defined and has finite mass. For z ∈ (P1)k, we let Uz be the Green quasi-potential of
δz (see [DS2]). The complementary of the set of points z ∈ (P1)k such that 〈Uz, S〉 > −∞
is a pluripolar set we shall denote by E . For any z /∈ E , following the above proof, we find

0 ≥ 〈Uz,
1

dnk
(vn)∗(dd

cϕ)〉 ≥ 〈Uz,
1

dnk
‖ϕ‖C2(vn)∗(ω

m−k+1
Λ )〉 ≥ 1

andn
‖ϕ‖C2〈Uz , S〉.

This ends the proof.

Removing the assumption on the algebraicity of the family, one can using the same
techniques, prove the following.

Proposition 8.2. — Let K be a compact subset K ⋐ Λ. For j ≤ k let νj be a measure
in P

1 with bounded potentials and let ν := ν1 ⊗ · · · ⊗ νk. Then there exists C(K) > 0 such
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that for any C2-form ϕ of bidegree (m− k,m− k) and support in K and any n ≥ 1:
∣∣∣∣〈

1

dnk
(vn)

∗(ν)− T1 ∧ · · · ∧ Tk, ϕ〉
∣∣∣∣ ≤ C(K)

1

dn
‖ϕ‖C2(K) .

The proof is similar to the above one although we do not need to push forward by vn
here and use instead that the sequence (d−n(vjn)∗(νj)) is locally uniformly bounded in
mass.

As observed in [Du], the question is parallel to the equidistribution of preimages of
points under a rational map or more generally under a holomorphic endomorphism of Pk

(see e.g. [Lj, BD]). In the case of such a single map, it is known that the exceptional set,
i.e. the set of points for which one does not have equidistribution, is algebraic.

In the particular case of the unicritical family, let vn(c) := pnc (0), c ∈ C. Using the
classical proof of the equidistribution of centers of hyperbolic components, we can prove
that the exceptional set is reduced to the point ∞ which is exceptional for any pc:

Theorem 8.3. — The sequence
(

1
dn−1 (vn)

∗(δz)
)
n≥1

converges to µMd
in the weak sense

of currents if and only if z ∈ C, i.e. the exceptional set is E = {∞}.

Proof. — We follow closely Levin [Le]. Indeed, take un(c) =
1

dn−1 log |vn(c) − z| so that

∆un = 1
dn−1 (vn)

∗(δz). Then un is a sequence of subharmonic functions that are bounded in

L1
loc. Extracting a converging subsequence, we have that the limit u is equal to gMd

outside
the Mandelbrot set since |vn(c) − z| ≃ |vn(c)| outside the connectedness locus. Similarly,
u ≤ gMd

elsewhere. As gMd
is continuous and µMd

gives no mass to the boundary of the
component of the interior of Md, its implies that u = gMd

(see [BG2]).
Finally, remark that the polynomial vn extends at infinity of the parameter space by

setting vn(∞) = ∞. We get this way a polynomial map vn : P1 → P
1 of degree dn−1.

Hence (vn)
∗(δ∞) = dn−1δ∞ for any n ≥ 1, which concludes the proof.

Question. — Let E be the set of points (z1, . . . , zk) ∈ (P1)k where d−nk(vn)
∗(δ(z1,...,zk))

does not converge to T1 ∧ · · · ∧ Tk.

1. Is E empty for families of rational maps with generic empty exceptional set?

2. Is it reduced to
⋃k

j=1(P
1)j−1 × {∞} × (P1)k−j in any family of polynomials?
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Supér. (4), 45(6):947–984, 2012.

[G2] Thomas Gauthier. Equidistribution towards the bifurcation current I: multipliers and degree
d polynomials. Math. Ann., 366(1-2):1–30, 2016.

[GV] Thomas Gauthier and Gabriel Vigny. Distribution of postcritically finite polynomials III:
Combinatorial continuity, 2016. preprint arXiv:1602.00925.

[I] Patrick Ingram. A finiteness result for post-critically finite polynomials. Int. Math. Res. Not.
IMRN, 3:524–543, 2012.

[K] Jan Kiwi. Combinatorial continuity in complex polynomial dynamics. Proc. London Math.
Soc. (3), 91(1):215–248, 2005.

[Le] Genadi Levin. On the theory of iterations of polynomial families in the complex plane. J.
Soviet Math., 52(6):3512–3522, 1990.



40 THOMAS GAUTHIER & GABRIEL VIGNY

[Lj] M. Ju. Ljubich. Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic
Theory Dynam. Systems, 3(3):351–385, 1983.

[Ly] M. Yu. Lyubich. Some typical properties of the dynamics of rational mappings. Uspekhi Mat.
Nauk, 38(5(233)):197–198, 1983.

[M1] John Milnor. Geometry and dynamics of quadratic rational maps. Experiment. Math.,
2(1):37–83, 1993. With an appendix by the author and Lei Tan.

[M2] John Milnor. Cubic polynomial maps with periodic critical orbit. I. In Complex dynamics,
pages 333–411. A K Peters, Wellesley, MA, 2009.
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Leu, 80039 AMIENS Cedex 1, FRANCE • E-mail : thomas.gauthier@u-picardie.fr,

gabriel.vigny@u-picardie.fr


	1. Introduction
	2. Background material
	3. Preliminary results
	4. Speed of convergence in the unicritical family
	5. Initial estimates in the moduli space of polynomials
	6. Distribution of postcritically finite hyperbolic polynomials
	7. Distribution of polynomials with prescribed multipliers
	8. Distribution of parametric preimages
	References

