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1. Abstract 

The most convenient way to assess the color rendering of a coated, painted, or printed surface in 

various illumination and observation configurations is predict its spectral, angular reflectance using an 

optical model. Most of the time, such a surface is a stack of layers having different scattering 

properties and different refractive indices. A general model applicable to the widest range of stratified 

surfaces is therefore appreciable. This is what we propose in this paper by introducing a method based 

on light transfer matrices: the transfer matrix representing the stratified surface is the product of the 

transfer matrices representing the different layers and interfaces composing it, each transfer matrix 

being expressed in terms of light transfers (e.g. diffuse reflectances and transmittances in the case of 

diffusing layers). This general model, inspired of models used in the domain of thin films, can be used 

with stacks of diffusing or nonscattering layers for any illumination-observation geometry. It can be 

seen, in the case of diffusing layers, as an extension of the Saunderson-corrected Kubelka-Munk 

model and Kubelka’s layering model. We illustrate the through an experimental example including a 

thin coating, a thick glass plate and a diffusing background.  

2. Introduction 

For a long time, the variation of the spectral properties of surfaces and objects by application of 

coatings has been a wide subject of investigation for physicians who proposed several models based 

on specific mathematical formalisms according to the type of physical components and the application 

domain. In the domain of paints, papers, and other diffusing media, a classical approach is to use the 

Kubelka-Munk system of two coupled differential equations to describe the propagation of diffuse 

fluxes in the medium  [1,2]. The extension of this model by Kubelka to stacks of paint layers is based 

on geometrical series describing the multiple reflections and transmissions of these diffuse fluxes 

between the different layers [3,4]. Geometrical series were also used by Saunderson [5] when deriving 

his correction of the Kubelka-Munk model in order to account for the internal reflections of light 

between the paint layer and the paint-air interface, by Clapper and Yule [6] in their reflectance model 
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for halftone prints to account for the internal reflections of light between the paper and the print-air 

interface across the inks, and by Williams and Clapper [7] in their model for gelatin photograph to 

account for the internal reflections of light between the paper and the print-air interface across the 

nonscattering gelatin layer. More recently, alternative mathematical methods using graphs [8], Markov 

chains [9] or continuous fractions [10,11] were proposed to derive the equations of these models in a 

more efficient way, especially when their structure or the number of layer increases. In the domain of 

thin coatings, the models are rather based on the multiple reflections of coherent optical waves 

generating interferences at normal or near-normal incidence [13]. Despite their apparent dissimilarity, 

all these models have in common to be comparable to a two-flux model describing the mutual 

exchanges between downward and upward propagating light quantities, by reflection or transmission 

of light by the different layers and surfaces. In the case of weakly scattering media, e.g. pigmented 

media [14,15], advanced models based on the radiative transfer theory [16] or on multi-flux 

approaches [17] are needed to take into account more thoroughly the orientations of scattered light. 

However, in all the previously cited configurations where the media are either very scattering or 

almost non-scattering, the two-flux-like approach generally provides good prediction accuracy and the 

equations can be turned into vector equations involving 2×2 transfer matrices. This matrix formalism 

is well known in the case of thin films illuminated a normal incidence by coherent light modeled by 

complex amplitudes of electromagnetic fields [18], or in the case of diffusing layers illuminated by 

diffuse incoherent fluxes [19], but it is less known that similar formalism actually applies to any stack 

of thin layers, thick nonscattering layers, and/or diffusing layers, provided appropriate light models 

(complex amplitude of waves, oriented collimated fluxes or diffuse fluxes) are used for each type of 

layer. However, the reflectance and transmittance of a thin layer computed by considering coherent, 

directional light can be combined with the reflectance and transmittance of a thick nonscattering layer 

by considering directional, directional light, then with the reflectance and transmittance of a thick 

layer by considering Lambertian flux. Some objects containing thin, thick and diffusing layers are well 

known, e.g. luster ceramics which display an angle-dependent colored sheen in addition to their 

ground color due to the fact that a thin absorbing layer made by metallic nanoparticles is embedded in 

the thick nonscattering glaze layer covering the diffusing ceramics background [20]. In the domain of 

color reproduction, similar structure can be found in colored samples produced by new ink-less 

printing technologies, e.g. the technology presented in Ref. [21] where thin layers of silver 

nanoparticles in a titanium oxide matrix with photochromics properties are deposited on a clear 

support (e.g. glass or polymer) or a diffusing support (pigmented polymer or paper). Since a printing 

technology aims at producing many samples with different colors on different supports, a model able 

to predict easily the color rendering of all of them for any illumination-observation geometry might be 

appreciable. In comparison to more classical mathematical methods, the matrix method that we 

propose may considerably ease the derivation of analytical expressions for reflectance and 

transmittance of the specimens and enables fast numerical computation.  

This paper aims at presenting the matrix method in a general way, before showing how to use it in 

different contexts. We will first present the matrix method by using a generic terminology standing for 

complex amplitude of waves as well as for fluxes of photons: we will call "transfer" the reflection or 
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transmission of propagating optical quantity, and "transfer factor" a fraction of quantity which is 

transferred. According to the direction of the incoming quantity and according to whether the transfer 

is due to reflection or transmission, four transfer factors can be distinguished: front and back reflection 

factors, and forward and backward transmission factors. After this general presentation (Section 3), we 

propose to deal specifically with diffusing layers (Section 4), nonscattering layers (Section 4) and thin 

coatings (Section 5). Section 7 briefly explains the methodology to follow when these different kinds 

of layers are stacked with each other, a methodology which is illustrated in detail in Section 8 through 

the example of glass plates coated with thin silicon deposits and placed in front of a white diffusing 

background.  

3. General model 

Let us consider planar optical components labeled by increasing number k from front to back. The 

light quantities propagating forwards are denoted Ik and those propagating backwards Jk, where k 

indicates the position in the stack of components (see Figure 1). The light transfers in component k due 

to reflections are quantified by transfer factors denoted kr  (front-side reflection) and  kr  (back-side 

reflection); those due to transmissions through component k are denoted kt  (forward transmission), 

and kt  (backward transmission).  

I0
r1

r2

t1

t2

I2

I1

J0

J2

J1
r1′

r2′

t1′

t2′

Component 1

Front side

Back side

Component 2

 

Figure 1: Transfers between two flat optical components (the arrows do not render the orientation of light). 

In each component k, one can write the following relations between incoming and outgoing quantities 

 1 1

1

,

,
 



 
 

k k k k k
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 (1) 

and turn them into the following vector equation 
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1
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0 1




     
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, (2) 

or, assuming 0kt , into the following one: 

 1

1





   
   

   
k k
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I I

J J
M  (3) 

where Mk is the transfer matrix representing component k: 
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11  

    
k

k
k k k k kk

r

r t t r rt
M  (4) 

Regarding the two components 1 and 2 together, Eq. (3) can be repeated twice and one gets: 

 0 1 2 2
1 1 2 12

0 1 2 2

       
          

      

I I I I

J J J J
M M M M  (5) 

where 12M  is the transfer matrix representing the two layers together, similarly defined as Eq. (4) in 

terms of its transfer factors 12r , 12t , 12r  and 12t .  

Eq. (5) shows that the transfer matrix representing two superposed components is the product of the 

component’s individual transfer matrices. The multiplicativity of transfer matrices is true for any 

number of components, and the left-to-right position of the matrices in the product reproduces the 

front-to-back position of the corresponding components. Every transfer matrix in this model has the 

structure displayed in Eq. (4) and from a given transfer matrix   ijmM , one retrieves the transfer 

factors r, r , t and t  in the following way:   

 21 11/r m m , (6) 

 111 /t m , (7) 

 12 11/r m m   , (8) 

and 

 22 21 12 11/t m m m m   . (9) 

It is important to notice that the forward transmission factor may be zero, in particular each time an 

oblique radiance strikes a flat interface beyond the critical angle. The transfer matrix defined by (4) 

thus becomes indefinite. Although, in sake of clarity, we will continue to use this definition for the 

transfer matrices in the following, we recommend using an alternative definition of the transfer 

matrices for numerical computation: 

 

1 0

0

0 0 τ

k

k k k k k k

k

r

r t t r r

 
    
 
 

M  (10) 

From a transfer matrix   ijmM  defined by Eq. (10), the transfer factors r, r  and t  are still given 

by the formulas (6), (8) and (9), respectively, and the transfer factor t is given by 33 11/m m .  

Let us come back to case of two components represented by the matrices 1M  and 2M  defined by Eq. 

(4). From the matrix 12 1 2 M M M  representing the two components together, using the formulas (6) 

to (9), one obtains the following transfer factors: 

 

1 1 2 1 2
12 1 12

1 2 1 2

2 2 1 1 2
12 2 12

1 2 1 2

, ,
1 1

, .
1 1

t t r t t
r r t

r r r r

t t r t t
r r t

r r r r


  

  
   

    
  

 (11) 

The expressions for the transfer factors become more complex as the number of stacked components 

increases, except in the case where all the components are identical (see for example an application 

based on stacked of printed films in Ref [11] or duplex halftone prints in Ref. [12]). In this case, there 
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is an interest in diagonalizing the matrix M representing each component, defined as in Eq. (10) in 

terms of the transfer factors r, r , t and t . Using the notations 

 
1

2

rr tt
a

rr

  



, (12) 

 2 1b a  , (13) 

and  

 
1 1

  
  
 

a b a b
E , (14) 

M can be decomposed as 

 
 

 
11 01

0 1

a b rr

t a b rr


  
   
   

M E E  (15) 

and the transfer matrix representing the stack of N identical components is: 

 
  

  
1

1 01

0 1

N

N
N N

a b rr

t a b rr


      
   

M E E  (16) 

After computing this matrix and using formulas (6) to (9), one obtains respectively: 

 
 
 

1
2

1
1

1
1

N N
r a b

a b rr

a b rr


      

              

, (17) 

 
       

2

1 1

N

N N N

bt
t

a b a b rr a b a b rr


             

, (18) 

 /N Nr r r r  , (19) 

and  

  /
N

N Nt t t t  . (20) 

As N increases to infinity, the reflection factor Nr  tends to the limit factor: 

  /
/

r r
r a b r r

a b


  


 (21) 

Note that all light quantities and transfer factors in this model may depend upon wavelength, 

polarization and orientation of light.  

4. Case of diffusing layers 

It is known that the reflection and transmission of light by strongly diffusing layers can be modeled 

according to a two flux approach [22, 3, 4], thereby by the present matrix model. In this case, the 

quantities I and J are Lambertian fluxes and the transfer factors are the layers’ diffuse reflectances and 

transmittances. Eqs. (11) are equivalent to those presented by Kubelka in Ref. [3]. In the special case 

where the layers are made of same medium, the Kubelka-Munk model applies [1, 2] and the matrix 
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model enables retrieving the Kubelka-Munk reflectance and transmittance formulas, as shown in Ref. 

[10] with a matrix formalism similar to the present one. We propose to show it in a slightly different 

way, by using Eqs. (17) and (18). 

Let us consider a layer of thickness h with reflectance ρ and transmittance τ and subdivide it into n 

identical sublayers with reflectances and transmittances denoted /ρh n  and /τh n . Since we have a stack 

of identical components, we can use Formulas (17) and (18). As n tends to infinity, the reflectance of 

one sublayer is the fraction of backscattered light which is, according to the Kubelka-Munk, 

proportional to the diffuse backscattering coefficient S and the thickness of the layer: 

 /ρ h n
h

S
n

 (22) 

 The transmittance of the sublayer is the amount of light which is not absorbed and not scattered, i.e.  

  /τ 1  h n
h

K S
n

 (23) 

where K denotes the diffuse absorption coefficient. Parameters a and b defined by Eqs. (12) and (13) 

become: 

 
2 2

/ /

/

1 ρ τ
lim

2ρ

  
 h n h n

n h n

K S
a

S
, (24) 

and 

 2 1 b a , (25) 

and using a classical result for the exponential function [23] 

 lim 1


   
 

N
x

N

x
e

N
, (26) 

one can write: 

 
 

 

 

 
2

1
lim

1

 


 

      
    

n

a b Sh
bSh

n a b Shn

Sh
a b

en
e

Sh e
a b

n

, (27) 

Formulas (17) and (18) thus become: 

 
 

1

2

2 1
ρ 1

coth1
h bSh

a b
a b bShe




          

  (28) 

and 

 
           

2
τ

sinh cosh

aSh

h a b Sh a b Sh

be b

a bSh b bSha b e a b e



   
 

  
 (29) 

which are the Kubelka-Munk reflectance, respectively transmittance expressions, identical at the front 

and back sides. The transfer matrix representing the diffusing layer is: 

 
2 2

1 ρ1

τ ρ τ ρ

 
    

h

h h h h

M  (30) 
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Most of the time, the layer has a different refractive index as the surrounding medium (e.g. air). In this 

case, the reflections and transmissions of light by the interfaces have a non-negligible effect that must 

been taken into account. Saunderson [5] proposed a reflectance formula correcting the Kubelka-Munk 

reflectance expression by considering one interface at the front side (the layer being assumed bordered 

by a medium of same index at the back side). Here, we propose to consider that the medium is 

surrounded by air (medium 0) at both sides.   

By denoting  01 θR  the angular reflectance of the air-medium interface at the air side, given by 

Fresnel’s formulas, one obtains the diffuse reflectance of the interface (for Lambertian illumination at 

the air side) by integrating the angular reflectance over the hemisphere [24]: 

    
π/2

01 01θ 0
θ sin 2θ θR R d


   (31) 

The diffuse transmittance from air to the medium is 01 011  T R , the diffuse reflectance at the 

medium side is   2
01 011 1 /    R R n  and the diffuse transmittance from the medium to air is 

2
01 01 /  T T n , where n is the refractive index of the medium [8]. The transfer matrix representing the 

interface at the front and back sides are respectively 

 01
01

01 01 01 01 01 01

11  
    




     
R

T R T T R R
F , (32) 

and 

 01
10

01 01 01 01 01 01

11 R

T R T T R R

 
      

F



      . (33) 

They only depend on the refractive index of the medium. The transfer matrix representing the layer 

with interfaces is:  

 01 10S   M F M F   (34) 

with M given by Eq. (30). By computing the matrix SM  and using formula (6), one obtains the 

reflectance and transmittance ρS  and τS  of the layer with interfaces, identical at both sides due to the 

fact that the layer is symmetrical and illuminated by Lambertian fluxes at both sides. Note that M  and 

SM  may be spectral matrices, i.e. they are evaluated for each waveband of the considered spectrum. 

In practice, ρS  and τS  may be measured using a spectro-photometer (in diffuse:diffuse geometry), 

and the matrix representing the layer with interfaces can be defined for each waveband: 

 
2 2

1 ρ1

τ ρ τ ρ

S
S

S S S S

 
    

M  (35) 

Then, the transfer matrix representing the layer without interface can be computed according to the 

following formula, derived from Eq. (34): 

 1 1
01 10S
   M F M F   (36) 
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By way of illustration, we can consider a typical refractive index for papers and polymers: 1.5n  . 

We have 01 0.09R  , 01 0.60R  , 01 0.91T   and 01 0.40T   . 01F  and 10F , respectively given by Eqs. 

(32) and (33), can be evaluated and their inverse can be numerically computed. Eq. (36) becomes: 

 
0.775 1.5 0.341 0.099

0.225 2.5 0.659 1.099S
   

         
M M  (37) 

The instrinsic reflectance ρh and transmittance τh of the diffusing layer (without interface) can then be 

deduced from M using the formulas (6) and (7). 

5. Case of thick nonscattering layers 

The matrix model can also be used with slices of nonscattering medium, where light reflections can 

occur only at the interfaces. We consider in this section layers whose thickness is much larger than the 

coherence length of the light, i.e. where no interference can occur. The quantities I and J are 

incoherent, directional fluxes. The matrix representing the layer considered without interfaces is 

   
1 1 1

1 1 1

α /cosθ

1 1 1 α /cosθ

0
α , ,θ

0 

 
   
 

d

d

e
d

e
L  (38) 

where θ1 denotes the orientation of light in the layer, d1 the thickness of the layer and α1 its linear 

absorption coefficient which is related to the imaginary part of the refractive index, k1, by: 

  1
1

4π
α

λ


k
. (39) 

Since according to Beer’s law the term 

  1 1α
1

 dt e , (40) 

is the transmittance of the layer at normal incidence (hereinafter called “normal transmittance”), the 

matrix  1 1 1α , ,θdL  may also be written  

  
1

1

1/cosθ
1

1 1 1/cosθ
1

0
,θ

0

 
   
 

t
t

t
L , (41) 

Regarding the interface between two media (labeled k and l), the Fresnel angular reflectance depends 

on the polarization of the incident flux. For a linearly polarized beam coming from medium k at the 

angle θk , the reflectance is denoted  , θs kl kR  if the electric field oscillates in parallel to the incidence 

plane (p-polarization), and  , θp kl kR  if the electric field oscillates perpendicularly to the incidence 

plane (s-polarization). The Fresnel transmittance is    θ 1 θ  kl k kl kT R , where symbol * denotes 

either s or p. For light coming from the medium l at the angle  θ arcsin sinθ /l k k ln n , the Fresnel 

reflectance is    θ θ kl k lk lR R  and the transmittance is      θ θ 1 θ    kl k lk l kl kT T R . The 

transfer matrix  θkl kF  representing the interface, defined by Eq. (4), can thus be expressed in terms 

of θk only : 

    
 

   
1 θ1

θ
θ 1 2 θ1 θ




 

 
    

kl k
kl k

kl k kl kkl k

R

R RR
F  (42) 
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The transfer matrix representing a stack of thick layers with different indices is the product of the 

transfer matrices representing the front interface (evaluated for the considered incident angle θ0 in air), 

the first layer (evaluated at the angle  1 0 1θ arcsin sinθ / n ), the second interface (evaluated at this 

angle θ1), the second layer (evaluated at the angle  2 0 2θ arcsin sinθ / n ), and so on… From the 

resulting matrix, one deduces the angular reflectances of the stack, denoted  0123... 0θ NR  and 

 0123... 0θ NR , and their angular transmittances,  0123... 0θ NT  and  0123... 0θ NT , for the considered 

incident angle and the considered polarization. If the incident flux is unpolarized, the reflectances and 

transmittances of the stack are the averages of the two corresponding polarized angular functions:  

      0123... 0 0123... 0 0123... 0
1

θ θ θ
2
   N p N s NX X X  (43) 

where X represents either R, R , T or T . If furthermore the incident flux is Lambertian, the angular 

reflectances and transmittances are integrated over the hemisphere, thus yielding diffuse reflectances 

and transmittances:  

    
0

π/2

0123... 0123... 0 0 0θ 0
θ sin 2θ θ


 

N NX X d  (44) 

This matrix method is suitable to stacks of colored or printed films such as those studied in Ref. [25, 

11, 26] where reflectance and transmittance expressions were derived from iterative methods based on 

geometrical series or continuous fractions. The matrix method yields the same analytical expressions 

by simple matrix product.  

6. Case of thin films 

Some nonscattering specimens may contain both thin and thick layers within which the multiple 

reflections should be respectively described in coherent and incoherent modes. The two types of layers 

may be considered successively as proposed by Centurioni [27], who uses similar matrix approach as 

the one presented here. It is possible to address loss of coherence due to defects or impurities, by 

introducing scattering in the layers [33,34] or a random parameter in the phase angle expression [28].  

In the case of thin films, the quantities I and J represent the complex amplitudes of polarized electric 

fields. The corresponding transfer matrices are expressed in terms of the Fresnel reflectivities and 

transmittivities of the interfaces (different from the Fresnel angular reflectance and transmittance 

presented in the previous section in the case of thick layers), which depend upon polarization and 

propagation directions of the fields [13], and possibly upon wavelength if the indices of the media 

themselves depend upon wavelength.  

Let us consider a flat interface between media 0 and 1 with respective refractive indices n0 and n1, 

receiving a wave from medium 0. The angle between the propagation direction and the normal of the 

interface is denoted θ0. If the electric fields oscillate perpendicularly to the incidence plane (s-

polarization), the reflectivity and transmittivity of the interface are  

 

 

 

0 0 1 1
01 0

0 0 1 1

0 0
01 0

0 0 1 1

cosθ cosθ
θ ,

cosθ cosθ

2 cosθ
θ .

cosθ cosθ









s

s

n n
r

n n

n
t

n n

 (45) 
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where θ1 denotes the angle between the propagation direction of the wave in medium 1 and the normal 

of the interface, satisfying 0 0 1 1sinθ sinθn n . If the electric fields oscillate in the incidence plane (p-

polarization), the reflectivity and transmittivity of the interface are  

 

 

 

1 0 0 1
01 0

1 0 0 1

0 0
01 0

1 0 0 1

cosθ cosθ
θ ,

cosθ cosθ

2 cosθ
θ .

cosθ cosθ









p

p

n n
r

n n

n
t

n n

 (46) 

Recall that the Fresnel angular reflectances  01 0θpR  and  01 0θsR  used in the previous section in the 

context of single interface in incoherent mode are, for each polarization, the squared modulus of the 

reflectivities  01 0θpr  and  01 0θsr  [13].  

When the wave comes from medium 1 at the angle θ1 related to θ0 by Snell’s law, the reflectivity 

 10 0θr  and the transmittivity  10 0θt  for each polarization (symbol * denoting ethier s or p) are 

related to  01 0θr  and  01 0θt  according to the following equalities:  

 

   
   

     

10 1 01 0

01 1 01 0

2
10 1 01 0 01 0

θ θ ,

θ 1 θ ,

θ θ 1 θ .

 

 

  

 

 

 

r r

t r

t t r

  

The transfer matrix 01m  representing the interface is similarly defined as Eq. (4) and it can be 

simplified as follows according to the previous relations: 

    
 

 
01 0

01 0
01 001 0

1 θ1
θ

θ 11 θ





 
    

r

rr
m  (47) 

Once having crossed the interface, the wave propagates at the angle θ1 into the layer of medium 1 with 

thickness d1 and undergoes a phase angle 

 1 1 1 1
2π

β cosθ
λ

 d n  (48) 

The corresponding transfer matrix, m1(d1), is again defined as Eq. (4)  but with zero reflectivities: 

  
1

1

β

1 1 1 β

0
,θ

0

 
  
  

j

j

e
d

e
m  (49) 

with 1 j .  

When the thin layer is absorbing, the refractive index is a complex number denoted 1 1 1ˆ  n n jk . The 

propagation angle  1 0 1
ˆ ˆθ arcsin sinθ / n  and the phase angle  

 1 1 1 1 1 1
2πˆ ˆˆβ β γ cosθ
λ

  j d n   (50) 

are also complex. The matrix  1 1,θdm  representing the thin absorbing layer is still given by Eq. (49) 

and can be written as the product of two matrices, one with real entries representing absorption and 

one with complex entries representing interferences: 

  
1 1 1

1 11

β̂ γ β

1 1 1 ˆ γ ββ

0 0 0
,θ

0 00

 



     
      
         

j j

jj

e e e
d

e ee
m  (51) 
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In some cases, the imaginary part of the refractive index is much lower than the real part, i.e. 1 1k n . 

Then, the complex phase angle can be written 

  1/22 2 2
1 1 1 1 1 1 1

2π
β̂ cos θ 2

λ
  d n k jk n  (52) 

with  1 1
ˆθ Re θ . A polynomial approximation at the first order of Eq. (52) yields the same 

expression as Eq. (48) for 1β , and the following expression for γ1: 

 1
1 1

1

2π
γ

λ cosθ


k
d  (53) 

Interferences can occur only if the layer is thinner than the coherence length of light, has plane and 

parallel surfaces, and does not scatter light. If the wave is scattered due to rough interfaces or 

heterogeneities in the layer, or if the thickness of the layer is too large, the coherence of light may be 

reduced, and even completely lost. In incoherent mode, the real part β1 of the phase angle varies 

rapidly and randomly between −π to π and can be averaged. Since the average value of the terms 1βje  

and 1β je  is 1, one has: 

 
1

1
1

βπ

1β
β π

0 1 01
β

0 12π 0





   
   
   


j

j

e
d

e
, (54) 

and Eq. (51) becomes: 

 
1

1

γ

1 1 1 γ

0
( ,θ )

0 

 
  
  

e
d

e
m  (55) 

with 1γ  given by Eq. (53).  

The matrix approach to model the reflection and transmission of light by thin films is widely used in 

ellipsometry [13, 29]. For a stack of N thin films labeled 0, 1, 2,…, N and a given polarization, one 

obtains the transfer matrix  0123... 0θ Nm  by multiplying the transfer matrices representing the 

interfaces and the layers in respect to their front-to-back position, for the considered polarization: 

 
     

 
0123... 0 01 0 1 1 1 12 1

1, 1

θ θ ( ,θ ) θ ...

... θ

  

  

N

N N N

dm m m m

m
 (56) 

The reflectivity and transmittivity of the multilayer, denoted  0123... 0θ Nr  and  0123... 0θ Nt  for each 

polarization  , are deduced from the entries of the transfer matrix according to relations (6). In order 

to convert them into reflectance and transmittance, one uses the Poynting complex vector [13] which 

relates an electric field amplitude E  and the corresponding flux  . For the two polarization s and p, 

the incident fluxes are  

 
 

 

2
1 1

2

1 1

ˆRe cosθ ,

ˆRe cosθ ,

 

 

s s

p p

C E n

C E n
 

where the symbol x  denotes the modulus of the complex quantity x, y  denotes the conjugate of the 

complex refractive index y, and C is a constant. The reflected fields are  
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   

   

2
0123... 0 1 1

2

0123... 0 1 1

ˆθ Re cosθ ,

ˆθ Re cosθ ,

 

 

s s N s

p p N p

C r E n

C r E n
 

and the transmitted fields are 

 
   

   

2
, 0123... 0

2

, 0123... 0

ˆθ Re cosθ ,

ˆθ Re cosθ ,

 

 

s t s N s N N

p t p N p N N

C t E n

C t E n
 

It thus comes that the reflectance of the multilayer, ratio of the reflected to incident fluxes, is the 

squared modulus of the reflectivity for every polarization: 

     2
*0123... 0 *0123... 0θ θN NR r  (57) 

and that its transmittance, ratio of the transmitted to incident fluxes, is differently expressed for the 

two polarizations: 

      
 

2
0123... 0 0123... 0

0 0

ˆRe cosθ
θ θ ,

ˆRe cosθ
 N N

s N s N

n
T t

n
 (58) 

      
 

2

0123... 0 0123... 0
0 0

ˆRe cosθ
θ θ .

ˆRe cosθ






N N
p N p N

n
T t

n
 (59) 

For unpolarized incident light, the reflectance and transmittance are the average of the two polarized 

reflectances, respectively transmittances. If the incident light is Lambertian, these angular reflectance 

and transmittance expression are integrated over the hemisphere in a similar way as in Eqs. (44). 

7. Combining different configurations 

In the previous sections, we introduced the matrix model in three different configurations based on 

different properties of the light. In the configuration corresponding to thin coatings, the light is 

coherent, collimated and polarized. We can multiply matrices representing interfaces and layers, 

respectively defined by Eq. (47) and by Eq. (49). In the configuration corresponding to thick 

nonscattering layers, the light is incoherent, collimated and polarized. We can multiply matrices 

representing interfaces and layers, respectively defined by Eq. (42) and by Eq. (41), as well as transfer 

matrices representing thin coatings expressed in terms of their global reflectances and the 

transmittances defined for incoherent fluxes [see Eqs. (57) to (59)]. Lastly, in the configuration 

corresponding to diffusing layers, the light is incoherent, diffuse and unpolarized. We can multiply 

matrices representing interfaces and layers, respectively defined by Eqs. (32) and (30), as well as 

matrices representing nonscattering layers, stacks of nonscattering layers, stacks of thin coatings, etc., 

defined in terms of their reflectance and transmittance for diffuse, unpolarized fluxes by using Eqs. 

(43) and (44).  

It is important to notice that matrices can be multiplied only when they are defined for the same 

configuration. It is possible to compute the reflectances and the transmittances of a multilayer 

component in one configuration (e.g. for coherent light), to turn them to a second configuration (e.g. 

for incoherent light) and to define a transfer matrix from these latters. The transfer matrix thus defined 
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for this second configuration can be multiplied with other matrices representing layers and interfaces 

defined in this same configuration. This is what we propose to illustrate in detail through an 

experimental example involving the three configurations, i.e. a thin silicon coating, a thick glass plate, 

and a diffusing background.  

8. Application of the matrix method to an illustrating experience 

In this experiment, two types of thin amorphous silicon deposits with respective thickness 4.8 nm and 

10.8 nm have been produced on glass plates by magnetron sputtering [30]. Same deposits were 

produced on a first glass plate of thickness 1 mm with ground back face (Samples A) and on a second 

glass plate of thickness 150 µm with smooth surfaces (Samples B). The structure of the different 

samples is shown in Fig. 2. The complex refractive index      1 1 1ˆ λ λ λ n n jk  of amorphous silicon 

measured by ellipsometry and plotted in Fig. 3 is consistent with tabulated data [31]. The refractive 

index n2 of the glass is assumed to be 1.5 in the visible spectrum. In this section, labels 0, 1 and 2 are 

respectively attributed to air, silicon, and glass.  

150 μm

h = 4.8 or 10.8 nm

Flat surface

1mm

h = 4.8 or 10.8 nm

Rough surface

Samples A

Samples B

(2)  Glass 

(1)  Amorphous
      silicon 

(0)  Air 

(2)  Glass 

(1)  Amorphous
      silicon 

(0)  Air 

(0)  Air 

 

Figure 2: Description of the multilayer samples A and B.  

We will first consider the thin coatings for coherent light, then for incoherent light. Then, we will 

consider the coatings on the glass plates for incoherent, polarized collimated flux, then for incoherent, 

unpolarized diffuse flux. Finally, we will consider the coated plates in front of a diffusing background.  
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Figure 3: Real index n1 (solid line) and extinction coefficient k1 (dashed line) of amorphous silicon.  



The spectral reflectance of samples A was measured at near-mormal incident (7° from the normal of 

the samples) in mode VW using the Agilent technologiesTM
 Cary5000 spectrophotometer [32]. Since 

the back face of the glass plate is rough, no light is specularly reflected by this face towards the 

measuring instrument. Hence, the measured reflectance corresponds to the reflectance of the thin 

coating at 7°,     2
012 0127 7  R r  [Eq. (57)]. Let us compute it using the matrix model according to 

the matrix method explained in Section 3.  

We are in the configuration where the incident light is coherent, polarized and collimated. It comes at 

the front side with an angle θ0. The transfer matrix representing the coating is the product of the 

transfer matrices representing respectively the air-silicon interface [Eq. (47)], the silicon layer itself 

[Eq. (51)] and the silicon-glass interface [Eq. (47)]: 

 

       

  
1 11

1 1

012 0 01 0 1 1 1 12 1

ˆ ˆˆ 2 β 2 ββ
01 12 12 01

ˆ ˆ2 β 2 β01 12 01 12 01 12

θ θ ,θ θ

1

1 1

  

 
   

      



  
 

     

j jj

j j

d

r r e r r ee

r r r r e r r e

m m m m

 (60) 

with 01r  the reflectivity of the air-coating interface evaluated at the angle θ0, 12r  the reflectivity of 

the coating-glass interface evaluated at the angle   1 0 1ˆθ Re arcsin sinθ / n , and 1β̂  the phase angle 

given by Eq. (50). Note that all the terms in Eq. (60) depend on wavelength, included the reflectivities.  

From  012 0θm , using the formulas (6), we deduce the reflectances and transmittances of the coating: 

 

   
   
    

    

1

1

1

1

ˆ2 β
012 0 01 12

ˆ2 β
012 0 12 01

β̂
012 0 01 12

β̂
012 0 01 12

1
θ ,

1
θ ,

1
θ 1 1 ,

1
θ 1 1 ,


  


  


  


  

 

  


  


   


j

j

j

j

r r r e

r r r e

t r r e

t r r e

 (61) 

with  

 1
ˆ2 β

01 121 
    jr r e . 

We can now consider incoherent, unpolarized collimated incident fluxes (second configuration). The 

corresponding reflectances and transmittances of the coating are derived from Eqs. (61) according to 

the relations (57) to (59), by noticing for the transmittance expressions that air and glass have real 

refractive indices:  

 

   

   

     

     

2
012 0 012 0

2
012 0 012 0

2
012 0 012 0 2 2 0

2
012 0 012 0 2 2 0

θ θ ,

θ θ ,

θ θ Re cosθ / cosθ ,

θ θ Re cosθ / cosθ .

 

 

 

 



 



  

R r

R r

T t n

T u r n

. (62) 
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The reflectance  012 7R  of the two Samples A that we want to predict is the average of  012 0θsR  

and  012 0θpR  expressed in Eq. (62). Predicted and measured reflectances are compared in Fig. 4. 

They coincide fairly well, especially in the visible spectral domain (400-750 nm). 
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d1 = 10.8 nm

 

Figure 4: Predicted (dashed line) and measured (solid line) spectral reflectances of silicon coatings on 1mm 
thick glass plates (Samples A) at 7° from the normal.  

Regarding the samples B, their reflectances and transmittances can also be predicted by the matrix 

method. Since the back surface of the glass plate is flat, the model must account for the specularly 

reflected light. Assuming that the thickness d2 = 150 µm of the glass plate is higher than the coherence 

length of light, we are in the second configuration and the transfer matrix representing the glass layer 

is given by Eq. (41): 

  
2

2

1/cosθ
2

2 2 1/cosθ
2

0
,θ

0

 
  
  

t
t

t
L  (63) 

where 2t  is the normal transmittance of the glass layer in the considered spectral band, and 

 2 0 2θ arcsin sinθ / n . The global transfer matrix  020 0θM  representing the glass plate without 

coating is the product of the following transfer matrices: the matrix  02 0θF  representing the front 

interface [Eq. (42)], the matrix   2 2λ ,θtL  representing the glass slice [Eq. (63)] and the matrix 

 20 2θF  representing the back interface [also Eq. (42)]:  

        020 0 02 0 2 2 20 2θ θ ,θ θ   tM F L F  (64) 

The transmittance of the glass plate, given by inversing the top-left entry of   020 0θM , is: 

    
 

2

2

2 1/cosθ
02 0 2

020 0 2/cosθ2
02 0 2

1 θ
θ

1 θ






  


R t
T

R t
 (65) 

This transmittance is often measured at normal incidence. Since      2 2
02 2 21 / 1   R n n , one 

has: 

  
     

2
2 2

020 4 4 2
2 2 2

16
0

1 1 λ
 

  

n t
T

n n t
, (66) 

and therefore: 
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   

   

44 2 2 2
2 2 020 2

2 4
2 020

64 1 0 8

1 0

   


 

n n T n
t

n T
. (67) 

This formula enables computing the normal transmittance of the glass slice in each spectral band as 

soon as the spectral transmittance of the plate is measured.  

Once the coating is deposited on the glass plate, we consider the coating in place of the front air-glass 

interface. Hence, in the matrix product written in Eq. (64), we consider the matrix  012 0θM  

representing the coating, defined from the reflectances and transmittances given by Eq. (62), in place 

of the matrix  02 0θF . The matrix  0120 0θM  representing the coated glass plate is therefore given 

by: 

        0120 0 012 0 2 2 20 2θ θ ,θ θ   tM M L F . (68) 

After computation, we obtain the following expression for the forward transmittance of the coated 

glass plates: 

       
   

1

1

1/cosθ
012 0 02 0 2

0120 0 2/cosθ
012 0 02 0 2

θ θ
θ

1 θ θ
 


 




T T t
T

R R t
. (69) 

The term 2t  being known from Eq. (67), we can predict the transmittance of the coated plate for each 

wavelength, each polarization and each coating thickness. The predicted spectral transmittances for 

unpolarized light (average of the two polarized transmittances), are compared to the ones measured 

using the Cary 5000 spectrophotometer in Fig. 5. Once again, good prediction accuracy is achieved in 

the visible spectral domain.  
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Figure 5: Predicted (dashed line) and measured (solid line) spectral transmittance at normal incidence (θ0 = 0°) 
of silicon coatings on smooth glass plates of thickness 150 µm (Samples B).  

Through this example, we see how the matrix method eases the derivation of reflectance and/or 

transmittance expressions for multilayers while using thoroughly the appropriate optical laws 

(coherent or incoherent modes) according to the thickness of each layer.  

Taking into account the back glass-air interface, as permitted by the present method, is crucial for 

good accuracy of the model. Ignoring this interface would mean that the sample has the transmittance 
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 012 λT  instead of the transmittance  0120 λT , but we see through the spectra plotted in dotted lines in 

Fig. 5  that this approximation is not accurate, mainly because it does not account for the absorbance 

of the glass (mainly in the UV spectral domain) nor the transmittance of the back glass-air interface 

(thus yielding slight overestimation of the global transmittance of the samples).  

It is also crucial to consider the fact that the light is coherent only in the thin coating and not in the 

glass plate. Considering that light remains coherent across the whole sample would predict noticeable 

spectral oscillations due to interferences in the glass plate which are not observed in the visible 

spectral domain and just perceptible in the infrared (1500-1700 nm) due to partial coherence of light in 

this spectral domain, as shown in Fig. 6-a. A Taylor expansion of Eq. (48) yields a first approximation 

of the spectral period Δ of these oscillations: 

 
2

2 2 2

λ
λ

2 cosθ
 

d n
, (70) 

which seems to be in accordance with the measured oscillations, as shown in Fig. 6-b. However, it is 

more difficult to estimate the oscillation amplitude: the loss of coherence especially depends of the 

thin roughness of the interfaces [33]. 
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Figure 6: (a) Spectral oscillations observed in the measured spectral transmittance of Samples B in the infrared 
domain. (b) Spectral period Δλ of these oscillations as a function of wavelength in the infrared domain, given by 

Eq. (70) with d2 = 150 µm, θ2 = 0° and n2 = 1.5.  

Now that the reflectance and the transmittance of the coated glass plates (samples B) are predicted, we 

propose to place them in front of a Lambertian background with spectral reflectance ρb(λ), and with 

spectral transmittance τb(λ) needed only for writing the equations. The incident flux is Lambertian and 

the reflected light is collected by an integrating sphere (so-called “diffuse-diffuse” measuring 

geometry). The plate with background can be modeled by multiplying the transfer matrix representing 

the coated plate [similar to Eq. (32)] and the one representing the background [similar to Eq. (30)]: 
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After computation, we obtain the reflectance of the coated glass plate in front of the white tile: 
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 (71) 

For other measuring geometries, the transfer matrix representing the glass plate should be accordingly 

modified. For example, in the case of the 45°:0° geometry, one needs to take into account the fact that 

a) the incident light crosses the plate at the angle 45° [corresponding transmittance  0120 45T ], b) the 

incident light specularly reflected by the plate does not reaches the detector (reflectance 0 at the front 

side), c) only the light exiting at 0° reaches the detector [corresponding transmittance  0120 0 T ]. For 

this geometry, the transfer representing the coated plate becomes 
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,  

and the reflectance of the coated glass plate in front of the white tile becomes 
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In order to check the predictive accuracy of this formula, we measured the spectral reflectance of the 

coated glass plates (samples B) in front of a Spectralon white tile from LabsphereTM whose reflectance 

in the visible spectral domain is nearly 1, by using a Xenon light source collimated at 45° to the 

normal of the sample and a QE65000 spectrophotometer from Ocean OpticsTM capturing light at 0°. 

The measured reflectance and the one predicted by Eq. (72) are compared in Fig. 7 for the two coated 

glass plates. The deviations between predictions and measurements is higher than in the previous step 

of the experiment, certainly because we considered ideal layers and did not take into account possible 

defects whose effect is emphasized in this stacking configuration. However, by looking at the similar 

shapes of the predicted and measured spectra, we can consider as positive this attempt to predict the 

reflectance of the specimen knowing only the thickness and refractive index of the thin silicon layer, 

the spectral normal transmittance and the refractive index of glass plate, and the spectral reflectance of 

the background. This noticeably extends our previous studies on thick films in front of diffusing 

background[25,26].    
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Figure 7: Measured (solid line) and predicted (dashed line) reflectance of the coated glass plates (Samples B) in 
front of a Lambertian white tile. Measurements are based on a 45°:0° geometry. 
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9. Conclusions 

The method proposed in this paper should be helpful for whom wants to predict the reflectance and/or 

the transmittance of stratified media, of stacks of layers, or of piles of films, in which each layer can 

be thin or thick, but in which each medium is either nonscattering or strongly scattering (a limitation 

due to the two-flux-like approach underlying the matrix formalism [9]). Instead of tedious calculations 

of geometrical series or iterative formulas as proposed in many classical models, analytical reflectance 

and transmittance expressions are derived by simple matrix product where each matrix represents a 

layer or an interface. The matrices are defined in three different configurations, according to whether 

the incident light is coherent (in thin coatings), incoherent and collimated (in thick nonscattering 

layers), or incoherent and diffuse (in diffusing layers). The matrices representing interfaces and layers 

are differently defined in these three configurations and can be multiplied only if they are defined in 

the same configuration. However, the reflectances and transmittances of multilayer components 

calculated in the first configuration (coherent, polarized, collimated light) can be converted into 

reflectances and the transmittances in the second configuration (incoherent, polarized, collimated 

light), then into reflectances and the transmittances in the third configuration (incoherent, unpolarized, 

diffuse light). We can therefore consider hybrid specimens containing thin layers, thick nonscattering 

layers and diffusing layers: its global reflectance and transmittance is obtained in three steps, i.e. 

transfer matrices are multiplied first in the configuration (those representing the thin layers and their 

interfaces), then in the second configuration (the global transfer matrices representing the thin 

multilayers, the thick nonscattering layers and their interfaces), then in the third configuration (the 

global transfer matrices representing the thin-thick multilayers, the diffusing layers and their 

interfaces). The pedagogical example that we proposed in Section 8 illustrates these three steps and 

shows that good prediction accuracy can be achieved with the model.  
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