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DISTRIBUTION OF POSTCRITICALLY FINITE POLYNOMIALS
II: SPEED OF CONVERGENCE
by
Thomas Gauthier & Gabriel Vigny

Abstract. — In the moduli space of degree d polynomials, we prove the equidistribution
of postcritically finite polynomials toward the bifurcation measure. More precisely, using
complex analytic arguments and pluripotential theory, we prove the exponential speed of
convergence for C?-observables. This improves results obtained with arithmetic methods by
Favre and Rivera-Letellier in the unicritical family and Favre and the first author in the
space of degree d polynomials.

We deduce from that the equidistribution of hyperbolic parameters with (d — 1) distinct
attracting cycles of given multipliers toward the bifurcation measure with exponential speed
for C'-observables. As an application, we prove the equidistribution (up to an explicit
extraction) of parameters with (d — 1) distinct cycles with prescribed multiplier toward the
bifurcation measure for any (d — 1) multipliers outside a pluripolar set.
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1. Introduction

In a holomorphic family (fy)aea of degree d > 2 rational maps, Mané, Sad ans Sulli-
van [MSS] studied quite precisely the notion of structural stability. In particular, they
related the instability of critical orbits under small perturbations of the dynamics and
instability of periodic cycles (see also [Ly]).

This description has been enriched by DeMarco [DeM1] who introduced a current T
which is supported exactly on the bifurcation locus. This current and its self-intersections
reveal to be an appropriate tool to study bifurcations from a measurable viewpoint. Now,
consider the particular case of the moduli space P, of critically marked complex polyno-
mials of degree d modulo conjugacy by affine transformations. In that space, the maximal
self-intersection of the bifurcation current induces a bifurcation measure p, introduced
by Bassanelli and Berteloot [BB1], which may be considered as the analogue of the har-
monic measure of the Mandelbrot set when d > 3. The support of this measure is where
maximal bifurcation phenomena occur. Recall that a polynomial is posteritically finite if
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all its critical points have finite orbit, it is postcritically finite hyperbolic if all its critical
points are periodic cycle (the Julia set of such polynomials is then hyperbolic). Recall
that a polynomial is postcritically finite if all its critical points have finite orbit. Using the
bifurcation measure, it is proved in [BB1] that its support is accumulated by posteriti-
cally finite hyperbolic parameters (which are in a certain way the most stable parameters)
and that it coincides with the closure of parameters having a maximal number of neutral
cycles. Still using the bifurcation measure, the first author also showed in [G1] that its
support has maximal Hausdorff dimension.

As the bifurcation locus of the moduli space Py is a complicated fractal set, a natu-
ral approach is to study it on some dynamical slices. In particular, one can study the
maps having a superattracting orbit of fixed period n. The study of such a set is difficult
and involves naturally arithmetic, combinatorics, topology and complex analysis (see e.g.
[M2]). Furthermore, to understand the global geography of the moduli space Py, it is
useful to approximate the bifurcation current (resp. the bifurcation measure) by dynam-
ically defined hypersurfaces (resp. finite sets). Following the topological description of
the bifurcation locus given by [MSS], one can try to approximate the bifurcation currents
by different types of phenomena: existence of critical orbit relations or periodic cycles of
given nature.

Let us focus first on the simplest case of the unicritical family, i.e. the family defined
by pe(2) := 2% + ¢, ¢ € C. Consider the set Per(n) := {c € C; p?(0) = 0} of parameters
that admit a superattractive periodic point of period dividing n. Recall that the Multibrot
set My is defined by My := {c € C; J. is connected}. Finally, let pn, be the harmonic
measure of M. Then, the first result in this direction goes back to Levin [Le]. In
the quadratic family (d = 2), he proved that the measure equidistributed on the set
Per(n) converges to the harmonic measure of the Mandelbrot set, as n — co. Favre and
Rivera-Letelier [FRL] gave a quantitative version of Levin’s in the unicritical family, using
arithmetic methods. Namely, they proved that there exists C' > 0 such that for any n > 1
and ¢ € CL(C):

1
= Y e~ /c o] < C ()7 e

c€Per(n)

Using potential theory, we prove here the following.

Theorem A. — Let d > 2. Then, there exists a constant C > 0 depending only on d
such that for any ¢ € C2(C) and any n > 1,

1 n
g1 Z @(C)—/(C@MMUZ Scd—nH<PHc2-

c€Per(n)

A classical interpolation argument immediately gives Favre and Rivera-Letelier’s above
result. We shall also give a similar estimate for non-postcritically finite hyperbolic param-
eters in Section @l

More recently, this subject has been intensively studied in the moduli space P, for
d > 3. As the critical points are marked, i.e. can be followed holomorphically in the
whole moduli space Py, the bifurcation current decomposes as Thif = P/(c)=0 T.. For
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n>k>0,let
Per.(n, k) := {[P] € Py ; P"(c) = P*(c)} .

Refining Levin’s approach, Dujardin and Favre prove in [DF] that for any sequence k(n)
satisfying 0 < k(n) < n, the sequence d~"[Per.(n, k(n))] converges to T, in the weak sense
of currents on Py. Recently, Okuyama [Okul] gave a simplified proof of their result in
the case k(n) = 0.

Compared to the unicritical family, a significant difficulty comes from the fact that
two distinct critical points can very well be, at some parameter, in the immediate Fatou
component of the same attractive periodic point. To overcome that, for n > 1 and w € C,
we let

Per*(n,w) := {[P] € Pg; P has a cycle of multiplier w and exact period n} .

The set Per*(n,w) happens to be a complex hypersurface of degree (d — 1)d,, ~ (d —1)d"
and it is known that, for a fixed w € C, the sequence d~"[Per*(n,w)] converges weakly
to Tpi on the moduli space P;. The case |w| < 1 has been established by Bassanelli
and Berteloot [BB3| using an approximation formula for the Lyapunov exponent (see
also [BB2]). The more delicate case |w| > 1 has been proved recently by the first author
in [G2] (see also [BG2] for the case of quadratic polynomials with changing multipliers).

Building on arithmetic methods, Favre and the first author [FG] proved that post-
critically finite hyperbolic parameters with (d — 1) distinct super-attracting cycles (resp.
strictly postcritically finite parameters with given combinatorics) equidistribute towards
the bifurcation measure. The proof developped in that work is only qualitative, since there
exists no effective version of Yuan’s arithmetic equidistribution Theorem. It also raises
the question to know whether the result is of purely arithmetic nature or not. We consider
the present work as a continuation of [F'G].

Statement of the main results. —  Our main goal here is twofold. First, we want
to establish a quantitative equidistribution theorem for postcritically finite hyperbolic
parameters. Second, we aim at giving a simpler proof than the one of [FG], relying only
on pluripotential theoretic and complex analytic arguments. To our purposes, as in the
recent works [DF], BB3, [G2], [FG], we shall use the following “orbifold” parametrization
OP, of the moduli space Py. For (c,a) = (c1,...,cq_2,a) € OPy~ C¥ 1 we let

d—1 ;
1 ~ zJ
P.o(z) = =20+ Z(—l)d_]ad_j(c)—. +a?, zeC,
d : J
7j=2
where oy(c) is the monic symmetric polynomial of degree ¢ in (ci,...,cq_2). Observe that
the canonical projection (¢,a) € C41 s {P.,} € Py is a finite branched cover of degree
d(d—1) and that the critical points of P, , are exactly co, c1,. .., cq—2 with the convention
that ¢ := 0 (see Section 5] for details). For an integer n € N*, we let o(n) be the sum
of its divisors o(n) := 3, k. The function o is known to be bounded from above by

Cnloglogn for some constant C' > 0 independent of n.
Our main result may be stated as follows.

Theorem B. — Let d > 3. Then there exists a constant C' > 0 depending only on d such
that for any (d—1)-tuple of pairwise distinct positive integers n = (ng,...,nqg—2) with ng >
2 and every test function ¢ € C2(C4~Y), if u, is the probability measure equidistributed on
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the set of parameters in C4—1 for which the critical point ¢; is periodic of exact period n;

for all i, we have
o(nj)
Lo om= [, om <€ max ()l

1<j<d—1 \ d"

The first ingredient of the proof is a (slight generalization) of a very general dynamical
property established by Przytycki: if a critical point ¢ of a rational map f does not lie in an
attracting basin f, the points ¢ and f™(c) can not be to close (see Lemma [3]). The idea
to use Przytycki estimate in this context has been introduced by Okuyama [Okul] (see
also [Oku2|) and constitutes the starting point of our work. Combined with known global
properties of the space OP4, this allows us to have precise pointwise estimates outside some
specific “bad” hyperbolic components. The second important tool is a transversality result
for critical periodic orbit relations proved in [FG] and relying on Epstein’s transversality
theory (see [E]). The last important ingredient we use is a L' estimate for specific solutions
of the Laplacian in a bounded topological disk of an affine curve of OP,4, which proof
crucially relies on length-area estimates (see Theorem B.2]). This allows us to replace an
estimate involving the diameter of hyperbolic components with their volume. This actually
is a key step, since even in the quadratic family, estimating the diameter of hyperbolic
components is a very delicate problem related to the famous hyperbolicity conjecture.

Nevertheless, notice that, in the context of the unicritical family, the equation p*(0) = 0
is known to have simple roots so we do not need to exclude parameters with a periodic
critical point of period dividing n. As a consequence, we do not use transversality state-
ments & la Epstein. Hence, we will start by the proof of Theorem [A] which is simpler and
more efficient than in the general case. We may regard this as a model for the general
case.

Following the strategy of the proof of [FGl Theorem 3], we can deduce from The-
orem [Bl a speed of convergence for the measure equidistributed on the (finite) set of
parameters admitting (d — 1) distinct attracting cycles of given respective multipliers

wo, ..., Wq_o € D and of given mutually distinct periods towards upis. Let us be more
precise and pick a (d — 1)-tuple n := (ng,...,ng—2) of mutually distinct positive integers
and w := (wo, ..., wq_2) € C~1. When the set ﬂ?;g Per*(n;, w;) is finite, let
1 d—2
Pnw = oo Per*(n;,w;)] .
n,w (d_l)'H]dn] J/:\O[ ( J ])]

Notice that ji, . is a probability measure and that, when w € D91 the measure Hnw 18
exactly the measure equidistributed on the set of parameters in C4~! having (d — 1) cycles
of respective exact period ng,...,ng4_s and multipliers wg, ..., wq_o.

The precise result we prove may be stated as follows.

Theorem C. — Pick d > 3. Then there exists a constant C > 0 such that for every
w = (wo, ..., wy_s) € D and every (d — 1)-tuple of pairwise distinct positive integers
n=(ng,...,ng—2) with ng > 2, if pnw s as above, we have

1
o(n;) -1 2
— gl < C 1
/Cdlgpunm} /Cdlgpublf = <0SI§1SadX2{ dnj 7dnj log\wj]}> HSOHCM

for any test function ¢ € CL(CI1).
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Combining Theorem [C] with techniques from pluripotential theory (see e.g. [DTV] and
[DS3]), we can actually prove that for all (d— 1)-tuples of multipliers w := (wy, ..., wq_2)
lying outside a pluripolar set of C¢~!, the measure Hn,w equidistributed on parameters hav-
ing (d — 1) cycles of respective multipliers wy, ..., wq_o converges towards the bifurcation
measure, as soon as the periods of the given cycles grow fast enough:

Theorem D. — Pick any sequence ny, = (noj,...,nd—2k) of (d —1)-tuples of pairwise
distinct positive integers such that the series ), maxj{n;,i} converges. Then there exists
a pluripolar set of & C C¥! such that for any w = (wo, ..., wg_2) € C1\ &, the set
ﬂ?;oz Per* (n;x, w;) is finite for any k and the sequence (i, w)r converges to pnis in the
sense of measures.

As an obvious corollary, we can deduce that if we only assume min;{n;;} — oo, then,
for w outside a pluripolar set, up to extraction (up, w)r converges to upi in the sense of
measures. Here is another immediate and interesting consequence of Theorem

Corollary E. — Pick any sequence ny, = (no,...,nd—2k) of (d — 1)-tuples of pairwise
distinct positive integers such that the series ), maxj(nj_,i) converges. Then, for almost
any © = (g, ...,04 2) € RITL if w(©) = (™00 . e2™a-2) the sequence (i, w(©) )k
converges to ppis in the sense of measures.

Notice that Bassanelli and Berteloot [BB2] proved a weaker version of Corollary [E} they
prove that the average measures f}o 1[d-1 Mﬂk,w(@)dm(@) converge weakly to the bifurcation
measure. Contrary to ours, their proof also works in any codimension.

We view these results as parametric analogues of important dynamical phenomena.
Indeed, Theorem [B] is an analogue of the equidistribution of repelling periodic points
of a holomorphic endomorphism F' of P* towards its maximal entropy measure pp, and
Theorem [D] is an analogue of the equidistribution of preimages of a generic points, again

towards the measure pp (see BD]).

Perspectives. —  The questions we discuss here may be addressed in a more general
setting. A first natural generalization is the case when critical points can have the same
period. In that case, the transversality theory a la Epstein fails at parameters admitting
multiple critical points and we a priori have no control of the multiplicity of intersection
at those parameters.

A second natural question is concerned with the case of the moduli space of degree d
rational maps. Even in the case of quadratic rational maps which is much better under-
stood that the general case, important difficulties occur. The main problem comes from
the fact that, contrary to the case of polynomials, the support of the bifurcation measure
is not compact in the moduli space of quadratic rational maps and that the collection of
relatively compact hyperbolic components cluster at infinity (see [BG1]).

We shall study both cases in future works.

On the other hand, in a more recent preprint ([GV]), instead of focusing on the distribu-
tion of hyperbolic postcritically finite parameters, we study the distribution of Misiurewicz
parameters (as is also done in [F'G]). In this preprint, we study this problem using this
time combinatorial tools developped by Kiwi [K] and Dujardin-Favre [DF], enlightening
slightly different, though related, phenomena.
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Structure of the article. —  Section 2] is devoted to needed material. In Section Bl
we establish two preliminary results: Przytycki distance estimate and the L' estimate for
solutions of the Laplacian. We then present the proof of Theorem [A] and its corollaries in
Section M The initial estimates relying on Przytycki Lemma are established in Section Bl
Section [0] is dedicated to the proof of the main Theorem [Bl and Section [0 to proving
Theorems [(] and [Dl Finally, in Section B we investigate other approximation phenomena.
We try here to understand the distribution of maps for which the critical points are sent
to some prescribed target (and not necessarily themselves). We are especially interested
in a theorem of Dujardin [Du| that proves the convergence outside some pluripolar set.
We give here some convergence estimates and show that in some cases, the pluripolar set
can be described explicitly.

Acknowledgment. —  The research of both authors is partially supported by the ANR
project Lambda ANR-13-BS01-0002. We would like to thank Vincent Guedj for very
helpful discussions concerning L' estimates for solutions of the Laplacian and Francois
Berteloot and Charles Favre for useful comments on preliminary versions.

2. Background material

In this section, we want to recall briefly background material on bifurcation currents and
on classical complex analytic tools we will rely on in the whole paper.

2.1. Holomorphic families with marked critical points

Let us recall classic facts concerning holomorphic families of rational maps.
A holomorphic family (fa)aea of degree d > 2 rational maps parametrized by A is a
holomorphic map
f:AxP — P!
such that the map fy := f(\,-) : P! — P! is a degree d rational map, or equivalently if
the map f: A € A —— f\ € Raty is holomorphic.

Definition 2.1. — We say that a holomorphic family (fx)xea is with a marked critical
point if there exists a holomorphic map ¢ : A — P such that fi(c(\)) =0 for all X € A.

We say that a marked critical point ¢ is passive at A\g € A if there exists a neighborhood
U C A of A\g such that the sequence F,, of holomorphic maps defined by F, () := f{(c()))
is a normal family on U. We say that ¢ is active at A\ if it is not passive at Ag. The
activity locus of ¢ is the set of parameters \g € A such that c is active at Ag.

Let wp1 be the Fubini-Study form of P! normalized so that fpl wpr = 1.

Theorem 2.2 (Dujardin-Favre). — The sequence d~"(F,)*wp1 converges in the weak
sense of currents to a closed positive (1,1)-current T, on A which is supported by the
activity locus of c.

More precisely, there exists a locally uniformly bounded sequence of continuous function
U, : AxP! — Rsuch that & (F,)*wp1 = T+ F-dduy, see e.g. Proposition-Definition
3.1]. It is also known that 7. A T, = 0 (see [G1l Theorem 6.1]).

Let us also recall that, when a holomorphic family is with 2d — 2 marked critical points
Ci,...,Co0_9, the current Ty := ZZQZIQ T¢, is supported by the bifurcation locus in the
sense of Mané, Sad and Sullivan (see [DeM2]).
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Definition 2.3. — We define the bifurcation measure of a family (f))xea as
Uit = MT& ,m=dimA .

This measure detects, in a certain sense, the strongest bifurcations which occur in A.
Finally, when (f))xea is a holomorphic family of polynomials with d — 1 marked critical
point ¢1,...,¢cq—1 : A — C, we let

ga(z) = lim d™"log" ()] ,

for A € A and z € C. The current 7; is then given by T, = dd®gx(c;(\)) (see e.g. [DE]).
We also can remark that it actually can be considered as equipped with 2d — 2 marked
critical points letting cg = -+ = coq_9 = 0o and that T; =0 for all d <7 < 2d — 2.

2.2. Polynomials with a specific periodic point

For the material of the present section, we refer to [Si, §4.1] and to [BB2, [BB3|, M1]
(see also [FG], §6]). We follow the notations of [FG].

We let (fy)aca be a holomorphic family of degree d polynomials parametrized by a
quasi-projective variety A. For any n > 1, the n-th dynatomic polynomial of fy is defined
as

)

@300 2) = [ (F) - )" """

klm
where 1 stands for the Moebius function. This defines a polynomial map ®,, : AxC — C
satisfying ®,,(\, z) = 0 if and only if

— either z is periodic under iteration of fy with (f{')'(z) # 1 and its exact period is n,
— or z is periodic under iteration of fy with (f{)(2) = 1 and its exact period is k|n
and (f*)'(2) is a primitive n/k-root of unity.

When (fy)aeais endowed with (d — 1) marked critical point cg,...,cq—2 : A — C, we
may apply this construction to those marked critical points ¢;. We let

P i(A) =5 (N (M), AeA.
By the above, we have

Lemma 2.4. — Pickm >1,0<j<d—-2and A € A. Then P, j(A\) =0 if and only if
cj(A) is periodic under iteration of f\ with exact period m.

We also can describe the set of parameters admitting a cycle of given period an multi-
plier. For n > 1, set

pn()\, U}) = (Resz(q);;()‘a Z)’ (f;?)/(z) - ’U))
This defines a polynomial p,, : A x C — C. Again, we find

Yn o (w) e AxC .

Lemma 2.5. — Pickn > 1 and w € C. Then p,(\,w) = 0 if and only if one of the
following occurs:

— ifw # 1, f\ has a cycle of exact period n and multiplier w,
— if w =1, there exists kln such that fy has a cycle of exact period k and multiplier p
a primitive n/k-root of unity.
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2.3. A specific family

Recall that the moduli space Py of degree d polynomials is the space of affine conjugacy
classes of degree d polynomials with d — 1 marked critical points. We define a finite

branched cover of C4~1 — P, as follows. For ¢ = (c1,...,¢4-2) € C%2 and a € C, let
1 ! O d— (C) ;
Pea(z) = =2+ ) (-1 == +a?, z€C,

where oy (c) is the monic elementary degree k symmetric polynomial in the ¢;’s. This
family is known to be a finite branched cover (see e.g. [DFE] §5]). Remark also that the
critical points of P, , are exactly co,...,cq—2, where we set ¢ := 0, and that they depend
algebraically on (c,a) € C4 1.

We define a continuous psh function G : C4~! — R, by setting

R . d—1
Gle,a) = max  gealc;) , (e;a0) €T

It is known that the connectedness locus
Cq = {(c,a) € C¥; J., is connected}

is compact and satisfies Cqg = {G = 0}, where J 4 := 0{gc,, = 0} is the Julia set of P,
(see [BH]). Moreover, the bifurcation measure, in this actual family, coincides with the
Monge-Ampere mass of G, i.e.

Lbif = (dch)dfl
as probability measures on C4~1. It is also known that

Gle,a) = log max{el,Jal} + O(1) ,

where we set |c| := maxj<j<q_2|cj| , and that the function G is the pluricomplex Green
function of C4. In particular, uni = (dd°G)4~! is supported by the Shilov boundary dsCy
of Cy4 (see [DF §6]). In particular, the estimates of [DF] give

Lemma 2.6. — There exists a constant C > 0 independent of (c,a) such that for any
(c,a) € CT1 any z € C and any n:

1 1

™ log™* [P (2)] = gea(2)| < d—n(log+ max{|c|,|a|} + C) .

Proof. — This actually follows from [DF], Proposition-Definition 3.1] and the precise def-
inition of F.,. Indeed, in the proof of that proposition, observe that the function g
satisfies the estimate |§((c,a), z)| < log® max{|c|, |a|} + C for some constant C that does
not depend on (c¢,a) nor z. The result then follows. O

2.4. Complex analytic tools

We will denote in what follows dp1 the classical spherical distance on P!, normalized so
that P! has diameter 1. For a C! map f, we denote f# the spherical derivative of f:
d
VZG]Pl, f#(Z) — lim Pl(f(z)7f(y))
dp1 (z,y)—0 d]pl (Z, y)
We also shall denote by ||[D?f(2)|| the norm of the bilinear map D?f(z) induced by the
spherical metric.
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Recall that if A is an annulus and if A is conformally equivalent to A’ = {z € C; r <
|2] < R} with 0 < r < R < 400, the modulus of A is the same as the modulus of A’:

1 R
d(A) = mod(A') = —1log () .
mod(A) = mod(A") 2770g<r>
We will rely on the following classical estimate (see [BDl Appendix]).
Lemma 2.7 (Briend-Duval). — For any k > 1, there exists a constant 7, > 0 depend-

ing only on k such that for any holomorphic disks Dy € Dy € C¥, and any hermitian
metric o on CF,

' Areay (Do)
(diamq(Dy))* < 7- mjn(l,mod?z‘l)) ’

where A is the annulus Dy \ D1 and areas and distances are computed with respect to c.

We also rely on the following classical integration by part formula, which can be stated
as follows (see [Deml, Formula 3.1 page 144]).

Lemma 2.8. — Let Q € ' C C* be bounded open sets. Assume that Q has smooth
boundary. Let u,v be psh functions on Q' and let T be a closed positive (k — 1,k — 1)-
current on Q' such that dd°u AT and dd°v AT are well-defined. Then

/ (vdd“u — uddv) NT = / (vdu — udv) AT .
Q o0

3. Preliminary results

In this section, we establish the two main technical estimates we will rely on. The first
one is of dynamical nature and follows very closely a classical result of Przytycki. The
second is of more geometric nature and might be of independent interest.

3.1. Local dynamical estimates

We shall use the following estimate in a crucial way. The proof follows very closely that
of [P, Lemma 1]. The idea to use this result for proving equidistribution phenomena in
parameters spaces first appeared in the recent work [Okul] of Okuyama.

Lemma 3.1. — Let (fy)aea be a holomorphic family of degree d rational maps and let
c: A — P! be a marked critical point of (fx)xen. Assume that c()\) does not lie persistently
i a parabolic basin of fr. There exists a universal constant 0 < k < 1 and a continuous
function M : A —]1,+o00[ such that, for any n > 1 and any X € A,

— either c¢(\) lies in the immediate basin of an attracting cycle of period p dividing n,
— ordpi (f{(c()),c(A) = k- M(A)™".
In particular, when c(X) € Jy, then dpi(f{(c(N)),c(N)) > k- M(X)~™.

Proof. — Notice that the function M : A —]1, 400 defined by

M(N) := max{sup f;\#(z), sup HDQfA(z)H} €]1, +o0]
z€Pt zePl
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is continuous on A (|| - || is the metric that T*P! induced by the spherical metric). This
guarantees that M ()) is finite. Moreover, the map fy : P* — P! is Lipschitz with constant
M (\) with respect to dp, i.e.

dp1 (f(2), fa(w)) < M(N)dp1 (2, w)
for any z,w € P! and any A € A. We rely on the following.
Claim. — There exists a constant £ > 0 such that if f{(c(X)) # c(A) and dp1(c(X), Ty) <
KM (X)™", then

dp1 (fX (c(X)), ¢(N)) = kM (A)™" .
We now assume all along the proof that ¢(\) does not belong to an attracting basin of

period p|n. In particular, f{'(c(\)) # c¢(A). When ¢(A) € Jy, the above Claim implies

dp1 (f3 (X)), ¢(N) = k- M(A)™™
as required. Assume now c¢(\) ¢ Jy. There are two distinct cases to treat. First, assume
¢(\) lies in a parabolic basin of fy. Since ¢(\) is not persistently in such a component,

the critical point is active at A, hence there exists A, — A with ¢(\;) € Jy, by Montel
Theorem. By continuity of the function A — dp1 (f{(c(N)),c(N)) — - M(A)™", we find

dp1(fX(c(A)), c(A)) = k- M(A)™" = limdpr (f5, (c(Ar)), (M) — - M ()" 2 0

in that case, i.e. dp1(f{(c(N)),c(N)) > kK- M(N)™™.

in a different Fatou component of fy
which, by the Claim, implies

In any other case, by assumption, f{(c(A)) li
than ¢(A). Then, either dpi(c(A), Ty) < k- M (A

)
dp1 (X (c(A)), (X)) = KM(A)™"
or dpi(c(N), Jn) > k- M(N)~™ and we have
dp1 (X (c(N),c(N)) = dpi(c(A), Tn) = k- M(A)™"
and the proof is complete. O

es
-n
K

We are left with proving the Claim.

Proof of the Claim. — We follow closely the proof of [P, Lemma 1]. Since ¢(\) € C(f),
by the Mean Value Theorem, for any ¢ > 0:

(1) diam f(B(c()\), 2¢)) < k™ 1M(N)e?

where k=1 > 1 is an (explicit) constant that depends only on || - ||. Assume, by contradic-

tion, that dpi(c(A), Jx) < M (X)™" and dp1 (f{(c(N)),c(N)) < kM(A)~™. Choose
e 1= max{dpr (c(\), ), d1 (c(N), [ (c(A)} > 0.
Then B(c(N), €) N Ty # 0. Since fy is M ()\)-Lipschitz with respect to dp1, we get for j < 2:
diam f](B(c()), 2¢)) < M(A)diam f " (B(c()), 2¢)).
Combining with () gives:
diam fL(B(c(N),2¢)) < s TM\) " < €.

In particular, f3(B(c()),2¢)) C B(c(N),2¢) and fE(B(c(N),2€)) C B(c()N), 2¢) follows for
any k > 1 by an immediate induction. By Montel’s Theorem, the sequence ( ff”) k>1 1S a
normal family on B(c()), 2¢), which is a contradiction, since 7y NB(c(N), 2¢€) # 0. O
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3.2. L'-estimate for local solutions of the Laplacian on affine curves

Our aim, in the present, is to give the following L!-estimate for solutions of the Laplacian
in disks of algebraic curves. We let 8 be the standard hermitian metric on C*. Precisely,
we want to prove the following.

Theorem 3.2. — Pick k > 1. There exists a constant C > 0 depending only on k such
that for every affine algebraic curve S C CF, every simply connected bounded domain of
Q in S satisfying QN Ssing = 0, every zp € Q and every f € C(Q, C) holomorphic on Q
satisfying dd®log |f| = 6., on Q, we have

l1og 111105y < € max { 1o | £1ll oy - 1} Areas(®)

Proof. — Set u := log|f|. First, if f vanishes somewhere on 0f2, then the estimate is
trivial since [[ul| oo 90y = 400 then. We thus assume f(¢) # 0 for all ¢ € 012

Let h : © — D be a biholomorphic map with h(zp) = 0. It is clear that |h| extends
continuously to dQ with |h] =1 on 9Q. We set y := log |h] and K := max {||ul| fe (90, 1}
The function x is subharmonic on €, satisfies dd“x = J,, and x < 0. The functions h/f
and f/h are holomorphic on  and satisfy

f h
7 < exp(K) and 7 < exp(K) on 09 .
Using twice the maximum principle, we get x — K <u < K 4+ x < K — x on ). Define
Q' :={2e€Q; x(2) < 3K} and Q" := {z €Q;x(z) < —gK} .
We can decompose [|uf|z1(q) as follows
e = [ a8 < [ (=05 Kareay(@) [ x5
Q Q Q
< KAreas(Q) —/ xﬁ—/ X5
o\ o

< 4KArea5(Q)—/ X0 .
Q/

We are thus left with estimating [, x 8 from below. Writing v(2) := ||z — 2|, where |- ||
is the euclidean norm of C¥, we have 8 = dd°v and by Stokes (see Lemma ZJ)):

/Xﬁ = /vddclog|h|—/ vdclog|h|—|—/ log |h| dv .
Q 194 o oY

As dd¢log |h| = 6., d°log |h|?> = d|h|?/|h|* and by definition of ', we find

/Xﬁ = -3K dcv—/ vd°log |hl
! oY oY

1
= —3KAreag(QY) — §exp(6K)/ vd|h|? .
oY
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Applying again Stokes yields

/ vd|h? = /vddc]h\Q—/ \h!25+/ |h|% dv
o0’ 94 194 o

/ v dd°|h|* + exp(—6K)Areag ()
Q/

IN

since |h| <1 and v > 0.
All these estimates summarize as follows

1
(2) 02/ XB > —4K - Areag(Q) — §exp(6K)/ vdd®|h|?
o o
since K > 1 and |h| > 0. Since v(z) = ||z — 20]|?, we can bound it in Q' from above by

(diamg(2)'))%. We now apply Lemma 27 to Q' € Q” and find
/ vdd°|h)? < (diamg())? / dd’|h|* = (diamg(Q))? / 3
o o D(0,e=3K)

< (diamg(Q))? - mexp(—6K)
Areag(Q)") .
min {1, mod(Q” \ )}

Since h is a biholomorphism and since K > 1, we have

< mexp(—6K)T -

| =

mod(Q”\ @) = mod(D(0,e /%) \ D(0,e—3K)) = — >

1
T 27
Taking C := 8 + 727 (K > 1) ends the proof. O

[\)

4. Speed of convergence in the unicritical family

This section is devoted to the proof of Theorem [Al The method we use can be seen as a
toy-model for the proof of Theorem [Bl Our idea consists in giving estimates in L[ for
the sequence ¢ — d~"log|p?(0)| — gm, of DSH functions (difference of subharmonic

functions) and then to deduce Theorem [Al from these estimates.

4.1. Preliminaries

Let d > 2. Recall that the Multibrot set My is defined by
My :={c e C; J. is connected} .

Observe that 0 on C is the unique marked critical point of p. (other than oo). According
to the notation introduced in section 2.1} the Green function should be denoted by gg, we
shall instead use the notations g. which is more classical in that setting. In particular,
M, coincides with the set {¢ € C; ¢.(0) = 0}. The bifurcation locus of the family (p.)cec
is known to coincide with the boundary 0My of the Multibrot set. In this family, the
bifurcation measure is given by

1 1
dd®g.(0) = Eddcgc(c) =

where gn, is the Green function of the compact set My (see e.g. [St]). In particular,
dd°gm, = pmy, is the equilibrium measure (and the harmonic measure) of M.

ddgm,

Let us first prove the following.
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Lemma 4.1. — There exists Cy > 0 depending only on d such that
_ n
|d™" log [p2(0)] — gm,(c)| < WCI )
for any ¢ € C\ My and any n > 1.

Proof. — Let n > 1 and set u,(c) := d"*log|p?(0)], ¢ € C. A classical and easy
computation shows that, for any ¢ € My, one has |p?(0)| < 2(e.g. [DHI]). Let M; :=
sup.com, M (c), where M(c) is the constant given by Lemma B:ﬂ Then, for all ¢ € 0My,

1
— =t (nlog My —log k) < un(c) — g, (€) < d T log2,
since g, (c) = 0. Setting C; := 2max{x~1, My,2}, we get for any ¢ € OMy
n
(3) —WlogCl < up(c) — gm,(c) < d s log O .

Now, as ¢ — 0o, by definition of p., one has

lim (up(c) —log|c|) = lgn <d_("_1) log ‘cdnil‘ — log ]c[) =0

Cc— 00

As gm,(c) = log|c| 4+ o(1) as ¢ = oo (by definition of the Green function), the function
U, —gm, extends continuously on the xhole P! \M,. Moreover, hy, := u,—gm, is harmonic
on C\ My.

The function h is thus subharmonic and continuous on P! \ M. Moreover, since h,, is
harmonic on C \ My, one has supp(Ah,,) N (P \ My) C {oc}. As h,, is continuous at oo,
it can not have a Dirac mass here, hence Ah, = 0 on P!\ My, i.e. h, is harmonic on
P!\ My. By the maximum principle, applied successively to h, and —h,, @) gives the
wanted estimate. O

4.2. In the Multibrot set
For every n > 1, we denote v, := log [p”(0)| (hence u,, = d~""'v,). We will prove that:

Theorem 4.2. — There exists C' > 0 depending only on d such that for any n > 1,
lvnllLrovy) < C-n - Area(Mg) .

The next lemma will be use in the proof of Theorem Though it is classical, we
include a proof for the sake of completeness.

Lemma 4.3. — The polynomial p(0) € C|c| has simple roots in C.

Proof. — Let Qu(c) := p(0) € Z[c]. By definition, Q,(c) = Qn_1(c)? + ¢, hence Q/, =
dQ., Q%% +1. In particular, the discriminant A(Q,,) = Res(Qy, Q") is the determinant
of a matrix with entries divisible by d below the diagonal and equal to 1 on the diagonal.
Hence reducing modulo d, it is upper triangular with 1 on the diagonal, i.e. A(Q,) =
1 (mod d). In particular, if @,(co) = 0, then @/ (cp) # 0 and the point ¢q is a simple root
of Q. O

Let n > 1. We denote by H,, the union of connected components €2 of the interior of
M, such that Per(n) N # (). For Q such a connected component, recall that 2 is simply
connected and there exists only one ¢, €  for which p? (0) = 0 (see [DH2]).

Remark. — This can be seen using the multiplier map p : 2 — I which is a branched
cover of degree d — 1 which is totally ramified at {c.} := p~1{0} = Per(n) N Q.
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The proof of Theorem is an application of Theorem

Proof. — We decompose [[v, |11 (m,) as follows

anuLl(Md):/ rvm:/ \vnm/ ol B .
Md Md\Hn Hn

Let U be a connected component of the interior of My \ H,,. By Lemma [.T] (recall that
gm,(c) = 0 in My), we have that |v,| < nCi on OU. As v, is harmonic on U, by the
maximum principle, the estimate extends to U:

|vn| < nCp on U.

Hence:
/ lon| B < nCiAreag(Mg \ Hy) -
Mg\ Hn

Now, let ©Q be a connected component of #H,,. Then, by Lemma 3] the function v,
satisfies dd®v,, = d., where ¢, is the center of the component 2. Hence using Theorem [B.2]
and Lemma [.T] gives (take log|f| = vy):

[vnllL1(q) < € max {HUNHLOO@Q) , 1} Areag(Q) < CnCiAreag(Q?) ,

where C' is a universal constant that depends only on d. Summing on all the connected
components ) of H,, gives:

/ |on| B < CnCiAreag(Hy)

n

Summing over H,, and My \ H,, ends the proof. O

4.3. Proof of Theorem [A]
Let us now explain how to deduce Theorem [A] from Theorem

Proof of Theorem[Al — Let n > 1. Recall that u,(c) = d~"*log [p?(0)| = d""*1v,. Let
@ € C2(C). Then, by Stokes formula:

: / / /
— g wle)— | oum, = o ddu, — | ¢ dd°gm, = / Up — gM,) ddSo .
dn 1 ( ) C d c c d C( d)

c€Per(n)

We cut the integral into two parts

% > w(C)—/CcpuMd = /

(un — gm,)dd e + / (un — gm,)dd e .
c€Per(n) Mgy

C\M,

Now, as ¢ is C?, we have (up to a constant that depends on the choice of the C?>-norm)
that ||¢[|c2wpr £ dd®p > 0, where wps is the Fubini-Study form on P! (normalized so that
wp1 (P) = 1), hence we can write

1 /
= ple) = | vumy| < |lelle2 / Up — M wpl-i-/ Up — gM,|WpL | -
o > (c) : | < el ( Md! n l C\Md! n l

c€Per(n)

As wp1 < B, where ( is the standard hermitian metric on C,
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dnlfl > SD(C)—/CWMd < [lelle (/ Iun—gMd|ﬁ+/

|, — gMd|WP1> :
ce€Per(n) Mg C\Mg4

By Lemma [£1], we have the bound:

n n
Uy — wpt < ——(C' wpr = ——C1.
/c\Md‘ n MR < G 1/11»1 Bt

Now, by Theorem 2] there exists C' > 0 depending only on d such that for any n > 1,
[vnllp vy < C - n- Area(My)

/ ‘un_gMd‘ﬂ = d_n+1/ ‘Un‘ﬂ
Md Md

C'n

dar’

where C’ depends only on d. Combining the estimates gives that there exists a constant
C that depends only on d such that:

1 Cn
o Y w0 [emy| < Glele

c€Per(n)
This ends the proof. O

Hence

< Area(My) -

Remark. — 1. Observe that in fact, one can replace in Theorem [A] the norm ||p||c2
by the L norm of ddp.
2. On the other hand, as the measures

1
F Z 50 and MM,
c€Per(n)

all have supports in My, if 6 denotes a cut-off function equal to 1 in a neighborhood
of My then for all ¢:

1 1
T > w(C)—/qud =i > 9(C)¢(C)—/9qud-
c€Per(n) c c€Per(n) c

Then, one easily gets that [|0p]c2 < Allp|lc2(x) where K = supp(f) and A is a
constant that depends only on . Then we have the estimate, for all ¢ € C?(C):

1 n
1 2 90~ [ e < CAT el
c€Per(n) c

4.4. An application in the spirit of Theorem

We here want to extend the C'-estimate to non-postcritically finite hyperbolic parameters,
i.e. parameters ¢ € My for which p. has a cycle of period k|n and multiplier wk/™ where
w € DD has been fixed. Let us be more precise: For any n > 1 and any w € C, let
Rn(c,w) := Res; (p£(2) — 2, (p?)'(2) = w) and

Per(n,w) = {ce€C; Ry(c,w)=0}.
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By the above section § 2.2 we have

Per(n,w) = {ceC; 3z C, pl(z) =z and (p2)'(2) = w}
= UPer*(k,w"/k) .
k|n

Our precise statement is the following.

Theorem 4.4. — For any integer n > 1, the set Per(n,w) is a finite set of cardinal d"*
(resp. (d —1)d"™1) if w = 0 (resp. w € D*). Moreover, there exists a constant C > 0
depending only on d such that

i Y 20 o) <o () e {n s el

cePer(n,w)

for any w € D*, any ¢ € CX(C) and any n > 1.

The proof of Theorem .4 uses Lemma 2.7, i.e. the length-area estimates of Briend and
Duval [BD] in a crucial way. Notice that we may instead use Koebe Distortion estimates,
but we again want to present the proof of Theorem 4] as a toy model for that of Theorem

Notice that, though this estimate looks weaker than the one obtained in Theorem [C|
it is actually more general. Indeed, the set Per(n,w) as we defined it here is the set of
parameters ¢ for which there exists a cycle of period dividing n and multiplier a root of
w. Hence, this is a much bigger set than the one involved in Theorem

In general, the set Per(n,w) with w € C is finite and has cardinal at most (d — 1)d"!,

see e.g. [Si.

Proof. — Let us first prove that Per(n,w) is finite and determine its cardinal. If ¢ €
Per(n,w), then p. has an attracting cycle of exact period k|n and multiplier wk/™ € D.
But the set of parameters ¢ admitting a k-cycle of multiplier ¢ € D is finite and its cardinal
is di_1 if t = 0 and (d—1)dg_1 otherwise. In particular, Per(n,w) is finite and has cardinal
Dk k-1 = d" ' if w =0 and 2opn(d = Dd—1 = (d — 1)d"~! otherwise (recall that d,,
was defined in the introduction).

Pick ¢ € C}(C) and let

1 1
,un::d—n Z 0. and un,w::m Z Oc -

ce€Per(n) cePer(n,w)

Recall that we want to estimate |(in,w,9) — (M, )| Let us remark that, by a classical
interpolation argument, Theorem [A] gives

n\ /2
[(ans 0) = (v 2 < 1 () lller

where C7 depends only on d. Pick w € D* and n > 1. We are left with estimating
[{tins ©) — (finw, )| For any co € Per(n), let us denote by Q,, the hyperbolic component
containing co and let ¢k, ..., c% ! be the d — 1 parameters cl, € Q., N Per(n,w). Let also
., be the open set

Q= ﬂ Per(n,t) N Qe € Qe -

[t]<[w]
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By Cauchy-Schwarz inequality,

[tins @) = (s @)1 < 75— D Z!tp (o) — (cd,)]

co€Per(n) j=1
1

< - Z ¢l Diamy (2,)
co€Per(n)
1/2
: dn/z||%0||61 > (Diamg(@,))*

co€Per(n)

Recall that Per(n) = Uy, Per” (k) where Per®(k) denote the set of parameters admitting
a super-attracting cycle of exact period k. Moreover, if k|n and ¢y € Per*(k),

Y, =~ (DO, M)

where p : Q., — D is the map which, to ¢, associates the multiplier of the attracting
cycle of p.. Recall that p is a (d— 1)-branched cover ramifying exactly at ¢y. In particular,

mod (I\ (0, [wF/m)) = (d — 1) - mod($, \ %) ,

whence mod (€2, \ €2, ) = ﬁ log |w| > m log |w|. By Lemma 7] we deduce

2mn(
1/2

1 T
[(ttns 0) = tnw, 0)) < <= lleller . - Areag(Qe,)
dn/2 cOePZer(n) min(1, 727”1((11_1) log |w]) 0

On the other hand, since ¢, N Q2 = () for ¢ # ¢, € Per(n) and Q., C My C D(0,2),

Z Areag(€.,) < Areag(DD(0,2)) = 4n
Per(n)

Combined with the above, this gives

2y/mT 2mn(d — 1) 1/2
_ < Zv°7 il Sl
|<lu’n’ SD> <:U’n,w’ QD>| = dqn/2 HSDHCI max {1? log(|w|f1) } ’

which, letting C' := Cy + 2m4/2(d — 1)7, finally gives the wanted result. O

5. Initial estimates in the moduli space of polynomials

We aim, here, at giving estimates in the spirit of the one provided by LemmalZ.Il We begin
the section with preliminaries on the Moebius function and dynatomic polynomials P, ;.
We then give estimates using Lemma [3.] for the potentials of the currents [Per}(m)] =
dd®log | Pp, ;| (renormalized by their mass) at suitable parameters.
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5.1. Basics

Let d > 3. Recall that, for 0 < j < d— 2 and m > 1, we defined in § 2.2 the polynomials
P,, j of period m for the critical point ¢; by

(m/k)
P i(c,a) == H <Pclfa(cj) - cj>“ : ,

klm

where 4 stands for the Moebius function, and that P, j(c,a) = 0 if and only if ¢; is
periodic under iteration of P, , with exact period m. The degree of P, ; is equivalent to
d™. It does not depend on j so we denote it by d,, as we have the formula:

(4) dp =Y _p(m/k)d* =d™+ " p(m/k)d".
k|m k|m, k#m
Recall that the function o : N* — N* is the sum of divisors: We also let Per}(m) be the
algebraic variety
Per’(m) := {(c,a) € C1; Pojle,a) =0}
defined by (c,a) € Perj(m) if and only if the critical point c¢; is periodic under iteration

of P, with exact period m. We shall use in the sequel the following result (see [EG|
Theorem 6.1]).

Theorem 5.1 (Favre-Gauthier). — Let m = (myg,...,mq_2) be a (d—1)-tuple of pair-
wise distinct positive integers such that mo > 2. If the hypersurfaces {Per}(m;)}o<j<d—2
intersect at (c,a) € C4=1, their intersection at (c,a) is smooth and transverse.

Let H,, be the open set of hyperbolic parameters (¢, a) for which, for all j, the critical
point ¢; is in the immediate basin of an attracting cycle of exact period n;. For (c.,a.) €
NjPeri(n;), we let Q¢ 4. be the connected component of C4 that contains (c., a.) which is
the center of the component )., 4.. In the case where all n; are distinct, it is known that
the set €1, 4. is simply connected and contains only one postcritically finite parameter,
the parameter (c.,a.). Notice that, according to Theorem 1] and to Bézout Theorem,
the set H,, has Card((); Perj(n;)) = [], dn; distinct hyperbolic components.

5.2. Przytycki’s estimates in the space of polynomials

We first give estimates for the functions d~" log | P, (c;) — ¢;| that will enable us to deal
with the dynatomic polynomials. The two next lemmas are consequences of [DF] §6]
and of Lemma Bl These two lemmas intend to play the role, in the present setting, of
Lemma [Tl Since the parameter space is now several dimensional, the proofs are more
elaborate than in the unicritical family.

A few explanations are in order. In turn, lemma [(.2lsays that the growth of the function
d~"log |P,(c;j) — ¢;| is bounded above by the escape rate of the critical point ¢;, up to
exponential error term, at least when c; is the fastest escaping critical point. These
estimates follow directly from classical estimates (see [DFJ, S 6]). The main difficulty is to
get a uniform constant in the error term.

On the other hand, lemma focuses on bounding from below the growth of
d~"log |P},(c;j) — ¢;j| by the escape rate of the critical point ¢;. Though the bound from
below can not hold in full generality when (c,a) € C4 (indeed, the critical point could be
periodic for example), we manage to derive the wanted estimate when the critical point
is active from Lemma 3.1
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Lemma 5.2. — There exists a constant C1 > 0 depending only on d such that for any
(c,a) € C¥L and any j such that geq(c;) = G(c,a), for any n > 1, then

1 1

dn dn
Proof. — The proof breaks in two distinct parts: we first treat the case G(c¢,a) = 0 and,
in a second time, we focus on the case when G(c,a) > 0 and g.(cj) = G(c, a).

Assume first that (c,a) € Cq4, i.e. G(c,a) = 0. Then for any j, gea(cj) = 0 =
G(c,a). Recall that |Peq(z)| > 3|2| as soon as [2| > 2d®max{|c|,|a|} (see e.g. [II).
In particular, assume that |c;| > 2d? max {|c|, |a|,2} then P.,(c;) > 2¢; and |P.4(cj)| >
2d* max {|c|, |a|, 2}. Iterating the argument shows that the sequence (P2, (c;)) diverges so
(c,a) ¢ Cq. We deduce that for all (c,a) € Cy and all n > 1:

|Peacs) = il < [PLa(es)l + lejl < 4d® max {|c],]al,2}.
(c,a)€0Cy

In particular, there exists a constant C, independent of n such that for all (¢,a) € Cy4

and all n > 1:

log | P, (cj) = ¢l = geale;) < Ch

1
dn
Since geq(cj) = 0 in Cg, the lemma follows in the case where (¢, a) € Cy.

log ‘Pc’fa(cj) —¢j| < o

We now consider the case where (c,a) € C4 !\ C4 and pick (¢,a) € {G = R} with
gealcj) = G(c,a). Notice that R > 0 by assumption.
According to Lemma [2.6] there exist Ry > 0 such that for R > Ry, we can assume that
foralln>1:
|Pia(cs)| = 2max{]c|,[al} = 2[¢;| = 1.
Assume first that R < Rg. Hence:

1 3
lPZa(ei)l < [FPeales) — ¢l < 5Fea(c))]
and if 6 = (d —1)71 3", ¢, then
1
_|P07,La(cj)| < |Pcrja(cj) - 5| :
2

We take the logarithm, divide by d”, and use that log | P, (c;)| = log™ | P, (c;)|:
3
2

1 log 2 1 1 log
d—nlog+ [P (c)] — = d—nlog+ [Pl (cj) — ¢ < d—nlog+ [Pl (c)| + o

By invariance, geq(cj) = d™"ge.a(Pru(cj)) = G(c,a) so that max{gq(Pr,(c;)),G(c,a)} =
9ea(Pry(cj)). Hence, by [DF, Lemma 6.5], this gives a constant C” > 0 depending only
on d and Ry such that
Gealcs) = dinQC,a(Pc?a(cj)) >d" (log |Pc1?a(cj) — 0| —log 4)
> d7" (log|P(cj) —¢i| = C").

Assume now that 0 < R = G(c,a) = geq(cj) < Ro. We treat two cases separately. Assume
first that [P, (c;)| < 1/2]¢j| so that |P,(c;) — ¢j| < 3/2[c;|. In particular, taking the
logarithm, dividing by d" and using that log < log™ imply:

1

dn

1
log [P, (cj) —¢j] < 7
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where C” is a constant that does not depend on (c¢,a) nor n and where we used that
G(c,a) = log™ max{|c|, |a|} + O(1). In particular, since G > 0 and n > 0,

1 C/I
an log [P, (c;) — ¢j| < gealcs) + T
Assume now that P, (c;)| > 1/2|¢;| so that [P, (¢c;) — ¢;] < 3/2[P7,(¢j)|. Proceeding as
above gives:
3
i IOg 5
Using Lemma implies that there is a constant that depends only on d and Ry, but
neither on (¢, a) nor on n that we still denote C” such that:

1 C/I
n log [P, (cj) — ¢j| < gealcs) + e

This concludes the proof in the case where 0 < g.q(c¢;) = G(c,a) < Rp. O

1
log ’Pcyfa(cj) - cj‘ < d_n 1Og+ ’Pcyfa(cj)’ +

The second lemma we will need is the following.

Lemma 5.3. — Let d > 3. Then there exists a constant Co > C1 > 0 depending only on
d such that for any (c,a) € C=1 with either g.q(cj) = G(c,a) > 0 or (c,a) € C4Nsupp(T})
and any n > 1, we have

1

n n
qn log |Pc,a(cj) - Cj| - gc,a(cj) >-Cr—- .

dn

Proof. — As above, we first treat the case G(c,a) = 0 and then focus on the case G(c,a) >
0. Consider first the case where (c,a) € CqNsupp(7}). Hence ¢; is active at (¢,a) and, in
particular, ¢; does not lie in an attracting basin. By Lemma 3.1} there exist a universal
constant 0 < k < 1 and a continuous function C(c,a) > 1 such that:

[P (c) — ¢l

1 [P (e) - /1 + [ ?

Hence, if C' := max( 4)cac, C(c,a) > 1, then

K

n N — s > - .
|Pc,a(C]) CJ| = C(C, a)”

= dp1 (Pri(cs),¢j) >

1 1
i 108 |PLa(eg) = ¢l >~ log O - o logs
1 o n ¢
(5) an log | P!y (cj) —¢j > dn log <;> + 9eal))

for any n € N*, since gcq(cj) = 0 on 9Cq4. This is the expected result in the case where
(c,a) € CqgNsupp(T}).

Assume now that (c,a) satisfies G(¢,a) = gca(cj) = R > 0. Consider the compact
domain Qg := {G < R}. As above, since G(c,a) = log™ max{|c/, |a|} + O(1), according to
Lemma 2.6 taking R > Ry large enough, we can assume that for all n > 1 :

[Pra(cj)l = 2max{e], [a]} > 2[¢;] > 1.

Assume first that R > Rg. Hence:

1
[P (cj) — ¢ > §\P§a(0j)\-
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Up to increasing Ry, combining G(c, a) = logt max{|c|,|a|} +O(1) with [DF, Lemma 6.4]
gives for (¢,a) and for any n > 1:

(6) d" log [Pl (c)| = d " log™ [P2y(c))] = geales) +O(d™)

where the O is independent of n and (c,a). This gives a constant C” (independent of
R > Rp) such that for all n > 1:

—n 1 n
geale) = C"(d™") < —log | Pla(c;) = 1.

Assume now that 0 < G(c,a) = gealcj) < Ro. Pick such a parameter (c¢,a). Notice
that it belongs to the compact set Qp, = {G < Rp}.

Claim. — There exists a constant C' > 1 depending only on d and Ry such that, for all
(c,a) € Qpy, alln > 1 and all 0 < j < d — 2 with G(c,a) = gea(c;) > 0, we have

K
dp1 (Pl (cj), ¢5) = on
Let us first finish the proof of Lemma As a consequence,

Pn Ci) — C; j
| c,a( J) J| :d]pl(Pc??(]z(Cj%Cj)Z

1+ |Pra(c))]? - VIF G or

Taking the logarithm, dividing by d" and using Lemma uniformly on Qp, imply:

K

n c 1 1 1
— g = d_n|Pc7,La(cj) — ¢l - ogn 108/ 1+ |Pea(ci)? = 5 108 (1+le?)
1 1
< lPea(es) = ¢l = geale;) + C o,
where C’ is yet another constant that depends on d and Ry but neither on (¢, a) nor on
n. This concludes the proof. U

Proof of the Claim. — Let us first set

C:= sup sup P/, (z)>1.
(c,a)EQRO 2epl
We proceed by contradiction, assuming that for some n > 2, dp1 (P, (cj), ¢j) < &a-
As seen in the proof of Lemma B.1] letting € := dp1 (P, (¢;), ¢;) and proceeding as in
the proof of the Claim of Section (2] we get
P, (B(cj,2¢)) C B(cy,2¢) .

By Brouwer fixed point Theorem, P.', has a fixed point in E(cj, 2¢) and this ball is con-
tained in the Fatou set of P.,. Hence oo € B(c;,2¢), since ¢; lies in the attracting basin
of oo of P4, ie.

1 2K
—<d ,¢i) < 2d, L P () < = .
T+IGF = p1(00,¢5) < 2dpi(cj, Prla(cj)) cn
This may be rephrased as C? < C*" < 452 (1 + C(Ry)?) where C(Ry) = MAax(c,q)eQp, 1B
Up to increasing C, we may assume C? > 252 (1 +C (RO)Q), which is a contradiction. [
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5.3. Estimates for the dynatomic polynomials

In the sequel, we shall use the notation
1
Gn,j(c,a) == d—log|Pn7j(c, a)|, (c,a) eC¥l n>2.
n

The following two propositions are keystones to the proof of Theorem [Bl These estimates
are direct consequences of Lemma 5.2, Lemma and the maximum principle.

Proposition 5.4. — There exists a constant C' > 1 depending only on d such that for all
n>1, (c,;a) € C41 and any 0 < j < d — 2 such that g.q(c;) = G(c,a). Then:

gn,j(ca a) - gc,a(cj) < Co-(gn) .

In particular, for any 0 < j <d—2 if (c,a) € Cyq, we have:

gn,j(c,a) < C% .

n

Proof. — By definition of P, ;, we have:

log | P, j(c,a)| = Zu(n/k) log
k|n

k
Pc,a(cj) -G

)

Hence, dividing by d,, and using (), we deduce:

1 d 1
108 P (e.0)| =~ ga(e) = 3 ) (g1

k|n "

Pck,:a(cj) -G

(@)

Let (¢,a) € C4! be such that either g.q(c;) = G(c,a) > 0 or (¢,a) € CqNsupp(7}). Then
Lemmas [5.2] and [53] imply that:

1 k

o log Pr(¢j) = ¢j| = gealcs)| < Co
for all k. Hence, since pu(n;/k) = £1 :

1 1
geale) = g-log[Puj(c,a)l| < C %: k.
Hence by the definition of the ¢ function, we have:
1 o(n

@ feales) — 310 | (e a)]| < 07

This ends the proof in the case where g.4(c;) = G(c,a) > 0 or (c,a) € CqNsupp(Tj).

Finally, as the Shilov boundary 0sCy of Cq is contained in N;suppTj, for all (¢, a) € 0sCq,
alln>2and all 0 < j <d— 2, we have

1 o(n)
a IOg |Pn,j(c, (Z)| S CW

in other words, for all (¢,a) € 9sCq, alln > 2 and all 0 < j < d — 2,
|Py.i(c,a)] < exp(Co(n)).
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By the maximum principle, the bound extends to Cg4, which gives
| Pn.j(c;a)| < exp(Co(n)),

for any (c¢,a) € Cq, n > 2 and 0 < j < d — 2. Taking the logarithm and dividing by d,
finishes the proof. O

Observe that in the above proof, we proved the following crucial estimate (see ([)):

Proposition 5.5. — Let C > 1 be the constant given by Proposition [5.4] and let n > 1.
Assume that either g.q(c;) = G(c,a) >0, or (c,a) € CqNsupp(Tj). Then

gn,j(ca a) - gc,a(cj) > —C$ .

5.4. Locating “bad” parameters

We shall now give two basic consequences of the above estimates which will be crucial
to our aim. Namely, the following is a consequence of Propositions (.4 and For any

(d — 1)-tuple n = (ng,...,nq_2) of positive integers, let
d—2 O'(TL )
B = ({(e0) € C05 a0 gualep) > €T
j=0 i
Corollary 5.6. — Let C > 1 be the constant given by Proposition [2.3. Then, for any
(d —1)-tuple n = (ng,...,nq_2) of positive integers,
d—2
Bo=) {(c, a) € CT 1 [Py, 4| < e*C"(”J')} C Hn CCq.
=0

Proof. — Let us first prove that the set

d—2
ag(ng
Bﬂ - ﬂ {|gnj7j(c? a’) _gc,a(Cj)| > C%}
=0 0

is contained in the connectedness locus Cy4. If not, there exists (c,a) € By, \ Cq4. Then there
exists 0 < j < d — 2 such that G(c,a) = gcq(c;) > 0. By Propositions [0.4] and (0], we
have
_Ca(nj) o(n;) ’
dn; dn;
which is a contradiction. The same argument implies in fact that B, is contained in
the interior of Cy (use the case (c,a) € C4 N supp(7j) in Proposition [E3). Now from
Proposition 5.4 we have that for all (¢,a) € Cg and all 0 < j < d — 2:
o(n;
gnj,j(c7 a) < CM .

nj

< gnj,j(c,a) = geale;) < C

As gcq(cj) = 0 in Cq, this implies:

I dQ)
Bu =[] {9n5 < —C— 1 NC
j=0 "

J
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This can be rewritten as:

d—2 d—2

ﬂ {‘Pnj,j’ < efCU(nj)} NCy = ﬂ {‘gan(C, a) —gc@(cj)] > C%:J)} .

j=0 7=0 J

Arguing as above, we see that the set ﬂ;l;g {|Pn, ;1 < e~“oni)} is contained in Cy: if not,
for some (¢, a) in that set such that g..(c;) = G(c,a) > 0, we have

a(ny)
o7

J

gnj,j(C, a) — ge,a(cj) < gnj,j(C, a) < — )
which contradicts Proposition

It remains to prove that B, C H,. Take a stable component U C C4 which is not
contained in #H,. Consider the plurisubharmonic function:

O = m]ax(log |Pn].,j| + Co(ny)).

Then its Monge-Ampere (dd°¢,)? ' is 0 on U by hypothesis (see e.g. [Dem]). On the
other hand, by Proposition [5.0] it is non negative in OU (90U C 9Cq C U;Cq N supp(T})).
The comparison principle of Bedford and Taylor [BT] implies that it is non negative on
U. Hence UN B, = 9. O

Here is a consequence of Corollary

Corollary 5.7. — For any (d — 1)-tuple n = (ng,...,nq—2) of pairwise distinct positive
integers with ng > 2 and any connected component U of By, the map

Py = (Pugoy---s Puypd2): C1 — Ci?

is a biholomorphism from U to the polydisk Dy, := [[;D(0,e~¢7)).

J
Proof. — By Corollary 0.6l and by the maximum principle, P, maps U to D,, surjectively.
Moreover, by definition of U, the map P, is also proper on U, hence is a finite branched
cover from U to D,. Let (c,a.) be the unique postcritically finite parameter of U. By
Theorem B} the map P, is a local biholomorphism at (c.,a.) and, since P, {0} =
{(ce,ac)}, the degree of P, is 1. B O

6. Distribution of postcritically finite hyperbolic polynomials

In the present section, we prove Theorem [Bl We adapt the strategy we used in the uni-
critical family (p.)cec in Section [ to the present situation. We use all along the present
section the notations introduced in Sections B.1] & We assume from now on that
n = (ng,...,nq—2) is a (d — 1)-tuple of pairwise distinct integers with ng > 2. We also let
D,, > 0 be the integer
D, = H dn, -
J
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6.1. Estimates along specific curves

Recall that we denoted by H, the union of hyperbolic components of C; intersecting
(; Perj(n;). Let us first introduce some notations. For § € C,n > 1and 0 < j <d -2,
we let

1
= _log’Pn

6 S
Injj . =4[, and T} ;= ddcgn] .
J

jvj
For the rest of the section, we also shall write for 0 < j < d — 2,
1
gi(c,a) = gealcy) , Tj:=ddg;, gn;;:= d—log|Pn].7j| and Ty, ;= dd gy, ; -
n;

The key step of our proof can be summarized in the following proposition.

Theorem 6.1. — Let C' > 1 be the constant given by Proposition[23. Let 0 < j < d—2
and, for all0 < ¢ < j—1, pick 6; € D (0,exp(—Co(n;))). There exists a constant C' > 1
which depends only on d such that for any ¢ € C2(C?~1), one has

gln;
</\T Top = T5) A\ Tnk,k,w> < el C(i )
nj

l<j k>j

Proof. — Fix 0 < j < d — 2. First, the support of A,_; T;Z ¢ A\ Ngsj Ty i 18 the algebraic

curve
Sj = [ {Pape = 0c} 0 [ J{ Pk = 0} .

<y k>j
Pick ¢ € C2(C4~1). Then

Ii(p) = </\Tgﬁz/\ nj,j j)/\/\Tnk,k7‘P>

1<y k>j
b
= /(gnj,j —gj)dd°o A N\ T, ot N T
1<j k>j
dn]

= Dy (gn] g ) ddp .

As ¢ is C%, we have (up to a constant that depends on the choice of the C?>-norm) that
|pllezw £ dd¢p > 0, where w is the Fubini-Study form on P?~!, hence we can write

dp.
(@] < llgllez 5~ / |9n;.5 = 95l w -
Dﬂ S

According to Corollary B.8] the set Ej := S; N {[gn; ; — gj| > Co(n;)/dy,} is contained in
SjN*Hy and coincides with {(c,a) € Sj;|Py; ;| < e~Ce()}. Hence

o(n;)
/ ’gm‘,j_gj‘wg/ ‘gnjvj‘w"i'c d ! / w
S. B nj S.

J J J

By Corollary 5.7, the curve S; is smooth in the open set B,,. By the maximum principle,
Ej is a finite union of D, topologlcal disks (see § BT, which are bounded since contained
in Cg. We now let u; := dn;gn;; = log|Py; ;|- Then dd®(uj|s;) = > a0z, for some
collection {a,, } of positive integers, where the sum ranges over Per}(n;)NS;. Moreover, by
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Bézout, we see that the finite measure dd“u; A S; has mass D,,. In particular, dd(u;|s,) =

2.0z
Let now Q; be a connected component of E; = ;N {gn; ; < —Co(n;)/dy,,}. According
to Theorem B2] there exists C7 > 0 universal such that

/ gl < / 418 < Cy max{[u;]| 1 (o0, ), 1} Areas(€)

Q; Q;

Now, since gn; j = —C% on 082, we have [|u;||p~(90,) = Co(n;) > 1 and we find

"

o(n;
/Q |gn; jlw < C1C c(l J)Areag(Qj) .
J nj

Since Cq € B(0,16v/d — 1), see e.g. [DE] Proof of Proposition 6.3], we can find C > 0
depending only on d such that 8 < Cow on Cy. In particular, Areag(2;) < CoArea,(£2;).
Summing up on the components €); of E; gives

/ lgn, o < o0y 07\ / w
5, . Js,

J
Finally, by Bézout, the integral |, s, W is equal the degree of the curve, i.e. D,/ dp; (see e.g.
[C]). Summarizing what we did to now, we find
o(nj)
1(0) < llplles (1 4+ 1) CZL
n;

which gives the wanted result since C’ := (1 4+ C5C7)C depends only on d. O

6.2. Intermediate estimates

We introduce some notations. For all 0 < j < d — 2, we let

_ o(n;)
gnj,j = max {gnj"],_2cd—n]} 3 and Tn],] dd gn],] .

J

Let us set §;(0) := e~ 209+ 9 ¢ R. Tt is classical that

2
i " T5j (9)
21 0 nj>J

B 1 2w _
gnjvj = WA log ‘Pnj,] (9)| do s and Tan‘ = do .

We now want to prove the following technical step of the proof of Theorem [Bl

Lemma 6.2. — Let C be the constant given by Proposition [5.3. Then, for any j > 1,
any 0 <7 < j—1 and any ¢ € C3(CT1), we have

o(n,
</\m ner) A\ Tgg ATy =T AN Ty > <4c?™p)ea

t<r r<q<j k>j "
Proof. — Let j > 1. Pick ¢ € C2(C%!) and let

Li(p) = </\TM(Tr—an,r N Toga N Tnyi = T A N\ T @ >

<r r<q<j k>j

— /Cdl(g = Gnea)dd o N NTeA I\ Tgg ATy = Ti) A\ T -

l<r r<q<j k>j
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As ¢ is C%, we have (up to a constant that depends on the choice of the C?>-norm) that
lpllezw £ dd¢p > 0, where w is the Fubini-Study form on P?~!  hence we can write

L)l < lelle: / 90 = Gnrl @A NTeA N T ATy + ) AN T

l<r r<q<j k>j
Each of the (1,1)-currents Ty, 75, » and ﬁ%g having projective mass 1, by Bézout, we find

(®) 1L ()] < 2[lelle> sup |gr = Gne.rl

where the supremum is taken over the support of the current

W= NTeA N ToggN Ty + T A N\ Tk -

<r r<q<j k>j

Owing to (8), the next lemma ends the proof. O

Lemma 6.3. — Let C > 0 be as above. For any (c¢,a) € supp(W), we have

’gnm,r(g a) - gr(c, a)’ S 2CUC(inr) .

Ny

Proof. — On supp(W), we have g, = 0 for all £ < r and all £ > j. Indeed, for such [, by
definition of W we are in the set where the critical point ¢; has bounded orbit (observe that
if (¢,a) € suppTy,,; then the critical point has periodic hence bounded orbit). Moreover,
for any r < £ < j, we have |P,, ;| = ¢ 267(")_ Let (¢,a) € W such that g,(c,a) < G(c,a).
This implies the existence of r < ¢ < j such that G(c,a) = g¢(c,a) > g-(c,a) > 0. Then,
by Proposition

o(ne)

-2C
dp,

— ge(c,a) = gn,i(c,a) — ge(c,a) > =C

which implies g < 0. This is a contradiction so we know that g,(c,a) = G(c,a) for all
(¢,a) € supp(W).

Assume now that (¢,a) € supp(W) satisfies ¢,(c,a) = 0. By the above, (¢,a) € Cq,
hence by Proposition 5.4t

SO Gn,r(c,a) < C’U(nr) .

ny,r b) SC
In,r(c,a) .

Whence, by definition of gy, (c,a):

_QCO-C(ZTLT) < gnr,r(c’ a) = gnr,r(c, a) —gr(c,a) < CUdnr

T T

Assume finally that (c,a) € supp(W) satisfies G(c,a) = g.(¢,a) > 0. By Propositions [5.4]
and .5 we find

a(n;)
dp,

’gnr,r(g a) — gr(c,a)| < C

In particular, g, ,(c,a) = gn, r(c,a) and the estimate follows. O
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6.3. Speed of convergence: proof of Theorem [Bl

We are now in position to prove Theorem [Bl Pick ¢ € C2(C?1). We want to estimate

d—2 d—2
AE(()O) = <ME — Mbif, SO> - </\ Tnj,j - /\ Tjja SO> .
7=0 j=0

We shall decompose p,, — ppir into several pieces:

d—2 d—2
(9) o=t = D |\ NTeA Ty = TN N T | =55
J=0 \/(<j k>j j=0

For j > 1, using T = Tvnj g+ (T - Tvn j), we rewrite the j-th term S; of (@) and find

S /\Tngz/\ ng.g /\Tnkk
1<y k>j
+ Z /\ Ty N (Tr - an,r /\ an,q /\ "JJ /\ Tn’“’
r<j—1 \4<r r<q<j k>j

According to Lemma [6.2] for j > 1, we find

|<S QO </\ Tngk/\ nj,j /\Tnkkﬂ0> +4CZ nr

1<j k>j r<j

We now want to give an estimate for
J </\Tng,é/\ nj,j — /\Tnkka > .
1<j k>j

To do so, we shall use the decomposition Tm, 0= (2m)” f[o 27r 65(6 df and Fubini:

= L A
J_] - W ‘/[;7ﬂ]j1 </\ Tng,g /\ nJ,] /\ Tnk ks @ dQO e dajfl .

1<y k>j

By Theorem [6.1], there exists a constant C’ > 0 depending only on d such that

1 5¢(6)
J;l < it Jy </\ Tnﬁ,(z Tny5 —T5) A /\Tnk,k,80> dbo---dfj

) 1<j k>j
1 o(n;)

(2m)i—t /{Qﬂjlc dnj lollezdbo - - dfj_q = C'—~ .

All we have done so far summarizes as follows

Z! i SZ C' +4CZ o) Iellce -

j=1 r<j
All which is left to do is to estimate (Sp, ¢). By Theorem [6.1] we have

< elle

)

(5021 < 2

o
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and we have finally proven

d—2 d—2
. e - a(ny)
)] < 18y < (0= +40 30 -1) | e (2 boles

which ends the proof, since (d — 1)C" + 4C Z?;f(j —1)=(d-1)C"+2C(d—-1)(d—-2)
depends only on d.

7. Distribution of polynomials with prescribed multipliers

The aim of this section is to derive Theorem [C]and Theorem [D] from Theorem [Bl We begin
with the proof of Theorem [Clwhich is based on the same idea as that of [FGl Theorem 3].
For our purpose, we have to refine the techniques used in [FG]. We then prove Theorem D]

using DSH techniques (see e.g. [DTV]).

7.1. Distribution of polynomials with (d — 1) attracting cycles

Pick any (d—1)-tuple n = (no,...,nq_2) of pairwise distinct positive integers with ng > 2.

Let Q be hyperbolic component of Cy. Assume the for any (c,a) € Q, the polynomial
P, , admits (d — 1) distinct attracting cycles Cy,...,Cq_2 of respective exact periods
ng,...,nqg—2 and let p;(c,a) € D be the multiplier of the attracting cycle C;. We call the
map pq = (po, ..., pa—2) : Q — D! the multipliers map of the component Q where D!
is the unit polydisk in C?~1. It is known that it is a biholomorphism (see § B.1]).

Recall that we denoted D), := [] j dp; and that there exists polynomials
pp:ClxC—C

detecting parameters having a cycle of period n and given multiplier w € C (see Lemmal[2.5]
in § 22). Moreover, we have

— deg. o Pn(,w) = (d — 1)d, for any w € C. Indeed, deg.,pn(-,w) is independent of

w, we can write [p,(-,0) = 0] = > [Perj(n)] and Perj(n) has degree d,,

— deg,, pn(c,a,-) = d,/n for any (c,a) € C¥~! (see [BB3] §2.1]).

Let Per*(n,w) = {(c,a) € C¥1; p,(c,a,w) = 0}. We have the following.

Proposition 7.1. — Let wq,...,wqg_o € D and let nq,...,ng_o be pairwise distinct posi-
tive integers with ng > 2. Then for any (c,a) € (); Per*(n;, w;), the intersection is smooth
and transverse at (c,a). Moreover, Card([; Per*(n;,w;)) = (d — 1)!Dy, .

Proof. — According to [EG] §6], for any (c,a) € (; Per*(n;, w;), the intersection between
the Per*(n;, w;) is smooth and transverse at (c,a) and Card((); Per*(n;, w;)) is indepen-
dent of (wo, ...,wq_2). It is thus sufficient to estimate this cardinal for wg = -+ = wg_o =
0. For n > 1, it is easy to see that Per*(n,0) = U?;g Per}(n). In particular,

d—2 d—2
Card ﬂ Per*(n;,0) | = Z Card ﬂ Perg;y(nj) |
j=0 s€6q_1 J=0

which ends the proof, since Card(ﬂ?;g Per;‘(j)(nj)) = D, for any s € G4_1. O
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We are now in position to prove Theorem [Cl We deduce Theorem [C] from Theorem [Bl
Our strategy mixes arguments from the proof of Corollary [£.4] and from the proof of [FGl,
Theorem 3].

Proof of Theorem[d — Let us first prove our result for w = (0,...,0). The set of param-
eters (c,a) € C?1 such that P., has (d — 1) distinct super-attracting cycles of respective
exact periods ng,...,n4_9 coincides with

d—2
U M Persy ) -
ceGy_1 j=0

As the intersection ﬂ?;g Pery ;) (n;) is smooth and transverse for all ¢ € 41, the measure
fin,0 is the probability measure which is proportional to

1 d—2
> D. A [Per} ;) (ny)]
oeGy_q = 3=0
which has mass (d — 1)!. As a consequence, we have
d—2

1 *
o= > @=1'D, /\O[Pera(j)(”j)] -

€641

Fix now ¢ € CL(C41). By a classical interpolation argument, Theorem [Bl gives a constant
C1 depending only on d, such that

) el < €1 (e (722 ) o

This is the wanted result when w = 0.

Pick now w € D%\ {0} and ¢ € C}(C?1). We write w[0] := (0,...,0) and for any
1 <j <d-1,weset w[j] := (wo,...,w;j-1,0,...,0) and g1 := pi [;], 50 that w[d—1] = w,
Ho = fno and pig—1 = finw- To conclude, it is sufficient to prove that

1 1 1/2
o) = senl < € (o { o ) el

n; ’ dnj lOg |wz|

for some constant C’ > 0 depending only on d. If w; = 0, there is nothing to prove, since
in that case w[j] = w[j + 1]. We thus may assume that w; # 0. we consider the algebraic
subvariety

Cj = ﬂ Per*(np,wp) N ﬂ Per*(n;,0) .

h<j 1>y

Observe that C;NPer*(n;,0) = (), Per*(ng, w[j]x) is finite, hence C; is an algebraic curve
and that the intersections are smooth and transverse, by Proposition [Z.1]

Let X := (), Per*(ng, w[j]x). Pick any point (c,a) € X, and let €2, be the hyperbolic
component containing (c,a). Using [FGl Theorem 6.8], we define ¢, ; : D(0, [w;|~1/2) —
Q. q by setting

(bc@,j(t) = p;;(UJQ, ce Wi, twy, 0,... 0) .
By construction, the disks

Degj = beaj(DO, [w;| ") and D, := ¢a;(D(0,1)) € De g

C7a7j
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are included in Q. N Cj, ¢cq,;(0) = (¢,a) and ¢4 (1) belongs to X;i1. Any hyperbolic
component contains a unique point in X, hence the collection of disks D, ; is disjoint.
Note also that any point in X1 belongs to a hyperbolic component, and thus is equal to
¢ca,;(1) for a unique (c,a) € Xj.

By Cauchy-Schwarz inequality,

1

Gt58) = s S i O s (®) = pleas D)
: n
1
S WH‘PH@ ZDlamﬁ (Dca])
1/2
< —HSDHCI Z (DlamB(ID) ))2
= c,a,j
(d—1)!- Dy, X
Recall that p., is a biholomorphism for any (c,a) € X;. In particular,
g = —1
mod (Do \ DL, ;) = mod(D(0, u; [ ~/2) \ B) = — log |
By Lemma 2.7 we deduce
1/2
[eller T
(g 0) = (it )| < —F———= : Areag(De,q,5)
i J (d—1)!-D, (CMZE:XJ_ min(1, 2 logfw])

On the other hand, by Bézout, we have

Dy,
deg(C Z Z deg ﬂ Pery ;) (ng) | < (d—1)! Hdnk =(d— 1)!d—— .
i=0 0€64_1, k#j k#j i
a(5)=1

From which, since Qcq N Qe o = 0 for (c,a) # (¢,d') € Xj and D¢ 4 C Qo N Cj, we
deduce

D,
> Areay (Do) < Area,(C)) < deg(Cy) = (d — 1)I==.
(c,a)eX; i

Now, since Q., C Cq C B(0,16v/d — 1) (see the proof of Theorem [B]), there exists a
constant Cy > 0 such that 8 < Cow on Q.,, for all (c,a) € X;. Hence Areag(D., ;) <
CyAreay,(D.q ;). Combined with the above, this gives

16+/77(d — 1)Cs —dn Dn
) — . < 1 N
g 0) = (g, 0| = /Dn Il <max{ ’ 10g|wy'|}> \/:nj

1 ) 1/2
Cslloller <0<£<d Q{d_w’mD ’

where C5 = 32m+/7(d — 1)C5. O

IN
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7.2. Convergence for multipliers outside a pluripolar set: Theorem

For the content of the present, we are inspired by the techniques of [DTV] (see also
[DS3]). Let w be the Fubini-Study form on P! and let 7; : (P1)* — P! be the canonical
projection to the j-th factor. We denote w; := W;(w). We define a smooth probability
measure 2 on (PH)F by Q :=wi A -+ A wg.

First, recall some facts on DSH functions. Let k > 1. Recall that a probability measure
v in (]P’l)’l‘c has bounded quasi-potentials (or is PB) if v admits a negative quasi-potential
U (that is a negative (k — 1,k — 1) current U such that dd°U + ©Q = v in the sense of
current) such that [(U, S)| < C for any positive smooth form S of bidegree (1,1) and mass
1 ([DS1]). Such nmapping S +— (U, S) can be extended to any positive closed current of
bidegree (1,1) and mass 1 with the same bound [(U, S)| < C (using structural varieties
in the space of currents). An interesting example of PB measure is the tensor product
of measures in P! with bounded quasi-potentials (in which case, having bounded quasi-
potential is equivalent to the fact that the quasi-potential is bounded as a gpsh function).

We say that a function ¢ on (P!)4~! is DSH if, outside a pluripolar set, it can be written

as a difference of qpsh functions (for example, ¢ € C?). Let DSH <(P1)d_1) be the space

of such functions. We write dd®p = T+ — T~ where T are positive closed currents of
bidegree (1,1). Let v be a PB measure on (P!)?~!. Then, the following defines a norm on

the space DSH <(P1)d_1>:

: +
el == llollprw) + nf [T
where the infimum is on all the decompositions dd°p = T —T~. It turns out that taking
another PB measure v/ gives an equivalent norm on DSH ((Pl)d_1> (see e.g. [DS3] p.

283]).
Let ¢ be a C? function on (P!)?~1, in particular ¢ is DSH and let n = (ng,...,nq_2)
be a (d — 1)-uple of pairwise distinct positive integers with ny > 2. Consider the function:

dpw = (wo, ..., wq—2) € C (@5 fnw)

where
d—2
1

Pnw = = Per*(n;,w;)] .

n (d— DI, dn, j/:\()[ (nj, w;)]

This intersection is well defined outside an analytic (hence pluripolar) set &,. So, if we
consider the pluripolar set £ := U,&,, the map @5 is well defined outside £ for all n.
Adding a pluripolar set if necessary, we can assume that this stands for w ¢ £ and all j
then w; # 1.

For the rest of the subsection, we let v be a smooth probability measure with support
in D(0,1/2)%1. Such a measure indeed exists and is PB, furthermore, we will be able to
apply uniform estimate for v using Theorem

The main result we need here is the following.

Lemma 7.2. — There exists a constant C,, depending only on v and on d such that for
all n, the function ®,, is DSH with:

1
@5 — (uie, o) |l < Cy mex <—> .

1
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Proof. — Let IIy (resp. Il2) denote the canonical projection from P41 x (]P’l)df1 to P41
(resp. (Pl)d_l). We let also 7; : (Pl)d_l — P! be the canonical projection to the j-th
factor. Let wy (resp. wy 1) denote the Fubini-Study form on P! (resp. P?~1). Consider
in P4-1 x (]P’l)df1 the (trivial extension of the) analytic set:

P(TL,]) = {(C’a,w)? (Ca CL) € PGI'*(TL,’U)J',I)} :

Then (c¢,a,w) € P(n,j) if and only if p,(c,a,wj—1) = 0 where the polynomials p,, where
defined in the previous section. Recall that deg,, pn = dn/n and deg. 4y pn = (d — 1)dy

(see Section [TT]).

In particular, the current of integration [P(n,j)] is cohomologous to
* dp . *
(d — 1)dnH1(wd,1) + ;n(ﬂ'j o HQ) (wl) .

Observe that the function ® can be defined in C?~!\ £ as the following slice (we refer to
[DS3] p. 280] for slicing on currents):

1 d—2
P (w) = <H“{(s0) NP, i+ 1)],H2,w> .
0

(d = D dn, i=

Since the slicing commutes with the operator dd¢, we have

d—2
1
dd“®f = <H’{(ddc<p) NA=DTL dn, N\ P(nii+ 1)],H2,w> :
: 79 i—o

Write dd®p = T — T~. As II3(TF) is cohomologous to || TF|| - I (wg_1), the mass of

d—2
Tt = <H*{<Ti> A A[P(ivi + 1)],H2,w>
0

(d— 1)L dn, /-

can be computed in cohomology. In particular, it is bounded from above:

1
<o, |Tt —
175l <Cq- |l ||;nj,

for some constant Cy that depends only d (Cy = (d — 1)1/(d — 1)! works).
On the other hand, according to Theorem [Cl above, for all w € supp(v), we have

1
95w) — (a0} < Cp Y -
Ty
J
where C,, is a constant that depends only on ¢. The result follows. O

We finish the proof of Theorem
Proof of Theorem [l — We assume that the series
(52)

D max | —
7 \k

converges. Pick ¢ € C2(C4~1). By Lemma [7.2] Df — (ubit, @) € L'(v) and

1

182, — (it Pl ) < Cymax (—) |

J

n]7k
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Hence, it converges v-almost everywhere to 0. As all DSH-norms are equivalent, we have
that for another PB measure 1/,

1
© , -
125, — (kbit, P L1y < Co max <n]k>

and we can apply the same argument: it converges to 0, v/-a.e.

Finally, when a set E is of v/-measure 0 for all PB measure ¢/, it is pluripolar. Indeed,
its logarithmic capacity has to vanish. We deduce, in particular, that the sequence ®,, —
(upif, ) converges to 0 outside a pluripolar set.

By separability, we apply the same argument to a dense countable family in C.(C?~1) of
p€C? ((Pl)d_l) . As a countable union of pluripolar sets is again pluripolar, we deduce
that outside a pluripolar set the measure fiy,, ,, converges to upi¢. This ends the proof of
Theorem O

Remark. — 1. In the moduli space of quadratic rational maps (which is biholomorphic
to C2), the curves Per*(3,1) and Per*(2, —3) have a common irreducible component
(see [M1]). Such a behavior is expected to be impossible in the moduli space of degree
d polynomials P,;. We even expect the exceptional set £ appearing in Theorem [D] to
be empty.
2. We also expect the convergence of Theorem [Dlto hold for any sequence n;, of (d—1)-
tuple, though we don’t know how to prove it.

We now give a quick proof of Corollary [El

Proof of Corollary[El — The Shilov boundary of D! is exactly (S')?~! and the pluri-
complex Green function of D%, which is given by ¢ = log™ max;{|%}, is continuous
and v := (dd®g)*~! coincides with the Lebesgue measure of (S')?~! hence does not give
mass to pluripolar sets. By Theorem [D] for v-a.e. w, the sequence (fny,w)k converges to

Hbif- 0

8. Distribution of parametric preimages

Let (fa)aea be a holomorphic family of rational maps of degree d > 2 on P! with dim(A) =
m. Let wp be a Kéhler form on A. Assume that c¢q,..., ¢, are marked critical points and
let Ty, ..., Ty be their respective bifurcation currents (see Section 2.1).

For 1 < j <k, we let v}, : A — P! be the map defined by v},(\) = f(cj(N)) and set
vy = (v),...,vF). Let w; and Q be defined as in Section [l Then [Dul, Theorem 0.3]
asserts that there exists a pluripolar set £ C (PY)* such that if (z1,...,2;) € (P)*\ &, the
following equidistribution statement holds:

d—}zk {A (@) =200 {3 (e (V) = 23] = Ta A= AT

Observe that the equidistribution statement can be rewritten as:
1 4 i 1
R Ea) A A 08 (02) = = (0) (e ) = T A AT
We want to give here some improved versions of that theorem with speed estimates.
The proof is quite elementary. Recall that PB measures were defined in the previous
section. Our precise result may be formulated as follows.
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Theorem 8.1. — Assume that the family (fx)xen is algebraic, i.e. that A is a quasi-
projective variety and let m := dim(A). Let K be a compact subset K € A, then with the
above notations and hypotheses we have:

1. Let v be a probability measure on (Pl)k with bounded potentials, then there exists
C(K) > 0 such that for any C*-form ¢ of bidegree (m — k,m — k) and support in K
and any n > 1:

1 1
(el @) = Tu A AT | < O elleleng -

2. Let (ay) be a sequence of positive number such that Y a, < 0o, then there exists a
pluripolar set & C (P)* such that if (z1,. .., z) € (PY)*\E, then there exists C(K) > 0
such that for any C?-form ¢ of bidegree (m — k,m — k) and support in K and any
n>1:

‘ 1

* 1
(e (0n)" ) = T A A Ti)] < CUE)

apd®

lelle2 (k) -

Proof. — Let us first prove the first point. Recall that if we let T = d"(v},)*(w), then
Ty —Tj = dd°Vy] where Vi/ = O(d™") on K (see e.g. [Dul) hence using the same arguments
than above, it is enough to prove the bound:

1, 1
(e (vn)™ () = Ty A== ATy, )| < C(E) 2 lelle2 x)

for any C?-form ¢ of bidegree (m — k,m — k) and support in K.
Writing T} A --- ATF = d=*"(v,))*(Q) and applying Stokes formula (Lemma 2], we
find

(e ) () = T A ATE ) = (o (00) (), d )

= (U, e (00). (d°0).

Now, as ¢ is C2, we have ||g0||czwxl_k+1 + dd°p > 0. As we assumed that A is a quasi-
projective variety, the mass of the current d~"( =1 (v, ), (w} %) is uniformly bounded.
The fact that v is PB gives the wanted result.

We now prove the second point. Let (a,,) be a sequence of positive numbers such that
S a, < 00. Observe that the positive closed current S = 3 a,d " 1 (v,), (W) is
well defined and has finite mass. For z € (P!)*, we let U, be the Green quasi-potential of
8. (see [DS2]). The complementary of the set of points z € (P1)* such that (U, S) > —oc

is a pluripolar set we shall denote by £. For any z ¢ £, following the above proof, we find

1 - 1 m— 1
0> (U, 2o (0n)e(dd°0)) > (U, =z [pllen ()o@} ™41) 2 ——[lgllea (U, 5).
This ends the proof. U

Removing the assumption on the algebraicity of the family, one can using the same
techniques, prove the following.

Proposition 8.2. — Let K be a compact subset K € A. For j < k let vj be a measure
in P! with bounded potentials and let v :=v1 @ - -- @ vy,. Then there exists C(K) > 0 such
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that for any C2-form ¢ of bidegree (m — k,m — k) and support in K and any n > 1:

1, 1
<W(”n) (W) =Ti N NTy,0)| < C(K)d—nH<PHc2(K) :

The proof is similar to the above one although we do not need to push forward by v,
here and use instead that the sequence (d~"(v},)*(v;)) is locally uniformly bounded in

mass.

As observed in [Dul, the question is parallel to the equidistribution of preimages of
points under a rational map or more generally under a holomorphic endomorphism of P*
(see e.g. BD]). In the case of such a single map, it is known that the exceptional set,
i.e. the set of points for which one does not have equidistribution, is algebraic.

In the particular case of the unicritical family, let v,(c) := p(0), ¢ € C. Using the
classical proof of the equidistribution of centers of hyperbolic components, we can prove
that the exceptional set is reduced to the point oo which is exceptional for any pe:

Theorem 8.3. — The sequence (dnL,l(vn)*(éz))n>1 converges to pn, in the weak sense
of currents if and only if z € C, i.e. the exceptional set is € = {oo}.

Proof. — We follow closely Levin [Le|]. Indeed, take wuy(c) = dn—l_l log |v,(c) — z| so that
Au, = dn%l(vn)*(éz). Then u,, is a sequence of subharmonic functions that are bounded in
L}O .- Extracting a converging subsequence, we have that the limit u is equal to gn, outside
the Mandelbrot set since |v,(c) — z| ~ |v,(c)| outside the connectedness locus. Similarly,
u < gm, elsewhere. As g, is continuous and g, gives no mass to the boundary of the
component of the interior of My, its implies that u = gm, (see [BG2]).

Finally, remark that the polynomial v,, extends at infinity of the parameter space by
setting v,(c0) = co. We get this way a polynomial map v, : P! — P! of degree d" 1.
Hence (v,,)*(0s0) = d" 164 for any n > 1, which concludes the proof. O

Question. — Let £ be the set of points (z1,...,2;) € (P1)F where d="(vp)* (82 21)
does not converge to Ty A -+ N'T},.

1. Is €& empty for families of rational maps with generic empty exceptional set?
2. Is it reduced to U;‘?Zl(]P’l)j*1 x {oo} x (PYY*=7 in any family of polynomials?
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