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Abstract
We study a novel approach to typestate-oriented program-
ming based on the chemical metaphor: state and operations
on objects are molecules of messages and state transfor-
mations are chemical reactions. This approach allows us
to investigate typestate in an inherently concurrent setting,
whereby objects can be accessed and modified concurrently
by several processes, each potentially changing only part of
their state. We introduce a simple behavioral type theory to
express in a uniform way both the private and the public in-
terfaces of objects, to describe and enforce structured object
protocols consisting of possibilities, prohibitions, and obli-
gations, and to control object sharing.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]; D.2.4 [Software/Program Verification]: Class
invariants; F.3.3 [Studies of Program Constructs]: Type
structure

Keywords Typestate, Concurrency, Behavioral Types, Join
Calculus

1. Introduction
In an object-oriented program, the interface of an object de-
scribes the whole set of methods supported by the object
throughout its entire lifetime. However, the usage of the ob-
ject is more precisely explained in terms of its protocol [2],
describing the sequences of method calls that are legal, pos-
sibly depending on the object’s internal state. Typical exam-
ples of objects with structured protocols are files, iterators,
and locks: a file can be read or written only after it has been
opened; an iterator can be asked to access the next element
of a collection only if such element has been verified to exist;
a lock should be released if (and only if) it was previously
acquired. Usually, such constraints on the legal sequences of
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method calls are only informally documented as comments
along with method descriptions; in this form, however, they
cannot be used by the compiler to detect protocol violations.

In [12], DeLine and Fähndrich have adapted the con-
cept of typestate [26], originally introduced for imperative
programs, to the object-oriented paradigm. Typestates are
machine-understandable abstractions of an object’s internal
state that can be used (1) to identify the subset of fields and
operations that are valid when the object is in some given
state and (2) to specify the effect of such operations on the
state itself. For example, on a file in state CLOSE the com-
piler would permit invocations of the open method and for-
bid invocations of the read method, whereas on a file in state
OPEN it would only permit invocations of read, write, and
close methods and forbid open. Furthermore, the type of
open would be refined so as to specify that its invocation
changes the state of the file from CLOSE to OPEN. Typestate-
oriented programming (TSOP for short) [1, 9, 17, 27] goes
one step further and promotes typestates to a native fea-
ture of the programming language that encourages program-
mers to design objects around their protocol. Languages sup-
porting TSOP provide explicit constructs for defining state-
dependent object interfaces and for changing and possibly
querying at runtime an object’s typestate.

Typestate information is useful as long as the compiler
can track with sufficient precision the points in the code
where the state of an object changes, and so does its in-
terface. Consequently, all languages with typestate rely on
more or less sophisticated forms of aliasing control [5]
which may hinder the applicability of typestate to concur-
rent objects. Damiani et al. [9] have shown how to conjugate
typestate and concurrency relying on some runtime support:
users of an object can invoke methods at any time; a method
invocation blocks if the object is in a state for which that
method is illegal; typestate information is used within meth-
ods, to make sure that only valid fields are accessed. This
approach has both computational and methodological costs:
it forces all methods of a concurrent object to be synchro-
nized, and it guarantees protocol compliance only within
methods, where some form of aliasing control can be used.

In the present paper we put forward a radically different
approach to TSOP and make the following contributions.
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(1) We approach TSOP in an inherently concurrent set-
ting, whereby objects can be shared and accessed concur-
rently, and (portions of) their state can be changed while
they are simultaneously used by several processes. As sug-
gested by [9], such setting requires support from the run-
time environment. However, in our case the extent and kind
of concurrency allowed on objects is tuned by the type sys-
tem: shared/aliased objects rely on runtime synchronization
to resolve races and execute methods at the right time; non-
aliased objects fully benefit from static typestate checking;
the typing of objects regulates the tradeoff between these ex-
tremes and enables a whole range of intermediate scenarios.

(2) Instead of extending an existing object-oriented lan-
guage with concurrency and support for TSOP, we adopt
a basic model of concurrent objects where method defini-
tion relies on the explicit coupling of state with operations.
Quite remarkably, such model is provided out-of-the-box by
the Objective Join Calculus [14, 15], a calculus well-known
in the process algebra community that originates as a vi-
able model of distributed communication. Not only we show
that the Objective Join Calculus is also a natural and sim-
ple model for TSOP, but we observe that it natively supports
high-level concepts such as compound and multidimensional
states [27]. This allows us to formally investigate the issues
arising when states are partially/concurrently updated.

(3) In the Objective Join Calculus both state and opera-
tions are modeled using the same feature: messages. Thus,
we are able to describe in a uniform and compositional way
the encapsulated part of objects (state), their public interface
(operations), as well as their protocol using a simple lan-
guage of behavioral types with an intuitive semantics: the
type of an object denotes the set of message configurations
that are legal according to its protocol. Such interpretation
induces a subtyping relation that serves multiple purposes:
aside from realizing the obvious form of subtype polymor-
phism, it provides – at no additional cost – a key tool for de-
riving the protocol of objects with uncertain state. On objects
without typestates, subtyping collapses to the traditional one.

Structure of the paper. We start with an informal overview
of TSOP in the Objective Join Calculus (Section 2) before
presenting its syntax and semantics (Section 3). Then, we de-
fine syntax and semantics of types (Section 4), we describe
the rules of the type system (Section 5), and comment on
its safety properties (Section 6). We conclude with a more
detailed discussion of closely related work (Section 7) and
future research directions (Section 8). Proofs of the results
can be found in the appendix, beyond the page limit.

2. The chemistry of typestates
The chemical metaphor. The Join Calculus [14, 15] orig-
inates from the Chemical Abstract Machine [4], a formal
model of computations as sequences of chemical reactions
transforming molecules. The Objective Join Calculus [16] is
a mildly sugared version of the Join Calculus with object-

1 def o = FREE | acquire(r) . o.BUSY | r.reply(o)

2 or BUSY | release . o.FREE

3 in o.FREE

4 | def c = reply(o’) . o’.release in o.acquire(c)

Listing 1. A lock in the Objective Join Calculus.

oriented features: a program is made of a set of objects and
a chemical soup of messages that can combine into com-
plex molecules; each object consists of reaction rules corre-
sponding to its methods; reaction rules are made of a pattern
and a body: when a molecule in the chemical soup matches
the pattern of a reaction, the molecule is consumed and the
corresponding body produces other molecules.

Listing 1 shows the idiomatic implementation and use
of a lock in the Objective Join Calculus. The definition on
lines 1-2 creates a new object o with two reaction rules,
separated by or. The symbol . separates the pattern from the
body of each rule, while | combines messages into complex
molecules. The first reaction “fires” if a FREE message and
an acquire message (with argument r) are sent to o: the
two messages are consumed and those on the right hand side
of . are produced. In this case, the argument r of acquire
is a reference to another object representing the process that
wants to acquire the lock. Hence the effect of triggering the
first reaction is that a BUSY message is sent to o (in jargon,
to “self”) and a reply message is sent to r to notify the
receiver that the lock has been successfully acquired. The
second reaction specifies that the object can also consume
a molecule consisting of a BUSY message and a release

message. The reaction just sends a FREE message to o. The
lock is initialized on line 3, by sending a FREE message to o.

The process on line 4 shows a typical use the lock. Since
communication in the Join Calculus is asynchronous, se-
quential composition is modeled by means of continuation
passing: the process creates a continuation object c that re-
acts to the reply message sent by the lock; then, the pro-
cess manifests its intention to acquire the lock by sending
acquire(c) to o. When the reaction on line 1 fires, the
reply triggers the reaction in c on line 4, causing the lock to
be released. One aspect not explained in the above descrip-
tion is the passing of o in the reply message on line 1 which
is bound to o’ on line 4. Since on line 1 o corresponds to
“self”, sending o in the message reply(o) enables method
chaining. In fact, with some appropriate syntactic sugar we
could rewrite the process on line 4 just as

o.acquire.release

We will introduce a generalization of such syntactic sugar
later on (see Example 3.2 and Listing 3). We will also see
that method chaining is not just a trick for writing compact
code, but is a key feature that our type system hinges on.

In the next section we will discuss a more complex use
case (Example 3.3) where the lock defined in lines 1-2 is
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shared by two processes that compete for acquiring it. In that
case, we will see that the complex molecules in the patterns
of the lock’s reaction rules are essential to make sure that
the lock behaves correctly, namely that only one process can
hold the lock at any time. In particular, if an acquire(c’)

message is available but there is no FREE message in the
soup (because another process has previously acquired the
lock thereby consuming FREE), the reaction in line 1 cannot
fire and the process waiting for the reply message on c’

blocks until the lock is released.

State and operations in the Join Calculus. Listing 1 pro-
vides a clear illustration of TSOP in the Join Calculus: a
lock is either free or busy; it can only be acquired when it
is free, and it can only be released when it is busy; acqui-
sition makes the lock busy, and release makes it free again.
The compound molecules in the patterns specify the valid
combinations of state and operations, and the state is explic-
itly changed within the body of reactions.

These observations lead to a natural classification of mes-
sages in two categories: FREE and BUSY encode the state of
the lock, while acquire and release represent its oper-
ations (we follow the convention that “state” messages are
written in upper case and “operation” messages in lower
case). Ideally, lock users should not even be aware of the
existence of FREE and BUSY, if only to prevent accidental or
malicious violations of the lock protocol. Our type system
will enforce an encapsulation mechanism to prevent users
from sending state messages (Section 5).

Messages in the chemical soup encode the current state
of the object and the (pending) operations on it: for instance,
the presence of a message o.FREE in the soup encodes
the fact that the object o is in state FREE; the presence of
a message o.acquire in the soup encodes the fact that
there is a pending invocation to the acquire method of the
object o. Representing state using (molecules of) messages
makes it simple to model so-called and-states [27], which
we will see at work in Example 5.8. On the contrary, FREE
and BUSY are examples or-states which mutually exclude
each other. The typing of the lock object will guarantee that
there is always exactly one message among FREE and BUSY,
i.e. that the state of the lock is always uniquely determined.

Behavioral types for the Join Calculus. Since in the Join
Calculus there is no sharp distinction between (private) mes-
sages that encode the object’s state and (public) messages
that represent the object’s operations, we can devise a type
language to describe the legit configurations of messages,
both private and public, that objects can/must handle. In fact,
we can use types to specify (and enforce) the object proto-
col. Object types are built from message types m(t̃) using
three behavioral connectives, the product ⊗, the choice ⊕,
and the exponential ∗. An object of type m(t̃) must be used
for sending an m-tagged message with a (possibly empty) tu-
ple of arguments of type t̃; an object of type t ⊗ s must be
used both as specified by t and as specified by s; an object

of type t⊕s must be used either as specified by t or as spec-
ified by s; an object of type ∗t can be used any number of
times (even zero), each time as specified by t.

As an example, let us illustrate the type of the lock object.
It is useful to keep in mind the intuition that the type of the
lock should describe the whole set of legit configurations of
messages targeted to the lock. In this respect, we recall that:

• there must be exactly one message among FREE and BUSY
that encodes the state of the lock;

• there can be an arbitrary number of acquire messages
regardless of the state of the lock (the lock is useful only
if it is shared among several processes);

• there must be one release message if the lock is BUSY
(this is an eventual obligation).

We express all of these constraints with the type

tlock
def
= ∗acquire(reply(release))

⊗
(
FREE⊕ (BUSY⊗ release)

)
It is no coincidence that the only occurrence of ∗ is used

in front of the only message (acquire) for which there are
no obligations: the lock can be acquired, but it is not manda-
tory to acquire it. However, if the lock is acquired, then it
must be released; whence the lack of ∗ in front of release.
There is no ∗ in front of FREE and BUSY either, meaning
that there is an obligation to produce these messages too, but
since FREE and BUSY occur in different branches of a⊕ type,
only one of them must be produced. In addition to possibil-
ities and obligations, tlock expresses prohibitions: all mes-
sage configurations containing multiple FREE or BUSY mes-
sages or both FREE and release messages are prohibited by
the type. Our type system will guarantee that any lock object
is always in a configuration that is legal according to tlock .
This implies, for example, that a well-typed process never
attempts to release a lock that is in state FREE.

There is one last thing to discuss before we end this infor-
mal overview, that is the type of the argument of acquire,
named r in Listing 1. If we look at the code, we see that
r is the reference to an object to which the lock sends a
reply(o) message. Not surprisingly then, the argument of
acquire has type reply(release) in tlock . This means
that the reference o’ in Listing 1 has type release, which
is consistent with the way it is used on line 4. In other words,
we use method chaining to express the change in the (public)
type of an object as methods are invoked. Both o and o’ re-
fer to the same lock object, but they have different interfaces:
the former can be used for acquiring the lock; the latter must
be used (once) for releasing it.

3. The Objective Join Calculus
The syntax of the Objective Join Calculus is defined in
Table 1. We assume countable sets of object names a, b,
c, . . . and of variables x, y, . . . . We let u, v, . . . denote
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P,Q ::= Process
null (null process)

| u.M (message sending)
| P |Q (process composition)
| def a = C in P (object definition)

M,N ::= Molecule / Pattern
m(ũ) (message)

| M |N (molecule composition)

C,D ::= Class
J . P (reaction rule)

| C or D (class composition)

Table 1. Syntax of the Objective Join Calculus.

names, which are either object names or variables, and use
m, . . . to range over message tags. We write ũ for a (possibly
empty) tuple u1, . . . , un of names; we will use this notation
extensively for denoting tuples of various entities. In a few
occasions, we will also use ũ as the set of names in ũ.

The syntax of the calculus comprises the syntactic cat-
egories of processes, molecules, and classes. Molecules are
assemblies of messages and each message m(ũ) is made of a
tag m and a tuple ũ of arguments; we will abbreviate m()with
m; join patterns (or simply patterns) J , . . . are molecules
whose arguments are all variables, and variables and mes-
sage tags occurring in them are pairwise distinct. This lin-
earity condition of patterns is typical of most presentations
of the Join Calculus and is usually motivated by efficiency
reasons. In our case, it is necessary for the soundness of the
type system (see Remark 5.4).

The process null is inert and does nothing. The process
u.M sends the messages in the molecule M to u. The pro-
cess P |Q is the parallel composition of P and Q. Finally,
def a = C in P creates a new instance a of the class C. The
name a is bound both in C (where it plays the role of “self”)
and in P . A class is a disjunction of reaction rules, which we
will often represent as a set {Ji . Pi}i∈I . Each rule consists
of a pattern Ji and a body Pi. The variables in Ji are bound
in Pi. An instance of Pi is spawned each time a molecule
matching Ji is sent to an object that is instance of the class.

We omit the formal definition of free and bound names,
which can be found in [16]. We write fn(P ) for the set of
free names in P and we identify processes up to renaming of
bound names. In this paper we use an additional constraint,
which is not restrictive and simplifies the type system: we
require classes to have no free names other than “self”.

We now turn to the operational semantics of the calculus,
which describes the evolution of a solution D P made of
a set D = {ai = Ci}i∈I of object definitions and a multiset
P of parallel processes. Intuitively, P is a “soup” of pro-

1 def ArrayIterator = new(a,r) .
2 def o =

3 INIT(a,n) .
4 if n < #a then o.SOME(a,n) else o.NONE

5 or SOME(a,n) | next(r) .
6 o.INIT(a,n+1) | r.reply(a[n],o)

7 or SOME(a,n) | peek(r) . o.SOME(a,n) | r.some(o)

8 or NONE | peek(r) . o.NONE | r.none(o)

9 in o.INIT(a,0) | r.reply(o)

10 in ...

Listing 2. An array iterator.

cesses and molecules that is subject to changes in the temper-
ature (expressed by a relation 
) and reactions (expressed
by a relation →). Heating ⇀ breaks things apart, while
cooling ⇁ recombines them together, in possibly different
configurations. Heating and cooling are reversible transfor-
mations of the soup, defined by the first four rules in Ta-
ble 2: rule [NULL] states that null processes may evaporate
or condense; rule [DEF] moves objects definitions to/from
the D component of solutions, having care not to capture
free names (disposing of a countable set of object names,
we can always silently perform suitable alpha-renamings to
avoid captures); rule [COMP-1] breaks and recombines pro-
cesses and rule [COMP-2] does the same with molecules. In all
the rules we omit definitions and processes unaffected by the
relation. Rule [RED] defines reactions as non-reversible trans-
formations of the soup. A reaction may happen whenever the
soup contains a molecule targeted to some object a such that
the shape of the molecule matches the pattern of one of the
rules in the class of a, up to some substitution σ mapping
variables to object names. In this case, the molecule is con-
sumed by the reaction and replaced by the body of the rule,
with the substitution σ applied.

In the rest of the section we illustrate the calculus by
means of examples. For better clarity, we augment the calcu-
lus with conditionals and a few native data types, which can
be either encoded or added without difficulties.

Example 3.1 (iterator). Listing 2 shows a possible model-
ing of an array iterator class in the Objective Join Calculus.
Like in object-based languages, the class is modeled as an
object ArrayIterator providing just one factory method,
new (line 1), whose arguments are an array a and a contin-
uation object r to which the fresh instance of the iterator is
sent. The iterator itself is an object o that can be in one of
three states, INIT, SOME, and NONE. States INIT and SOME

have arguments a (the array being iterated) and n (the in-
dex of the current element in the array). INIT is a transient
state used for initializing the iterator (lines 3–4): the iterator
spontaneously moves into either state SOME or state NONE,
depending on whether n is smaller than the length #a of the
array or not. When in state SOME, the iterator provides a next
operation (lines 5–6) for reading the current element a[n]

4 2015/5/27



[NULL]  null 
 
[DEF] D  P, def a = C in P 
 D , a = C  P, P a 6∈ fn(P)

[COMP-1]  P |Q 
  P,Q
[COMP-2]  a.(M |N) 
  a.M,a.N

[RED] a = {Ji . Pi}i∈I  a.σJk → a = {Ji . Pi}i∈I  σPk k ∈ I

Table 2. Reduction semantics of the Objective Join Calculus.

of the array and moving onto the next one. Since n might be
the index of the last element of the array, the iterator transits
to state INIT, which appropriately re-initializes the iterator.
The iterator also provides a peek operation that can be used
for querying the state of the iterator (lines 7–8). The oper-
ation does not change the state of the iterator and sends a
message on the continuation r with either tag some or tag
none, depending on the internal state of the iterator. �

Example 3.2 (sequential composition). In this example we
see how to encode a sequential composition construct

let ũ = u.m(ṽ) in P

in the Objective Join Calculus. Intuitively, this construct
invokes method m on object u with arguments ṽ, waits for
the results ũ of the invocation, and continues as P . We let

let ũ = u.m(ṽ) in P
def
=

def c = WAIT(x̃) | reply(ũ) . P{x̃/w̃}
in c.WAIT(w̃) |u.m(ṽ, c)

where c and x̃ are fresh, w̃ = fn(P )\ũ, and P{x̃/w̃} denotes
P where ũ have been replaced by x̃. The twist in this encod-
ing is that all the free names of P except ũ are temporar-
ily spilled into a message WAIT and then recovered when
the callee sends the reply message on c. Normally, such
spilling is not necessary in the encoding with continuation
passing. We do it here to comply with our working assump-
tion that classes have no free names other than “self”.

Using this construct we rephrase the code of Listing 1 into
that of Listing 3, which also encapsulates the lock definition
into the Lock class. The re-binding of the lock name on
lines 5 and 6 is typical of languages with explicit continua-
tions [18]. An actual language would provide either adequate
syntactic sugar or a native synchronous method call [15].
The types in comments will be described in Section 4. �

Example 3.3 (dining philosophers). We now discuss an ex-
ample where the same lock is shared by two concurrent pro-
cesses. Listing 4 models two philosophers that compete for
the same fork when hungry. The fork is created on line 7 and
shared by two instances of the Philosopher class (line 8).
Each philosopher alternates between states THINK and EAT.
In addition, the FORK message holds a reference to the shared
fork and is meant to be an invariant part of each philoso-
pher’s state. Transitions occur non-deterministically: while
in state THINK, the reaction on line 2 may fire; at that point,

1 def Lock = new(r) .
2 def o = FREE | acquire(r) . o.BUSY | r.reply(o)

3 or BUSY | release . o.FREE

4 in o.FREE | r.reply(o)

5 in let lock = Lock.new (* lock : tACQUIRE *)

6 in let lock = lock.acquire (* lock : tRELEASE *)

7 in lock.release

Listing 3. Lock class definition.

1 def Philosopher = new(fork) .
2 def o = THINK | FORK(fork) .
3 o.FORK(fork) |

4 let f = fork.acquire in o.EAT(f)

5 or EAT(f) . o.THINK | f.release

6 in o.THINK | o.FORK(fork)

7 in let fork = Lock.new (* fork : tACQUIRE *)

8 in Philosopher.new(fork) | Philosopher.new(fork)

Listing 4. Two dining philosophers.

the philosopher restores the FORK message (line 3) and at-
tempts to acquire the fork; when the fork is acquired, the
philosopher transits into state EAT (line 4). While in state
EAT, the philosopher holds a reference f to the acquired fork;
when the reaction on line 5 fires, the fork is released and the
philosopher goes back to state THINK. Note that this reac-
tion consumes only part of the philosopher’s state, which
also comprises the FORK message. �

4. Syntax and semantics of types
In this section we define a type language to describe objects
protocols in terms of the valid configurations of messages
they accept. Types t, s, . . . are the regular trees [8] coinduc-
tively generated by the productions below:

t, s ::= 0 | 1 | m(t̃) | t⊕ s | t⊗ s | ∗t

The type m(t̃) denotes an object that must be used for
sending a message with tag m and arguments of type t̃; when
t̃ is the empty tuple, we omit the parentheses altogether.
Compound types are built using the behavioral connectives
⊕, ⊗, and ∗: an object of type t ⊕ s must be used either
according to t or according to s; an object of type t ⊗ s
must be used both according to t and also according to s; an
object of type ∗t can be used any number of times, each time
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according to t. Finally, we introduce the constants 0 and 1,
which respectively represent the empty sum and the empty
product. Intuitively, 0 is the type of all objects and 1 is the
type of all objects without obligations. Occasionally we will
also use basic types such as int and real for denoting the
respective constants.

Some examples: an object of type m(int) must be used
for sending an m message with one argument of type int;
an object of type m(int) ⊕ 1 can be used for sending an m

message, or it can be left alone; an object of type m⊕m′ must
be used for sending either an m message or an m′ message,
while an object of type m⊗ m′ must be used for sending both
an m message and an m′ message; finally, an object of type
∗(m ⊕ m′) can be used for sending any number of m and m′

messages. There is no legal way to use an object of type 0.
We do not devise an explicit syntax for recursive types.

We work instead with (possibly infinite) regular terms di-
rectly. Recall that regular terms can always be finitely rep-
resented either as systems of equations or using the well-
known µ notation; [8] is the standard reference for the theory
of regular trees. For example, the type satisfying the equation
t = 1⊕ m(t) denotes an object that can be used for sending
an m-tagged message with an argument which is itself an ob-
ject with type t. We require every infinite branch of a type to
go through infinitely many message type constructors. This
condition (a strengthened contractiveness) excludes mean-
ingless terms such as t = t ⊕ t or t = ∗t and provides us
with an induction principle on the structure of types that we
will use in Definition 4.1 below.

We reserve some notation for useful families of types: we
use M to range over message types m(t̃) and T , S to range
over molecule types, namely types of the form

⊗
i∈I Mi; we

identify molecule types modulo associativity and commuta-
tivity of ⊗ and product with 1; if T =

⊗
i∈I mi(t̃i), we

write T for its signature, namely the set {mi}i∈I .
The following definition formalizes the idea that types

describe the valid configurations of messages that can be
sent to objects. Whenever X and Y are sets of molecule
types, we let XY def

= {T ⊗ S | T ∈ X∧ S ∈ Y} and we write
Xn for the n-th power of X for n ∈ N, where X0 = {1}.
Definition 4.1 (valid configuration). The interpretation of a
type t, denoted by JtK, is the set of molecule types induc-
tively defined by the following equations:

J0K def
= ∅

J1K def
= {1}

Jt⊕ sK def
= JtK ∪ JsK

Jt⊗ sK def
= JtKJsK

JMK def
= {M}

J∗tK def
=
⋃
n∈NJtKn

We say that T is a valid configuration for t if T ∈ JtK.

For instance, Jm⊕m′K = {m, m′} and Jm⊗m′K = {m⊗m′}.
Indeed, in the first case one can choose to send either m or
m′, whereas in the second case one must send both. Note
that 0 has no valid configurations and that type ∗t has, in
general, infinitely many valid configurations. For instance,
J∗mK = {1, m, m⊗ m, m⊗ m⊗ m, . . . }.

We have collected all the ingredients for defining the
subtyping relation. Since types are possibly infinite terms,
we must resort to a coinductive definition:

Definition 4.2 (subtyping). We write 6 for the largest rela-
tion between types such that t 6 s and

⊗
i∈I mi(s̃i) ∈ JsK

imply
⊗

i∈I mi(t̃i) ∈ JtK and s̃i 6 t̃i for every i ∈ I . If
t 6 s holds, then we say that t is a subtype of s and s a
supertype of t. We write t ' s if t 6 s and s 6 t.

To understand subtyping, it helps keeping in mind the
usual safe substitution principle: when t 6 s, it is safe to
use an object of type t where an object of type s is expected.
In our setting, “using an object of type s” means sending to
the object a message configuration that is valid for s. Defi-
nition 4.2 requires each valid configuration for s to also be a
valid configuration for t, modulo contravariant subtyping of
argument types. More specifically, whenever S ∈ JsK, there
exists some T ∈ JtK with the same signature as S such that
the arguments of corresponding messages in T and S are
related contravariantly. For instance, if s = m(int), then
using an object of type s means sending to the object one
message of the form m(n), where n is an integer number.
Then, assuming int 6 real, it is safe to replace such ob-
ject with another one of type t = m(real): the message
m(n) sent to the former object will be understood without
problems also by the latter object, as any integer number is
also a real number. Therefore, m(real) 6 m(int).

We wish to reassure the reader bewildered by Defini-
tion 4.2 that 6 shares most traits with conventional sub-
typing relations for object-oriented languages (see Exam-
ple 4.5). In particular, we have m⊕ m′ 6 m, namely an object
to which it is possible to send either an m message or a m′

message can be safely used in place of an object that accepts
only the former kind of messages. On the contrary, m⊗m′ and
m are not related: the former object must be used for sending
both m and m′, hence sending only m is an illegal way of using
it. Another notable relation is m(t)⊕ m(s) 6 m(t⊕ s).

The interested reader can verify a number of additional
useful properties: that 0 and 1 are indeed the units of ⊕ and
⊗; that 0 is absorbing for ⊗; that ⊕ distributes over ⊗. We
capture all these properties by the following proposition.

Proposition 4.3. The following properties hold:

1. 6 is a pre-order and a pre-congruence;
2. the language of types taken modulo the ' equivalence is

a commutative Kleene algebra [7].

We give a useful taxonomy of types: linear types denote
objects that must be used; non-linear types denote objects
without obligations; usable types denote objects that can be
used, in the sense that there is a valid way of using them.

Definition 4.4 (type classification). We say that t is non
linear, notation nl(t), if t 6 1; that t is linear, notation lin(t),
if t 66 1; that t is usable, notation usable(t), if t 6' 0.
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If t 6 1, then 1 ∈ JtK namely it is allowed not to send
any message to an object of type t. If t ' 0, then t is linear
but not usable, hence it denotes absurd objects that must be
used, but at the same time such that there is no valid way of
using them.

Example 4.5 (standard class type). The class of a conven-
tional object-oriented language can be described as the type⊗

i∈I ∗mi(t̃i), saying that the objects of this class can be
used for unlimited invocations of all of the available meth-
ods, in whatever order. Our subtyping relation is consis-
tent with that typically adopted in such languages, since⊗

i∈I ∗mi(t̃i) 6
⊗

j∈J ∗mj(s̃j) if and only if I ⊇ J and
t̃j > s̃j for all j ∈ J (the subclass has more methods, with
arguments of larger type). �

Example 4.6 (lock interfaces). We illustrate the typing of
the lock object used in Listings 1 and 3. Observe that the type
tlock , discussed in Section 2, describes both states and oper-
ations and is a valid type for the lock object as a whole. Cor-
respondingly, tlock can be correctly assigned to the binding
occurrence of o on line 2 in Listing 3 according to the type
system we will define in Section 5. Lock users are solely
concerned with the public interfaces of the lock, which only
refer to the acquire and release methods. We define:

tACQUIRE
def
= ∗acquire(reply(tRELEASE))

tRELEASE
def
= release

respectively for the interface of unacquired and acquired
locks. Observe that tACQUIRE is non linear, indicating no obli-
gations on unacquired locks (they can be used any number
of times) whereas tRELEASE is linear, indicating that acquired
locks must (eventually) be released. These interfaces can be
“derived” (quite literally) by removing the state types from
tlock ; we will make this relation precise in Section 5.

The fact that (unacquired) locks can be shared without
constraints is a consequence of the relation

tACQUIRE ' tACQUIRE ⊗ tACQUIRE

stating an expected property of the exponential: “duplicat-
ing” a fork has no effect on its type. This relation is precisely
the one needed for typing the code in Listing 4, where one
fork of type tACQUIRE is created (line 7) and then shared by
two philosophers (line 8). �

Example 4.7 (iterator interfaces). Let consider the array
iterator defined in Listing 2. We postpone the description of
the whole type of the iterator object until Section 5, and we
discuss here just the public interfaces exposed by the object
in the different states, with the help of the transition diagram
in Figure 1. When in state NONE, the iterator has reached
the end of the array and there is only one method available,
peek, which replies with a none message containing the
iterator unchanged. Therefore, the public interface of the

INIT⊕ SOME⊕ NONE

SOME

NONE

peek(some)

peek(none)

next
peek(some)

peek(none)

Figure 1. Transition diagram of the iterator.

iterator in state NONE is the type satisfying the equation

tNONE = peek(none(tNONE))⊕ 1

The 1 term makes tNONE non linear, allowing the disposal
of the iterator when in state NONE. Without it, linearity would
force us to keep using the iterator even at the end of the
iteration. This is depicted in Figure 1 with a shaded box.

The interface of the iterator in state SOMEmust give access
to both the next and peek operations. A tentative type for
the iterator in this state is the one satisfying the equation

tSOME = peek(some(tSOME))⊕ next(reply(int, t?))

where peek replies with a some message containing the it-
erator unchanged, whereas next returns the current element
of the array being scanned (of type int) and the iterator in
an updated state. Inspection of Listing 2 reveals that, after
a next operation, the iterator temporarily moves into state
INIT and then eventually reaches either state SOME or state
NONE. Therefore, the type t? exposing the public interface in
this unresolved state is obtained as the “intersection” of the
interfaces of the two possible states. More precisely, t? must
be a supertype of both tNONE and tSOME. It is not difficult to
verify that the 6-least upper bound of tNONE and tSOME is

tBOTH = peek(some(tSOME)⊕ none(tNONE))

showing that, when the state of the iterator is uncertain, only
peek is allowed. Observe also that peek has different types,
depending on whether the state of the iterator is known or
not: when the state is known, the type of peek is more
precise (only some or only none is sent); when the state is
unknown, the type of peek is less precise (either some or
none is sent). Subtyping tunes the precision of the types of
objects, according to the knowledge of their state. �

5. Type system
Type environments. We use type environments for track-
ing the type of the objects used by processes. A type envi-
ronment Γ is a finite mapping from names to types, written
u1 : t1, . . . , un : tn or ũ : t̃ or {ui : ti}i∈I as convenient.
We write dom(Γ) for the domain of Γ and Γ1, Γ2 for the union
of Γ1 and Γ2, when dom(Γ1) ∩ dom(Γ2) = ∅.

Since each object may be used in different parts of a pro-
gram according to different interfaces, we need a more flexi-
ble environment combination operator than (disjoint) union.
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The environment in which a process is typed describes how
the process uses the objects for which there is a type assign-
ment in the environment. If the same object is simultane-
ously used by two (or more) processes, its type will be the
combination (i.e., the product) of all the types it has in the
environments used for typing the processes. For example, if
some object u is shared by two distinct processes P and Q
running in parallel, P uses u according to t and Q uses u ac-
cording to s, then the parallel composition of P and Q uses
u according to t ⊗ s. If, on the other hand, the object u is
used by only one of the two processes, say P , according to
t, then it is used according to t also by the parallel compo-
sition of P and Q. Formally, we define an operation ⊗ for
combining type environments, thus:

Definition 5.1 (environment combination). The combina-
tion of Γ1 and Γ2 is the type environment Γ1 ⊗ Γ2 such that
dom(Γ1 ⊗ Γ2) = dom(Γ1) ∪ dom(Γ2) defined by:

(Γ1 ⊗ Γ2)(u)
def
=

Γ1(u) if u ∈ dom(Γ1) \ dom(Γ2)
Γ2(u) if u ∈ dom(Γ2) \ dom(Γ1)
Γ1(u)⊗ Γ2(u) otherwise

Many substructural type systems define analogous oper-
ators for combining type environments. See for example +
in [22] or ] in [24].

It is also convenient to extend the subtyping relation to
type environments, to ease the application of subsumption.
Intuitively, the relation t 6 s indicates that an object of type
t “has more features” than an object of type s. Similarly, we
wish to extend 6 to environments so that Γ 6 ∆ indicates
that the environment Γ has more resources with possibly
more features than ∆. We must be careful not to introduce
in Γ linear resources that are not in ∆, for this would allow
processes to ignore objects for which they have obligations.
Technically, we allow weakening for non-linear objects only.
The extension of 6 to type environments is formalized thus:

Definition 5.2 (environment subtyping). We write Γ 6 ∆ if:

1. dom(∆) ⊆ dom(Γ), and
2. Γ(u) 6 ∆(u) for every u ∈ dom(∆), and
3. nl(Γ(u)) for every u ∈ dom(Γ) \ dom(∆).

Using environment subtyping, we can express the fact
that an environment Γ only contains non-linear resources by
checking whether Γ 6 ∅ holds. In this case, we write nl(Γ).

With these notions, we can start commenting on the rules
of the type system, shown in Table 3. The rules allow de-
riving various judgments, for processes, molecules, patterns,
classes, and solutions.

Rule [T-NULL] states that the idle process is well typed
only in an empty environment. Since the idle process does
nothing, the absence of linear objects in the environment
makes sure that no linear object is left unused. On the other
hand, non-linear objects can always be discharged using
subsumption [T-SUB], which will be described shortly.

Typing rules for processes Γ ` P

[T-NULL]

∅ ` null

[T-SEND]
Γ `M :: T

Γ ⊗ u : T ` u.M

[T-PAR]

Γi ` Pi (i=1,2)

Γ1 ⊗ Γ2 ` P1 |P2

[T-OBJECT]
a : t ` C Γ , a : t ` P

Γ ` def a = C in P

[T-SUB]
∆ ` P
Γ ` P

Γ 6 ∆

Typing rules for molecules Γ `M :: T

[T-MSG-M]
usable(t̃)⊗

i=1..n ui : ti ` m(ũ) :: m(t̃)

ũ = u1, . . . , un
t̃ = t1, . . . , tn

[T-COMP-M]

Γi `Mi :: Ti
(i=1,2)

Γ1 ⊗ Γ2 `M1 |M2 :: T1 ⊗ T2

Typing rules for patterns Γ ` J :: T

[T-MSG-P]
usable(t̃)

x̃ : t̃ ` m(x̃) :: m(t̃)

[T-COMP-P]

Γi ` Ji :: Ti (i=1,2)

Γ1, Γ2 ` J1 | J2 :: T1 ⊗ T2

Typing rules for classes u : t ` C

[T-REACTION]
Γ ` J :: T Γ , a : s ` P

a : t ` J . P
t ↓ T
t 6 t[T ]⊗ s

[T-CLASS]

a : t ` Ci (i=1,2)

a : t ` C1 or C2

Typing rules for solutions ` D P

[T-DEFINITIONS]

ai : ti ` Ci (i∈I)

{ai : ti}i∈I ` {ai = Ci}i∈I

[T-PROCESSES]

Γi ` Pi (i∈I)⊗
i∈I Γi ` {Pi}i∈I

[T-SOLUTION]
Γ ` D ∆ `P

` D P
Γ 6 ∆

Table 3. Typing rules.
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Rule [T-SEND] types message sending u.M , where u is
an object and M a molecule of messages. This process is
well typed if the type of the object coincides with that of the
molecule, which as we will see is just the ⊗-composition
of the types of the messages in it. Note the use of ⊗ in the
type environment allowing u to possibly occur in M as the
argument of some message.

Rule [T-PAR] types parallel compositions P1 |P2. The rule
combines the type environments used for typing P1 and P2

to properly keep track of the overall use of the objects shared
by the two processes.

Rule [T-OBJECT] types object definitions def a = C in P .
A type t is guessed for the object a and checked to be appro-
priate for the class C (“appropriateness” will be discussed
along with the typing rules for classes) and assigned to a
also for typing P . Note that the class C is checked in an en-
vironment that contains only a (that is “self”). That is, the
type system forces classes to contain no free names other
than the reference to self. In principle this is not a restric-
tion, as we have seen in Example 3.2, although in practice
it is desirable to allow for more flexibility. We have made
this choice to keep the type system as simple as possible.
In fact, the type system would remain sound if we allowed
C to access non-linear objects. Allowing C to access linear
objects is a much more delicate business that requires non-
trivial reasoning on the sequence of firings of the rules in C;
we leave this as a future extension.

Rule [T-SUB] is the subsumption rule, allowing us to en-
richen the type environment of a process according to Def-
inition 5.2. Intuitively, if P is well typed using the objects
described by ∆, then it certainly is well typed in an environ-
ment Γ 6 ∆ where the same objects have more features than
those actually used by P . This rule is also useful for rewrit-
ing the types in the environment as well as for weakening ∆
with non-linear objects.

The typing rules for molecules derive judgments of the
form Γ ` M :: T . The environment Γ describes the type of
the arguments sent along the messages in M . The only re-
markable feature is the side condition usable(t̃) in [T-MSG-M],
which requires the arguments of a message to be usable or, at
least, discardable. This condition is essential for the sound-
ness of the type system (see Example 6.5).

The typing rules for patterns have the form Γ ` J :: T and
are similar to those for molecules. Recall that patterns occur
on the left hand side of reaction rules. In this case, the envi-
ronment Γ describes the type of the arguments received when
the pattern matches a molecule in the soup. There is a tech-
nical difference between [T-COMP-M] and [T-COMP-P]: the for-
mer uses the operator ⊗ for combining type environments,
as it may happen that the same object is sent as argument in
different messages; the latter takes the union of the environ-
ments, which are known to have disjoint domains because of
the linearity restriction we have imposed on patterns. Also
recall that joined patterns must have disjoint signatures.

Before looking at the typing rules for classes, let us get
rid of those for solutions D P , which are essentially
unremarkable. Each object definition in D is typed as in
rule [T-OBJECT] and the processes in the multiset P are typed
as if they were all composed in parallel. The two typings
are kept consistent by the fact that [T-SOLUTION] uses related
environments Γ and ∆ for both D and P . The reason why
∆ is not exactly Γ is purely technical and accounts for the
formal mismatch between processes composed in parallel
and processes in a multiset (details are in Appendix A).

The type system described so far is rather ordinary: the
typing rules track the usage of objects, most of the heavy
lifting is silently done by subtyping and the ⊗ operator. The
heart of the type system is [T-REACTION], which verifies that a
reaction rule J . P is appropriate for an object a of type t.
The rule determines the type T and bindings Γ of the pattern
J and checks that the body P of the rule is well typed in the
environment Γ , a : s. Having a in the environment grants P
access to “self”. Now, we have to understand which relations
should hold among t, T , and s in order for the reaction rule
to be safe. In this context “safe” means that:

(1) T describes correctly the type of the received arguments.
This is not obvious, because the same tag can be used
in messages with arguments of different types (see for
example peek in Example 3.1) while reduction picks
messages solely looking at their tag (Table 2).

(2) By using a according to s, P restores the state of a into
one of its valid configurations, described by t. Again this
is not obvious, because the only knowledge that P has
regarding the state of a comes from the matching of J ,
which in general is a fraction of all the messages targeted
to a at the time of the reaction.

Condition (1) is characterized by a predicate t ↓ T saying
when a given molecule type T is not ambiguous in t:

Definition 5.3 (clear pattern). We say that T is clear in t,
notation t ↓ T , if {S | S ⊗R ∈ JtK ∧ S = T} = {T}.

In words, t ↓ T holds if for each valid configuration
S ⊗R of t that includes a molecule type S sharing the same
signature as T , the molecule type is exactly T . In addition,
there must be a valid configuration of t that includes T . This
means that, whenever t ↓ T holds, t is usable.

For example, take t def
= (A ⊗ m(int)) ⊕ (B ⊗ m(real))

and observe that the argument of message m has different
types depending on whether the state of the object is A

or B. Then, neither t ↓ m(int) nor t ↓ m(real) holds,
for matching an m-tagged message does not provide enough
information for deducing the type of its argument. However,
both t ↓ A ⊗ m(int) and t ↓ B ⊗ m(real) do hold,
since in these cases the signature of the matched molecule
disambiguates the type of m’s argument.

Remark 5.4. Suppose t = (m(foo)⊗ m(bar))⊕ 1 and that
the reaction J . x.foo | y.bar where J = m(x) | m(y) is
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allowed, despite m occurs twice in J . We have

x : foo, y : bar ` J :: T

where T = m(foo) ⊗ m(bar). Now t ↓ T does hold,
because t has only one valid configuration with the same
signature as T . However, there is no guarantee that, once
J matches a molecule, x is actually bound to the object of
type foo and y is actually bound to the object of type bar,
and not vice versa. For this reason, pattern linearity is a key
restriction in our type system, where messages with the same
tag can have arguments with different types. �

To find guidance for verifying condition (2) it helps re-
calling the chemical interpretation of the Objective Join Cal-
culus: the effect of a reaction J . P where J has type T and
P uses the object according to s is to consume a molecule
of messages of type T and to produce molecules according
to type s. The reaction is safe if the overall balance between
what is consumed and what is produced preserves the ob-
ject’s configuration as one that is described by its type t. For-
mally, this is expressed by the side condition t 6 t[T ] ⊗ s,
where the type t[T ] represents the “residual” of t after a
molecule with type T (the pattern of the reaction rule) has
been removed; such residual is combined (in the sense of⊗)
with s, which is what P sends to the object; the resulting
type t[T ] ⊗ s is compatible with the object’s type t if it is a
supertype of t. The type residual operator is defined thus:

Definition 5.5 (type residual). The residual of twith respect
to M, written t[M], is inductively defined thus:

0[M] = 1[M] = 0
m(t̃)[m′(s̃)] = 0 if m 6= m′

m(t̃)[m(s̃)] = 1
(t⊕ s)[M] = t[M]⊕ s[M]
(t⊗ s)[M] = (t[M]⊗ s)⊕ (t⊗ s[M])

(∗t)[M] = t[M]⊗ ∗t

We extend the residual to molecule types in the obvious
way, that is t[1] = t and t[M⊗ T ] = t[M][T ].

Note that the type residual operator (Definition 5.5) is
nothing but Brzozowski derivative [6, 7] adapted to a com-
mutative Kleene algebra over message types.

To better illustrate the side condition, we work out some
examples in which we consider different objects a of type t
and we write T . s for denoting a reaction J . P where J
has type T and P is typed in an environment that includes
a : s. We will say that T . s is valid or invalid depending on
whether the condition holds or not.

• If t def
= A ⊕ (B ⊗ m), then A . B ⊗ m and B ⊗ m . A are

valid but B . A is not. For example, we have t[B] = m and
t 66 m⊗ A. When in state B, there is also a message m that
is forbidden in state A.

• If t def
= (A ⊗ m) ⊕

(
B ⊗ (1 ⊕ m)

)
, then A . B is valid but

B . A is not. We have t[B] = 1 ⊕ m and t 66 (1 ⊕ m)⊗ A.

In general, the transition from a state in which a message
is linear (m) to another where the message is not linear
(1⊕ m) cannot be reversed, because the object may have
been discarded or aliased.

• If t def
= A⊕(B⊗∗foo)⊕(C⊗∗foo⊗∗bar), then A.B and

B.C are valid, but neither B.A nor C.B is. It is unsafe for
the object to move from state C to state B because there
could be residual bar messages not allowed in state B.
In general, non-linear messages such as foo and bar can
only accumulate monotonically across state transitions.

• If t def
= (A ⊗ m(int)) ⊕ (B ⊗ m(real)), then A . B

is valid, but B . A is not. Indeed t[B] = m(real) and
t 66 m(real)⊗A. The transition A .B is safe because the
int argument of message m in state A can be subsumed
to real in state B, but not vice versa.

Example 5.6 (lock). We illustrate the type system at work
showing that the two reactions of the lock (lines 2–3 in
Listing 3) are well typed using tlock , the types tACQUIRE and
tRELEASE of Example 4.6, and also tREP

def
= reply(tRELEASE).

Consider the first reaction; for its pattern we derive

r : tREP ` FREE | acquire(r) :: T

where T def
= FREE⊗acquire(tREP). Let s def

= BUSY⊗tRELEASE,
then for the body of the reaction we derive

o : BUSY ` o.BUSY

o : tRELEASE ` reply(o) :: tREP

r : tREP, o : tRELEASE ` r.reply(o)

r : tREP, o : s ` o.BUSY | r.reply(o)

Now tlock ↓ T holds and furthermore

tlock 6 tlock [T ]⊗ s = tACQUIRE ⊗ BUSY⊗ tRELEASE

hence the side conditions of [T-REACTION] are satisfied. For
the pattern in the second reaction we derive

` BUSY | release :: BUSY⊗ release

and it is easy to see that the body of the reaction is also well
typed. Now, we have tlock ↓ BUSY⊗ release and

tlock 6 tlock [BUSY⊗ release]⊗ FREE ' tACQUIRE ⊗ FREE

so the side conditions of [T-REACTION] are again satisfied, this
time taking s def

= FREE. �

Example 5.7 (iterator). We conclude the typing of the array
iterator in Example 3.1 (Listing 2). By composing the public
interfaces defined in Example 4.7, we can define the type of
the iterator object o as follows:

titer
def
= (INIT(int[], int)⊗ tBOTH)
⊕ (SOME(int[], int)⊗ tSOME)
⊕ (NONE⊗ tNONE)
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1 def Channel = new(c) .
2 def o =

3 LE | lsend(v,c) . o.LF(v) | c.reply(o)

4 or LF(v) | rrecv(c) . o.LE | c.reply(v,o)

5 or RE | rsend(v,c) . o.RF(v) | c.reply(o)

6 or RF(v) | lrecv(c) . o.RE | c.reply(v,o)

7 in o.LE | o.RE | c.reply(o)

8 in · · ·
Listing 5. Full-duplex channel.

Notice that titer is obtained as a disjunction of three types,
each corresponding to a pair encoding a possible state and
the public interface of the iterator in that state.

In order to check the typing of the definition of the object
o in Listing 2, we have to check four reactions; we just
discuss two of them and, for readability, we only consider
message tags omitting argument types. The first reaction
INIT . SOME⊕ NONE is valid since titer [INIT] = tBOTH and

titer 6 (SOME⊕ NONE)⊗ tBOTH
' (SOME⊗ tBOTH)⊕ (NONE⊗ tBOTH)

because tSOME 6 tBOTH and tNONE 6 tBOTH as we have argued
in Example 4.7. The reaction SOME⊗ next . INIT⊗ tBOTH is
also valid since titer [SOME⊗ next] = 1 and now

titer 6 1⊗ INIT⊗ tBOTH ' INIT⊗ tBOTH

Observe that the code in Listing 2 does not contain any
reaction involving both the state INIT and the operation
peek, since the iterator in state INIT eventually moves into
either state SOME or NONE; nevertheless titer exposes the
interface tBOTH while in state INIT, instead of the empty
interface. This is because, in lines 6 and 9, a reference o

to the iterator is returned to the caller while the iterator is
moving to state INIT. Such reference could be used by a
quick caller to send a peek message to the iterator while the
iterator is still in the transient state INIT, and this requires
INIT⊗ peek to be a valid configuration of titer .

It is possible to make sure that the reference o returns to
the caller only once the iterator has moved away from state
INIT, by reshaping INIT into a synchronous operation. �

Example 5.8 (full-duplex channel). Listing 5 shows the
modeling of a bidirectional, full-duplex channel for connect-
ing two peer processes, called “left” and “right” and identi-
fied by a letter p ∈ {l, r}. The channel provides two pairs of
operations psend and precv used by peer p for sending and
receiving messages. The state of the channel is modeled by
two 1-place buffers, one for each peer. For the left peer, LE
represents the Empty buffer and LF(v) the Full buffer with a
value v. Tags RE and RF are used for representing the buffer
of the right peer in a similar way. Observe that each buffer
is either empty or full, but the two buffers coexist and can
change state independently. This means that LE and LF are

LE⊗ RE

LF⊗ RE LE⊗ RF

LF⊗ RF

LF⊗ RE LE⊗ RF

lsend rsend

rsend lsend

lrecv rrecv

rrecv lrecv

Figure 2. Transition diagram of the full-duplex channel.

or-states, and so are RE and RF: on the contrary, Lx and Ry
are and-states. This will be reflected in the type of the chan-
nel, where different states of the same buffer are combined
by⊕, whereas states of different buffers are combined by⊗.

We want to enforce a usage protocol of the full-duplex
channel such that each peer p alternates send and receive
operations. In this way, the psend of peer p fills the corre-
sponding buffer and enables the precv of the other peer p,
but only after p has sent its own message. Figure 2 depicts
the transition diagram of the full-duplex channel used ac-
cording to this protocol. The interface of the channel from
the viewpoint of p is described by the type tps defined by

tps = psend(int, reply(tpr))
tpr = precv(reply(int, tps))

The types of the interfaces are combined with state mes-
sage types to form the type of the channel as follows

tchan
def
= (LE⊗ RE⊗ tls ⊗ trs)⊕ (LF⊗ RF⊗ tlr ⊗ trr)
⊕ (LF⊗ RE⊗ tlr ⊗ trs)⊕ (LE⊗ RF⊗ tls ⊗ trr)
⊕ (LF⊗ RE⊗ tls ⊗ trr)⊕ (LE⊗ RF⊗ tlr ⊗ trs)

where we have elided the type of values in the buffers.
Inspection of tchan reveals that the reference o returned

on line 7 has type tls⊗trs, that is the composition of the two
public interfaces of the channel, each corresponding to one
of the peers. Therefore, the same reference to the channel
can be used by two parallel processes, according to these
two types, as illustrated by the code snippet below:

let c = Channel.new in (* c : tls ⊗ trs *)

{ let c = c.lsend(1) in (* c : tlr *)

let c = c.lrecv in ... (* c : tls *)

| let c = c.rsend(2) in (* c : trr *)

let c = c.rrecv in ... } (* c : trs *)

The internal state of the full-duplex channel is the com-
bination of distinct messages Lx and Ry that are consumed
and produced concurrently by the users of the channel. In
particular, each reaction rule in Listing 5 changes only part
of the channel’s state, leaving the rest unchanged. The last
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side condition of rule [T-REACTION] verifies that such partial
change maintains the channel’s overall state in one of the
configurations described by tchan . The interested reader can
verify that each reaction rule is indeed well typed with re-
spect to tchan .

As a final consideration, the fact that tchan and the dia-
gram in Figure 2 list 6 configurations (instead of the 4 cor-
responding to all possible combinations of Lx and Ry) sug-
gests that the interface of the channel depends not only on
its current state (encoded as a pair Lx ⊗ Ry) but also on its
past history. For instance, in the two states identified by the
combination of messages LF ⊗ RE, the peer l has produced
its own message while the buffer of peer r is empty. But this
can be either because r has not produced its own message
yet, or because r has indeed produced the message, but peer
l has already received it. �

6. Properties of well-typed processes
In this section we prove a few properties enjoyed by well-
typed processes. To begin with, we state a completely stan-
dard, yet fundamental result showing that typing is preserved
under heating, cooling, and reductions.

Theorem 6.1 (subject reduction). If ` D P and

D P R D ′ P ′

where R ∈ {⇀,⇁,→}, then ` D ′ P ′.

Theorem 6.1 is key for the next results, since it assures
that the properties enjoyed by well-typed processes are in-
variant under arbitrarily long process reductions.

The first proper soundness result states that a well-typed
process respects the prohibitions expressed by the types of
the objects it manipulates. We formulate this property stating
that if a well-typed solution contains messages m1, . . . , mn
targeted at some object a and a has type t, then there is a
valid configuration of t that includes at least all the mi, and
possibly more messages.

Theorem 6.2 (respected prohibitions). If

Γ , a : t ` P | a.m1(c̃1) | · · · | a.mn(c̃n) ,

then there exist S and s̃i such that t 6 S ⊗
⊗

i=1..n mi(s̃i).

The theorem can be rephrased in terms of prohibitions
as follows: if the type of an object prohibits invocation of a
particular method when the object is in some particular state,
then there is no well-typed soup of processes containing
pending invocations to that method when the object is in
that state. To illustrate, consider the lock object in Listing 1.
The type tlock of the lock we have defined in Section 2
prohibits invocation of method release when the lock is
in state FREE. Also recall that the lock being in the FREE

state is identified by the presence of the o.FREE molecule in
the solution. Then, the following judgment is not derivable

Γ , o : tlock ` P | o.FREE | o.release

Similarly, the type tlock states that, when in state BUSY,
there can be exactly one pending invocation to release. So,

Γ , o : tlock ` P | o.BUSY | o.release | o.release

is another judgment that cannot be derived. Remarkably, we
can infer a great deal of information regarding the state of an
object solely looking at its type, knowing virtually nothing
about the rest of the (well-typed) program. For instance, no
soup containing both a FREE and a BUSY message simultane-
ously targeted to the same lock is well typed, meaning that
the state of every lock is always uniquely determined.

The second soundness result states that a well-typed pro-
cess fulfills all the obligations with respect to the objects it
owns. More precisely, that if a process P is typed in an en-
vironment that contains a linear object a, that is an object
whose type mandates the (eventual) invocation of a partic-
ular method, then a cannot be discarded by P , but must be
holded by P and used according to its type.

Theorem 6.3 (weakly fulfilled obligations). If Γ ` P and
a ∈ dom(Γ) and lin(Γ(a)), then a ∈ fn(P ).

Another way of reading this theorem is that well-typed
processes can only drop non-linear objects, namely objects
for which they have no pending obligations. For example,
since tlock mandates the invocation of method release once
the lock has been acquired, omitting the f.release from
line 5 in Listing 4 would result into an ill-typed philosopher.

We have labeled the property stated in Theorem 6.3
“weak” obligation fulfillment because the property may in-
deed look weaker than desirable. One would probably ex-
pect a stronger property saying that every method that must
be invoked is eventually invoked. Such stronger property,
which is in fact a liveness property, is however quite subtle
to characterize and hard to achieve. In particular, it would
require well-typed process to be free from deadlocks, which
is something that goes well beyond the capabilities of the
type system we have presented in Section 5.

Note that there is one trivial way to honor all pending
obligations (as by Theorem 6.3), namely postponing them
forever. For example, let

forever(u)
def
= def c = m(x) . c.m(x) in c.m(u)

where c is a fresh name. The judgment a : t ` forever(a) is
derivable provided that usable(t). In particular, t may be lin-
ear, and yet forever(a) never invokes any method on a. Al-
though forever(a) fools the type system into believing that
all pending obligations on a have been honored, we think
that processes like forever(a) are sufficiently contrived to
be rarely found in actual code. In other words, we claim that
Theorem 6.3 provides practically useful guarantees about
the actual use of objects with non-linear types.

Finally, we draw the attention on a general property of the
type system that is key for proving Theorem 6.2:

Lemma 6.4. There exist no Γ and P such that Γ , u : 0 ` P .
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This property states that there is no well-typed process
that can hold an unusable object. The result may look obvi-
ous, but it has important consequences: we have remarked
the role of subtyping for deducing the interface of objects
with uncertain state. For instance, tBOTH (Example 4.7) is ob-
tained as the least upper bound of tNONE and tSOME. Since 0 is
the top type, the least upper bound of two (or more) types al-
ways exists, but it can be 0. For example, had we forgotten to
equip the iterator with a peek operation in state SOME (line 7
of Listing 2), tBOTH would be 0 and the iterator would be es-
sentially unusable. Lemma 6.4 tells us that the type system
detects such mistakes.

Example 6.5. The side condition in rule [T-MSG-M] requires
the arguments of a message to have a usable type. If this
condition were not enforced, the following derivation would
be legal and Theorem 6.2 would not hold:

...

a : 0 ` forever(a)

[T-MSG-M]
` bar :: bar

[T-SEND]
a : bar ` a.bar

[T-PAR]
a : 0⊗ bar ` forever(a) | a.bar

[T-SUB]
a : foo ` forever(a) | a.bar

Since foo 6 0 ⊗ bar ' 0, the subsumption rule could
be used for allowing spurious method invocations (bar)
knowing that these would be absorbed by 0 types in other
parts of the derivation. Note that the message invocation in
forever(a) sends an object with type 0. �

7. Related Work
In [12] class states are represented as invariants describing
predicates over fields. They support verification in presence
of inheritance and depend on a classification of references as
not aliased or possibly aliased. This approach is refined in [1,
5] with a flexible access permission system that permits
state changes even in the presence of aliasing. Shared access
permissions has been investigated in a concurrent framework
in [25], but its integration with the typestate mechanism
is left as future work. In Plaid [27], the typestate of an
object directly corresponds to its class, and that class can
change dynamically. Plaid supports the major state modeling
features of Statecharts: state hierarchy, or-states, and and-
states, allowing states dimensions to change independently.

The foundations of Plaid and, in general, of TSOP are for-
mally studied in [17] by means of a nominal object-oriented
language with mutable state enriched with primitive notions
of typestate change and typestate checking. The language
is equipped with a permission-based type system integrated
with a gradual typing mechanism that combines static and
dynamic checking. Progress and type preservation proper-
ties are formally proved.

To the best of our knowledge, TSOP has been investigated
in a concurrent setting only in [9] and partly in [19]. Damiani
et al. [9] develop a type and effect system for a Java-like

language to trace how the execution of a method changes
the state of the receiver object. To forbid access to fields
that are not available in the current object’s state, only direct
invocations of methods on this can change the state of
the current object. Since each class method is synchronized,
two concurrent threads cannot simultaneously execute in
the same object. Our approach relaxes such restrictions. For
instance, the full-duplex channel (Example 5.8) can be used
in true concurrency by the two peers, and each is statically
guaranteed to comply with (its view of) the channel protocol.
Gay et al. [19] study an integration of typestate and session
types targeting distributed objects. The focus of their work
is more on the modularization of sessions across different
methods rather than on typestates themselves. In fact, the
work rests on the assumption that non-uniform objects (those
whose interface changes with time) must be linear.

There is a substantial literature on behavioral types which
we are not able to fully address here for space limitations.
We just remark that most behavioral type theories use ses-
sion types [21] for describing communication protocols. In
this respect, our language of behavioral types is an original
contribution of this paper and is also the first behavioral type
theory for the Objective Join Calculus. The use of explicit
continuations for describing structured behaviors is not new.
For example, it is at the base of the encoding of session types
into linear channel types [10]. Our type system uses essen-
tially the same technique, except that continuations are ob-
jects instead of channels. Continuations have been found to
be convenient even when types account for structured proto-
cols, to describe the effect of functions on channels [18].

8. Concluding remarks
We have found evidence that the Objective Join Calculus
is a natural model for TSOP. The choice of this particular
model allowed us (1) to approach TSOP in a challenging
setting involving concurrency, object sharing/aliasing, and
partial/concurrent state updates; (2) to capture the charac-
terizing facets of TSOP (multidimensional state, operations,
protocols, aliasing control) with a single, elegant language
of behavioral types supported by an intuitive semantics (Sec-
tion 4); (3) to devise a manageable type system (Section 5)
that statically guarantees valuable properties (Section 6) and
includes a characterization of safe partial/concurrent state
transitions in terms of subtyping (see the side condition of
[T-REACTION]).

In this paper we focused on the theoretical foundations
of the chemical approach to TSOP, which pave the way to
more practical but equally important aspects. Below is a non-
exhaustive list of extensions and future developments that
we find particularly relevant or intriguing.

Aliasing. In our type system, fine-grained aliasing control
is realized by the⊗ connective: an object of type (equivalent
to) t⊗ s can (actually, must) be used according to both t and
s, by possibly parallel processes. Uncontrolled aliasing re-
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quires using the exponential ∗. However, neither⊗ nor ∗ ex-
press with sufficient precision some forms of aliasing/shar-
ing of objects. It would be interesting to investigate whether
and how our type language integrates with other forms of
aliasing control [5, 13, 25].

Implementation. There exist standalone, embedded, and
library implementations of the Join Calculus1 that could
be used as the basis for integrating our type system. We
think that the Objective Join Calculus equipped with our
type theory can also be used as a high-level specification
language for TSOP to generate corresponding (template)
classes for more conventional object-oriented languages.

Synchronous methods. Implementations of the Join Cal-
culus support native synchronous methods [3, 14, 15]. Syn-
chronous methods can be easily reflected in the type system
using message types of the form m(t̃); s indicating that, af-
ter invocation of method m, the type of the object turns to s.

Compiler optimizations. Efficient compilation techniques
for join patterns [23] rely on atomic operations and finite-
state automata for tracking the presence messages with a
given tag. Our type system paves the way to further opti-
mizations: for example, tlock says that, when the method
release is invoked, the lock is for sure in state BUSY. In
other words, the reaction involving BUSY and release can
be triggered without requiring an actual synchronization and
invocations to release compiled as ordinary method calls.

Type inference. Early experiments indicate that it is pos-
sible to implement a type inference algorithm for our type
system with some minimal help from the programmer. This
feature is crucial for the effectiveness of the approach given
the use of structural subtyping and the richness of types. We
are comforted by the fact that inference of object protocols
has been investigated in a number of works (a detailed sur-
vey is given in [11]), some of which use specification lan-
guages inspired to regular expressions [20] as we do.

Inheritance. Inheritance for concurrent objects is a known
source of challenging problems. For the Objective Join Cal-
culus, it has been studied in [16], but with a (non-behavioral)
type system focused on privacy. We plan to investigate how
our type discipline affects the realization of this feature.
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A. Proofs
Definition A.1 (substitution). A substitution σ is a map from
names to names that differs from the identity for a finite
subset of its domain. We write dom(σ) for the (finite) set
of names for which σ is not the identity.

Proposition A.2. If t 6 s and T = S, then t[T ] 6 s[S].

Proof. It is straightforward to see that Definition 5.5 is only
affected by the signature of a molecule type and not by the
type of the message arguments. Therefore, we can assume
T = S without loss of generality. The result follows by
simple arguments using Definition 4.2.

Proposition A.3. If T1 ⊗ T2 6 S1 ⊗ S2 and Ti = Si for
i = 1, 2 and T1 ∩ T2 = ∅, then Ti 6 Si for every i = 1, 2.

Proof. Easy application of Definition 4.2.

Lemma A.4. If ` D P and D P ⇀ D ′ P ′, then
` D ′ P ′.

Proof. We reason by cases on the heating rule being applied.
We omit discussing rule [COMP-2], as it is similar to [COMP-1].

[NULL] Then D ′ = D and P = P ′, null. From [T-SOLUTION]

we deduce that there exist Γ and ∆ such that Γ 6 ∆ and
Γ ` D and ∆ `P . From [T-PROCESSES] we deduce that there
exist ∆1 and ∆2 such that ∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′

and ∆2 ` null. From [T-SUB] and [T-NULL] we deduce
nl(∆2), hence ∆ 6 ∆1. We conclude with an application
of [T-SOLUTION].

[DEF] Then D ′ = D , a = C and P = P ′′, def a = C in P

and P ′ = P ′′, P and a 6∈ fn(P ′′). From [T-SOLUTION]
we deduce that there exist Γ and ∆ such that Γ 6 ∆ and
Γ ` D and ∆ `P . From [T-PROCESSES] we deduce that there
exist ∆1 and ∆2 such that ∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′′

and ∆2 ` def a = C in P . From [T-SUB] and [T-OBJECT]
we deduce that there exists t and ∆′

2 such that ∆2 6 ∆′
2

and a : t ` C and ∆′
2, a : t ` P . Using the hypothesis

a 6∈ fn(P ′′) we can assume, without loss of generality, that
a 6∈ dom(Γ). Let Γ ′ def

= Γ , a : t and ∆′ def
= ∆1,∆2, a : t and

observe that Γ ′ 6 ∆′. We conclude ` D ′ P ′.

[COMP-1] Then D ′ = D and P = P ′′, P1 |P2 and P ′ =

P ′′, P1, P2. From [T-SOLUTION] we deduce that there exist Γ
and ∆ such that Γ 6 ∆ and Γ ` D and ∆ ` P . From
[T-PROCESSES] we deduce that there exist ∆1 and ∆2 such that
∆ = ∆1⊗∆2 and ∆1 `P ′′ and ∆2 ` P1 |P2. From [T-SUB]
and [T-PAR] we deduce that there exist ∆21 and ∆22 such that
∆2 6 ∆21⊗∆22 and ∆2i ` Pi for i = 1, 2. We conclude with
an application of [T-PROCESSES] and one of [T-SOLUTION].

Lemma A.5. If ` D P and D P ⇁ D ′ P ′, then
` D ′ P ′.

Proof. We reason by cases on the heating rule being applied.
We omit discussing rule [COMP-2], as it is similar to [COMP-1].

[NULL] Then D ′ = D and P ′ = P, null. The result is
immediate as null is well typed in the empty environment.

[DEF] Then D = D ′, a = C and P = P ′′, P and
P ′ = P ′′, def a = C in P and a 6∈ fn(P ′′). From
[T-SOLUTION] we deduce that there exist Γ and ∆ such that
Γ 6 ∆ and Γ ` D and ∆ ` P . From [T-DEFINITIONS]
we deduce that Γ = Γ ′, a : t and a : t ` C. From
[T-PROCESSES] we deduce that there exist ∆1 and ∆2 such
that ∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′′ and ∆2 ` P . From
the hypothesis a 6∈ fn(P ′′) we can assume, without loss
of generality, that a ∈ dom(∆2) \ dom(∆1). That is, ∆2 =
∆′

2, a : s where t 6 s. We conclude by [T-SUB] and [T-OBJECT].

[COMP-1] Then D = D ′ and P = P ′′, P1, P2 and P ′ =

P ′′, P1 |P2. From [T-SOLUTION] we deduce that there exist
Γ and ∆ such that Γ 6 ∆ and Γ ` D and ∆ ` P . From
[T-PROCESSES] we deduce that there exist ∆1, ∆2, and ∆3 such
that ∆1 ` P ′′ and ∆2 ` P1 and ∆3 ` P2. By [T-PAR] we
obtain ∆2⊗∆3 ` P1 |P2. We conclude with one application
of [T-PROCESSES] and one of [T-SOLUTION].

Definition A.6 (environment substitution). The application
of σ to the environment Γ is the environment σΓ defined by:

σΓ
def
=
⊗

u∈dom(Γ) σ(u) : Γ(u)

Proposition A.7. The following properties hold:

1. σ(Γ ⊗ ∆) = σΓ ⊗ σ∆;
2. Γ 6 ∆ implies σΓ 6 σ∆.

Proof. Easy applications of Definitions 5.1, 5.2, and A.6.

Lemma A.8. If Γ ` J :: T and ∆ ` σJ :: S and T 6 S,
then ∆ 6 σΓ .

Proof. By induction on J and by cases on its shape.

J = m(x̃) Then Γ = {xi : ti}i=1..n and T = m(t1, . . . , tn)
and σJ = m(u1, . . . , un) and S = m(s1, . . . , sn) and
∆ =

⊗
i=1..n ui : si. From the hypothesis T 6 S we

deduce si 6 ti for every i = 1..n.
To prove ∆ 6 σΓ , observe that dom(σΓ) = {u1, . . . , un} ⊆

dom(∆). Now we distinguish two subcases. If u ∈ dom(∆)\
dom(σΓ), then u cannot be any of the ui, hence nl(∆(u)). If
u ∈ dom(σΓ), we have

(σΓ)(u) =
⊗

v∈dom(Γ),u=σ(v) Γ(v) by Definition A.6
=
⊗

i=1..n,u=σ(xi)
Γ(xi) by definition of Γ

=
⊗

i=1..n,u=ui
ti by def. of σ and Γ

and furthermore ∆(u) =
⊗

i=1..n,u=ui
si. We conclude

(σΓ)(u) 6 ∆(u) from the fact that si 6 ti and pre-
congruence of 6.

16 2015/5/27



J = J1 | J2 Then Γ = Γ1, Γ2 and T = T1 ⊗ T2 and
∆ = ∆1 ⊗ ∆2 and S = S1 ⊗ S2 and Γi ` Ji :: Ti
and ∆i ` σJi :: Si for every i = 1, 2. Since T1 and
T2 have disjoint signatures, and so do S1 and S2, from the
hypothesis T 6 S and Proposition A.3 we deduce Ti 6 Si
for every i = 1, 2. By induction hypothesis we deduce that
∆i 6 σΓi for every i = 1, 2. We conclude ∆ = ∆1 ⊗ ∆2 6
σΓ1 ⊗ σΓ2 = σ(Γ1, Γ2) = σΓ by pre-congruence of 6 and
Proposition A.7(1).

Lemma A.9. If Γ `M :: T , then σΓ ` σM :: T .

Proof. By induction on the derivation of Γ `M :: T and by
cases on the last rule applied.

[T-MSG-M] Then M = m(u1, . . . , un) and Γ =
⊗

i=1..n ui :

ti and usable(t1, . . . , tn). By Proposition A.7(1) we deduce
σΓ =

⊗
i=1..n σ(ui) : ti. We conclude with one application

of [T-MSG-M] observing that σM = m(σ(u1), . . . , σ(un)).

[T-COMP-M] Then M = M1 |M2 and Γ = Γ1 ⊗ Γ2 and
T = T1 ⊗ T2 and Γi ` Mi :: Ti for every i = 1, 2.
By induction hypothesis we deduce σΓi ` σMi :: Ti. We
conclude with one application of [T-COMP-M] observing that
σM = σM1 |σM2 and by Proposition A.7(1).

Lemma A.10. If Γ ` P , then σΓ ` σP .

Proof. By induction on the derivation of Γ ` P and by cases
on the last rule applied.

[T-NULL] Immediate.

[T-SEND] Then P = u.M and Γ = ∆ ⊗ u : T and
∆ `M :: T . By Lemma A.9 we deduce σ∆ ` σM :: T . By
[T-SEND] we derive σ∆⊗σ(u) : T ` σ(u).σM . We conclude
by Proposition A.7(1).

[T-PAR] Then P = P1 |P2 and Γ = Γ1 ⊗ Γ2 and Γi ` Pi
for every i = 1, 2. By induction hypothesis we deduce
σΓi ` σPi for every i = 1, 2. We conclude by Propo-
sition A.7(1) and one application of [T-PAR], observing that
σP = σP1 |σP2.

[T-OBJECT] Then P = def a = C in Q and there exists
t such that a : t ` C and Γ , a : t ` Q. Without loss
of generality we may assume that a 6∈ σ(dom(Γ)), so that
σ(Γ , a : t) = σΓ , a : t. By induction hypothesis we deduce
σ(Γ , a : t) ` σQ. We conclude with one application of
[T-OBJECT].

[T-SUB] Then there exists ∆ such that Γ 6 ∆ and ∆ ` P .
By induction hypothesis we deduce σ∆ ` σP . We conclude
by Proposition A.7(2) and one application of [T-SUB].

Lemma A.11. If t ↓ T and t 6 s ⊗ S and usable(s) and
T = S, then T 6 S.

Proof. Let R ∈ JsK. Such R exists from the hypothesis
usable(s). Then R⊗ S ∈ Js⊗ SK. From the hypothesis t 6
s⊗ S we deduce that there exists R′ such that R′ ⊗ T ∈ JtK
and R′⊗ T 6 R⊗S. From the hypothesis t ↓ T we deduce
that if T contains some M1 andR′ contains some M2 such that
M1 and M2 have the same tag, then M1 = M2. It follows that
T 6 S.

Lemma A.12. If ` D P and D P → D P ′, then
` D P ′.

Proof. We have D = D ′, a = {Ji . Pi}i∈I and P =
P ′′, a.σJk and P ′ = P ′′, σPk for some k ∈ I . Without
loss of generality, we may assume that a 6∈ dom(σ). From
[T-SOLUTION] we deduce that there exist Γ and ∆ such that Γ 6
∆ and Γ ` D and ∆ ` P . From [T-DEFINITIONS] we deduce
that there exist t such that Γ(a) = t and a : t ` {Ji .Pi}i∈I .
From [T-CLASS] and [T-REACTION] we deduce that there exist
Γ0, T , and s such that (1) Γ0 ` Jk :: T and (2) Γ0, a : s ` Pk
and furthermore (3) t ↓ T , and (4) t 6 t[T ] ⊗ s. From
[T-PROCESSES] we deduce that there exist ∆1, ∆2, t1, and t2
such that ∆ = (∆1, a : t1) ⊗ (∆2, a : t2) and ∆1, a : t1 `
P ′′ and ∆2, a : t2 ` a.σJk (if a 6∈ fn(P ′′) we can take
t1 = 1). From [T-SUB] and [T-SEND] we deduce that there exist
∆′

2, t3, and S such that ∆2 6 ∆′
2 and t2 6 t3 ⊗ S and (5)

∆′
2, a : t3 ` σJk :: S. Overall, we have (6) t 6 t1 ⊗ t3 ⊗ S.

Furthermore, it must be the case that T = S for T and S are
molecule types for molecules with the same signature. From
(3) and Lemma A.11, we deduce T 6 S. From (1), (5),
and Lemma A.8, we deduce that ∆′

2, a : t3 6 σΓ0. By pre-
congruence of6, we deduce that ∆′

2, a : t3⊗s 6 σΓ0⊗a : s
therefore we can derive ∆2, a : t3 ⊗ s ` σPk using (2) and
(∆1 ⊗ ∆2), a : t1 ⊗ t3 ⊗ s ` P ′′, σPk with an application
of [T-PROCESSES]. From (6) and Proposition A.2 we deduce
t[T ] 6 t1 ⊗ t3. We conclude t 6 t1 ⊗ t3 ⊗ s using (4) and
pre-congruence of 6.

Theorem 6.1. If ` D P and D P R D ′ P ′ where
R ∈ {⇀,⇁,→}, then ` D ′ P ′.

Proof. Consequence of Lemmas A.4, A.5 and A.12.

Lemma A.13. Γ `M :: T implies usable(Γ).

Proof. By induction on the derivation of Γ `M :: T and by
cases on the last rule applied.

[T-MSG-M] Then M = m(u1, . . . , un) and Γ =
⊗

i=1..n ui :

ti where usable(t1, . . . , tn). The result follows immediately.

[T-COMP-M] Then Γ = Γ1 ⊗ Γ2 and M = M1 |M2 and
T = T1 ⊗ T2 and Γi ` Mi :: Ti for i = 1, 2. By induction
hypothesis we deduce usable(Γi) for every i = 1, 2. We
conclude usable(Γ) since usable(s1) and usable(s2) imply
usable(s1 ⊗ s2).

The following Lemma is an equivalent reformulation of
Lemma 6.4.
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Lemma A.14. Γ ` P implies usable(Γ).

Proof. By induction on the derivation of Γ ` P and by cases
on the last rule applied. We only show a few cases.

[T-NULL] Trivial.

[T-SEND] Consequence of Lemma A.13.

[T-SUB] Then ∆ ` P where Γ 6 ∆. By induction hypothe-
sis we deduce usable(∆). We conclude usable(Γ) by Defini-
tion 5.2 since nl(t) implies usable(t).

Theorem 6.2. If Γ , a : t ` P, a.m1(c̃1), . . . , a.mn(c̃n),
then there exist S and s̃i such that t 6 S ⊗

⊗
i=1..n mi(s̃i).

Proof. From the hypothesis and [T-PROCESSES] we deduce that
there exist Γi and ti for i ∈ {0, . . . , n} such that Γ =⊗

i=0..n Γi and t =
⊗

i=0..n ti and Γ0, a : t0 ` P and
Γi, a : ti ` a.mi(c̃i) for every i = 1..n. If a 6∈ fn(P), we
can take t0 = 1 without loss of generality. From [T-SUB] and
[T-SEND] we deduce that, for every i = 1..n, there exist s̃i
and mi such that ti 6 mi(s̃i). From Lemma A.14 we deduce
usable(t0), namely there exist S ∈ Jt0K. We conclude t =⊗

i=0..n ti 6 S⊗
⊗

i=1..n mi(s̃i) by definition of t and pre-
congruence of 6.

Note that there is no molecule type S such that S '
0, hence the property in Theorem 6.2 cannot be satisfied
trivially.

Lemma A.15. If Γ ` M :: T and u ∈ dom(Γ) \ fn(M),
then nl(Γ(u)).

Proof. Easy induction on the derivation of Γ `M :: T .

Theorem 6.3. If Γ ` P and a ∈ dom(Γ) and lin(Γ(a)), then
a ∈ fn(P ).

Proof. We prove an equivalent property, namely that Γ ` P
and a ∈ dom(Γ) \ fn(P ) imply nl(Γ(a)). We proceed by
induction on the derivation of Γ ` P and by cases on the last
rule applied.

[T-NULL] Immediate.

[T-SEND] Then Γ = Γ ′ ⊗ u : T and P = u.M and
Γ ′ ` M :: T . Let a ∈ dom(Γ) \ fn(P ). Then a 6= u and
a ∈ dom(Γ ′)\fn(M). The result follows from Lemma A.15.

[T-PAR] Then Γ = Γ1 ⊗ Γ2 and P = P1 |P2 and Γi ` Pi
for every i = 1, 2. By induction hypothesis, a ∈ dom(Γi) \
fn(Pi) implies nl(Γi(a)) for every i = 1, 2. We conclude by
observing that dom(Γ) = dom(Γ1) ∪ dom(Γ2) and fn(P ) =
fn(P1) ∪ fn(P2).

[T-OBJECT] Then P = def c = C in Q and Γ , c : t ` Q
where, without loss of generality, we may assume a 6= c.
By induction hypothesis we deduce that a ∈ (dom(Γ) ∪
{c}) \ fn(Q) implies nl(Γ(a)). We conclude by observing
that fn(P ) = fn(Q) \ {c}.

[T-SUB] Then ∆ ` P for some ∆ such that Γ 6 ∆. Recall
that dom(∆) ⊆ dom(Γ) by Definition 5.2. Let a ∈ dom(Γ)\
fn(P ). We distinguish two sub-cases: if a ∈ dom(∆), then
we conclude using the induction hypothesis; if a 6∈ dom(∆),
then nl(Γ(a)) by Definition 5.2.
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