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To solve ODEs systems, implicit numerical schemes are often used because of their good stability. Among the most widely used implicit methods for stiff problem are Backward Differentiation Formulas (BDF). However, solving implicit time stepping requires the use of Newton's algorithm which can be very consuming CPU-time. Then, in this paper, we propose a linearly-implicit method built from BDF scheme and which keeps a good stability. The scheme is based on a linearization of the BDF implicit term and the use of an interpolation of right order. The method obtained is linear for each time step and thus faster that the Newton method. Numerical tests on a challenging real-world test problem reveal that the method proposed is a promising alternative to well-established approaches based on Newton algorithm.

Introduction

In this paper, we study time integration methods for initial value problems involving large stiff systems of nonlinear Ordinary Differential Equations ODEs in autonomous form:

       t ∈ [0, T ], dȳ dt = f (ȳ), ȳ(0) = y 0 , (1) 
where

ȳ ∈ R d , f ∈ C p (R d ) d .
Many problems in physics, engineering, chemistry, biology and other yield initial value problems involving systems of ODEs and many of these problems are known as stiff ODEs. Some of these physical systems, such as dynamics of fluids within a porous medium, the atmosphere and oceans, or the behavior of materials, arise from spatial discretisations of nonlinear time-dependent Partial Differential Equations (PDEs), where the entries of the vector ȳ are the discrete solution values and the stiffness of the system is characterised by the presence of one or more eigenvalues of the Jacobian matrix J = ∂f ∂ ȳ with large negative real parts. The existence of fast and slow dynamics poses considerable challenges to the solution of the semi-discrete PDEs (1) by explicit time stepping methods. Specifically, due to the Courant-Friedrichs-Lewy (CFL) stability condition, the largest allowable step sizes are bounded above by the shortest (fastest) time scale in the system. To avoid stability restrictions on the step size, implicit time integration methods are becoming widely used in the simulation of large-scale evolutionary PDEs [START_REF] Aberth | Introduction to precise numerical methods[END_REF]. Perhaps the most widely used implicit methods for stiff problems are the Backward Differentiation Formulas (BDF) (see [START_REF] Byrne | A comparison of two ode codes: gear and episode[END_REF][START_REF] Ibanez | Solving initial value problems for ordinary differential equations by two approaches: BDF and piecewise-linearized methods[END_REF][START_REF] Sack-Davis | Fixed Leading Coefficient Implementation of SDFormulas for Stiff ODEs[END_REF]). The BDF method is an implicit multipoint method that uses known solution data determined at several previous time points as well as the unknown solution at the current point. The order of the error term can be easily adjusted by choosing a different number of previous data points. This method is known to provide good solution stability in solving stiff differential equations for which an implicit solution is essential. Implicit time stepping as BDF requires the solution of large nonlinear systems of equations, coupling all variables in the model, at each time step. However, solving nonlinear systems requires the computations of Jacobian matrices for each time stepping. For many systems the exact Jacobian J can be both costly and difficult to obtain, e.g., due to the size of the application and the use of complex spatial discretization schemes. Then, in this paper, we propose a new class of integration methods that we call Linearized Interpolation Backward Differentiation Formulas (LIBDF). These are linearly-implicit methods which enjoy the benefit of requiring only solving one linear system per iteration in time, as opposed to solve one nonlinear system in the case of BDF. Moreover, in the linear case (f is linear), the scheme LIBDF degenerates to the BDF method and as a consequence, satisfies all the criteria of a good numerical scheme (consistency, order, zero-stability and absolutestability, convergence). Of particular interest in this work is the use of the equilibrium point of the system (1). Indeed, the construction of the LIBDF lies on the existence of equilibrium points of the system and we have shown in the case of stable equilibrium that the bound of the global error does not depend on the time even in the nonlinear case. Moreover, this bound does not blow up as the stiffness of the problem becomes large. The paper is organized as follows: In section 1, we introduce the LIBDF method.

In section 2, we deal with the zero-stability and the absolute stability of the scheme and in Lemmata 2.1,2.2, we give some bounds on the eigenvalues in module of the companion matrix deriving from the BDF method. In section 3, we are concerned with the consistency error and the order of the scheme.

In section 4, we give the convergence of the scheme and a bound of the global error with a particular attention on dependance of the constant involved in the estimate.

Let us now introduce the context and the following considerations of our problem :

Since f ∈ C p (R d ) d , then thanks to Cauchy-Lipschitz Theorem (see the first chapter of [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF]), there exists T 0 > 0 such that the IVP (1) admits on [0, T 0 ] an unique solution ȳ ∈ C p+1 ([0, T 0 ]) d . Then, we take T such that 0 < T ≤ T * , where T * is the maximal time of existence of the solution y.

We assume that there exists a constant C 0 > 0 which does not depend on T such that, max

0≤k≤p+1 sup t∈[0,T ] |ȳ (k) (t)| ≤ C 0 . (2) 
For any function

g ∈ C k ([0, T ]), we denote by M k (g) the value M k (g) := sup t∈[0,T ] |g (k) (t)|.

The Linearized Interpolated Backward Differentiation Formulae

For N ∈ N * and a non-decreasing sequence {t i } 0≤i≤N subdivision of the interval [0, T ] such that t 0 = 0, t N = T and h i = t i+1 -t i , 0 ≤ i ≤ N -1 the step-size, the BDF methods of order p take the form (see the introduction of [START_REF] Skeel | Construction of variable stepsize multistep formulas[END_REF] and [START_REF] Jackson | An alternative implementation of variable step-size multistep formulas for stiff ODEs[END_REF]) : for all p -1 ≤ n ≤ N -1,

y n+1 = p-1 i=0 α i,n y n-i + β n h n f (y n+1 ), (3) 
where the variable coefficients α i,n and β n are functions of the step-size ratios

ω i = h i /h i-1 for i = n, ..., n + 2 -p (see []

to infer the expression of the coefficients).

For any sequence u = {u i } i∈ 0,N and for any p -1 ≤ n ≤ N -1, we denote by P p,n (t, u) the Lagrange interpolation polynomial (see Definition 6.1 [START_REF] Süli | An Introduction to Numerical Analysis[END_REF]) of degree p -1 for the set of points {(t n-i , u n-i ) : i = 0, 1, .., p -1}. We denote by P p,n (u) the value P p,n (t n+1 , u). For a function g ∈ C p ([0, T ]) and for u = {g(t i )} i∈ 0,N , thanks to Theorem 6.2 of [START_REF] Süli | An Introduction to Numerical Analysis[END_REF], we get,

|P p,n (u) -g(t n+1 )| ≤ M p (g) p! p-1 i=0 (t n+1 -t n-i ), (4) 
By virtue of (4), for any sequence u = {u i } i∈ 0,N and for any p-1 ≤ n ≤ N -1, we say that P p,n (u) is an approximation of u n+1 of order p.

Expression of LIBDF scheme

The idea of the construction of our scheme p-LIBDF lies on an approximation of order p of the implicit term f (y n+1 ) as follows:

f (y n+1 ) ≈ f (P p,n (y)) + f (c)(y n+1 -P p,n (y)), (5) 
where y = {y i } i∈ 0,N , c is a zero of the function f . Then, similarly as (3), we obtain our new scheme, which reads:

y n+1 = p-1 i=0 α i,n y n-i + β n h n (f (P p,n (y)) + f (c)(y n+1 -P p,n (y))).
As the implicit term is now linearized, it is possible to inverse the scheme and make it explicit :

Definition 1.1.1. The p-LIBDF scheme is the following: ∀p ∈ N * ,

y n+1 = (I -β n h n f (c)) -1 p-1 i=0 α i,n y n-i + β n h n (f (P p,n (y)) -f (c)P p,n (y)) . (6) 
For the sake of simplicity, we take for the dimension of space d = 1 and our 70 analysis will focus on the BDF methods with uniform steps-size. In the case of uniform steps-size, we have for all 0 ≤ i ≤ N , t i = ih, where h = T N is the unique step-size. We observe that the variable coefficients α i,n and β n do not depend no longer on the subscript n, then the definition 6 becomes in the case of uniform steps-size: 75 Definition 1.1.2. The p-LIBDF scheme is the following: ∀p ∈ N * ,

y n+1 = (1 -βhf (c)) -1 p-1 i=0
α i y n-i + βh(f (P p,n (y)) -f (c)P p,n (y)) , [START_REF] Byrne | A comparison of two ode codes: gear and episode[END_REF] where β and {α i } i∈ 0,p-1 are the coefficients defining the usual p-BDF scheme (3) in the case of uniform steps-size. From Lemma 2.3 of [START_REF] Iserles | A first course in the Numerical Analysis of Differential Equations[END_REF], we infer that these coefficients are given by β = p =1 1 -1 and for all 0 ≤ i ≤ p -1,

α i = β(-1) i p =i+1 C i+1 .
Furthermore, for any sequence u = {u i } i∈ 0,N and for any p -1 ≤ n ≤ N -1, we observe that if we apply the formula given by Lagrange in [START_REF] Lagrange | Leçons élémentaires sur les mathématiques, données à l'Ecole Normale en[END_REF],

P p,n (u) = p-1 k=0 (-1) k C k+1 p u n-k . (8) 
From (4), we deduce that for a function g ∈ C p ([0, T ]) and for u = {g(ih)} i∈ 0,N , we get,

|P p,n (u) -g((n + 1)h)| ≤ M p (g)h p . (9) 
In what follows, we assume that 0 < h ≤ 1.

Stability of the p-LIBDF

Zero-Stability

We recall the definition of zero-stability of a general numerical method F : R m+1 -→ R , ≤ m by generalizing the formulation of Süli in [START_REF] Süli | An Introduction to Numerical Analysis[END_REF]. The solution y = {y i } i∈ 0,m of F verifies the equation F (y, h) = 0. We consider now u a solution of F computed with a round-off error ξ = {ξ j } j∈ 0, : F (y, h) = ξ with ξ small enough. For m ∈ N * , we denote by • m the euclidian norm in R m . Definition 2.1.1. Consider the following IVP :

y = 0; y(0) = y 0 , (10) 
y and u are its numerical solutions defined as described in the previous paragraph, the numerical method is called zero-stable if :

y -u m ≤ C ξ (11) 
where C may depend on T the length of the simulation interval but is independant of h.

Considering this definition, we have the following proposition Proposition 2.1. The p-LIBDF scheme is zero-stable for 1 ≤ p ≤ 6.

Proof. The proof follows immediately from the fact that for f = 0, the p-LIBDF scheme corresponds exactly to the p-BDF scheme and the latter is zero-stable for 1 ≤ p ≤ 6 (see [START_REF] Hairer | On the instability of the BDF formulas[END_REF], see also [START_REF] Grigorieff | Stability of multistep methods on variable grids[END_REF]).

Absolute Stability

We recall the definition of the absolute stability according to Dahlquist in [10]: Definition 2.2.1. A numerical method is absolute stable for a given fixed λh, if all its solutions tend to zero as n → ∞ when the method is applied to a differential equation of the form,

y = λy ( 12 
)
where λ is a complex constant with negative real part.

Considering this definition, we have the following proposition :

Proposition 2.2. The region of Absolute Stability of the p-LIBDF scheme is the same as the p-BDF scheme's one.

Proof. The proof follows immediately from the fact that for f (y) = λy, the p-LIBDF scheme corresponds exactly to the p-BDF scheme (see [START_REF] Gear | Numerical initial value problems in ordinary differential equations[END_REF], [START_REF] Süli | An Introduction to Numerical Analysis[END_REF] p. 349 and [START_REF] Hairer | Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems[END_REF] p. 246).

In what follows, we assume that 1 ≤ p ≤ 6. We recall that the region of absolutely stability is the set of points λh in the complex plane for which the method is absolutely stable. Then, indifferently the p-LIBDF or p-BDF is absolutely stable for a given value of λh if each root z r = z r (λh) of the associated stability polynomial π(z; [START_REF] Süli | An Introduction to Numerical Analysis[END_REF]). For µ > 0, the stability polynomial π(•, -µ β ) can be seen also as the characteristic polynomial of the companion matrix A p (µ) of size p defined by (see Theorem C.3.5 of [START_REF] Kisacanin | Linear control systems: with solved problems and Matlab examples[END_REF]):

(λh)) := ρ(z) -(λh)σ(z) with σ(z) = βz p , satisfies |z r (λh)| < 1, where ρ(z) = z p - p-1 i=0 α i z p-1-i (see section 12.11 in
A p (µ) =       α0 1+µ α1 1+µ ... αp-2 1+µ αp-1 1+µ 1 0 ... 0 0 ... ... ... ... ... 0 0 ... 0 0 0 0 ... 1 0       . ( 13 
)
Therefore, the roots z r (-µ β ) of the stability polynomial π(•; -µ β ) associated to the method p-BDF are the eigenvalues of the matrix A p (µ) and it is well-known (see [START_REF] Botta | Concerning the stability of BDF methods[END_REF] and [START_REF] Marden | Geometry of Polynomials[END_REF]) that these roots satisfy |z r (-µ β )| < 1 provided that µ ∈ R and µ > 0. For µ = 0, we know that A p (µ) is diagonalisable, then we introduce the non-empty set

D p = {µ ∈ R + ; A p (µ) is diagonalisable }. Since the function F p : µ -→ |det(A p (µ))| is continuous over R + , then we deduce that D p which can be rewritten as {µ ∈ R + ; F p (µ) > 0} = F -1 p (]0, +∞[) is an open set of R + .
For any µ ∈ D p , µ > 0, we have A p (µ) = P p (µ)D p (µ)P p (µ) -1 , with P p (µ) is an invertible matrix of size p where each of its column is an eigenvector of A p (µ) and D p (µ) is the diagonal matrix of size p composed of the eigenvalues of A p (µ). Then, we define the following norm on R p : for all x ∈ R p ,

x µ := P p (µ) -1 x ∞ . (14) 
We define also the induced matrix norm as follows: for all B matrix of size p,

|B | µ := sup x∈R p ,x =0 Bx µ x µ = P p (µ) -1 BP p (µ) ∞ . (15) 
We observe that

|A p (µ) | µ = |D p (µ) | ∞ = ρ v (A p (µ)) < 1 for µ > 0, the 105 largest eigenvalue in module of A p (µ).
For the proof of our Theorem 4.2, we need Lemma 2.2. Lemma 2.2 is obtained thanks to the following Lemma.

Lemma 2.1. For all µ 0 > 0, there exists θ p > 0 depending only on p and µ 0 such that for all µ ∈ D p , µ ≥ µ 0 , we have,

ρ v (A p (µ)) ≤ 1 (1 + θ p µ) 1 p
.

Proof. Let µ ≥ µ 0 and z ∈ C an eigenvalue of A p (µ), therefore z satisfies the following equation:

(1 + µ)z p - p-1 i=0 α i z p-1-i = 0, which implies, (1 + µ)z p = p-1 i=0 α i z p-1-i . Since |z| ≤ ρ v (A p (µ)) ≤ 1, we deduce (1 + µ)|z| p ≤ p-1 i=0 |α i ||z| p-1-i ≤ p-1 i=0 |α i |. (16) 
Then, we obtain |z| ≤

γ p 1 + µ with γ p = p-1 i=0 |α i | ≥ 1 as p-1 i=0 α i = 1. Since γ p 1 + µ = 1 1 + 1 γp (µ -(γ p -1))
, then for all µ ≥ 2(γ p -1), we have µ

≥ µ 2 +(γ p -1)
and therefore we deduce that if µ ≥ 2(γ p -1) then

γ p 1 + µ ≤ 1 1 + µ 2γp . We set µ p = max(2(γ p -1), µ 0 ).
Then, using [START_REF] Hairer | On the instability of the BDF formulas[END_REF], we infer that for all µ ≥ µ p ,

|z| ≤ 1 1 + µ 2γp 1 p . ( 17 
)
The function g : µ -→ ρ v (A p (µ)) is continuous and then reach its maximum over [µ 0 , µ p ] that we denote ρ p,max < 1. By setting α p =

1 ρ p p,max -1 µ p , we have 1 (1 + α p µ p ) 1 p = ρ p,max . Therefore, we deduce that for all µ ∈ [µ 0 , µ p ], |z| ≤ ρ v (A p (µ)) ≤ ρ p,max = 1 (1 + α p µ p ) 1 p ≤ 1 (1 + α p µ) 1 p . ( 18 
)
By taking ν p = min(α p , 1 2γp ) and using ( 17), [START_REF] Ibanez | Solving initial value problems for ordinary differential equations by two approaches: BDF and piecewise-linearized methods[END_REF], we deduce that for all µ ≥ µ 0 ,

|z| ≤ 1 (1 + ν p µ) 1 p
, which concludes the proof. Now, we use Lemma 2.1 to obtain the following Lemma, Lemma 2.2. There exists α p > 0 depending only on p such that for all µ ∈ D p , µ > 0, we have,

ρ v (A p (µ)) ≤ 1 (1 + α p µ) 1 p
.

Proof. Thanks to Theorem 2.1 in [START_REF] Iserles | A first course in the Numerical Analysis of Differential Equations[END_REF], we infer,

ρ(z) σ(z) log(z) = 1 + O(|z -1| p ), z → 1, (19) 
where σ(z) = βz p . Equation ( 19) implies,

ρ(z) σ(z) log(z) → 1 as z → 1. ( 20 
)
Since µ ∈ D p , then the companion matrix A p (µ) ( 13) is diagonalizable. Thanks to Corollary C.3.6 of [START_REF] Kisacanin | Linear control systems: with solved problems and Matlab examples[END_REF] (see also subsection 10.3 of [START_REF] Aberth | Introduction to precise numerical methods[END_REF]), we deduce that the eigenvalues of A p (µ) (which are also the roots of the polynomial π(•, -µ β )) are all distincts. Then, let z 0 (µ) ∈ C be the unique eigenvalue of A p (µ) such that

ρ v (A p (µ)) = |z 0 (µ)|, notice also that z 0 (µ) is a root of π(•, -µ β )
. For µ = 0, we deduce:

• the number 1 is an eigenvalue of A p (µ).

• the number 1 is a simple root of π(•, -µ β ), thanks to the zero-stability of p-BDF for 1 ≤ p ≤ 6(see [START_REF] Hairer | On the instability of the BDF formulas[END_REF] and Theorem 12.4 of [START_REF] Süli | An Introduction to Numerical Analysis[END_REF]),

• the number 1 is the only eigenvalue of A p (µ) in module equal to one, thanks to the strong stability of the p-BDF for 1 ≤ p ≤ 6 (see Theorem 6 in [START_REF] Jeltsch | A 0 -Stability and Stiff Stability of Brown's Multistep Multiderivative Methods[END_REF] used with l = 1 since Brown's (k,1) method is the k-BDF method). Therefore, we get also z 0 (µ) = 1 for µ = 0.

Then, as also the polynomial function µ -→ π(•, -µ β ) is continuous with real coefficients and the roots of this latter are all distincts, we deduce that z 0 (µ) → 1 as µ → 0 + and there exists µ 1 > 0 such that for all µ ∈ [0,

µ 1 ], z 0 (µ) is a real number. Since z 0 (µ) is an eigenvalue of A p (µ), then we get 0 = π(z 0 (µ)), -µ β ) = ρ(z 0 (µ)) + µ β σ((z 0 (µ)), then we deduce that ρ(z 0 (µ)) σ(z 0 (µ)) = - µ β . Therefore, thanks
to [START_REF] Jackson | An alternative implementation of variable step-size multistep formulas for stiff ODEs[END_REF] combined with the fact that z 0 (µ) → 1 as µ → 0 + , we infer that,

- µ β log z 0 (µ) → 1 as µ → 0 + .
Therefore, we deduce that there exists 0 < µ 2 ≤ µ 1 such that for all 0 < µ ≤ µ 2 , we get z 0 (µ) real, 0 < z 0 (µ) ≤ 1 and,

- µ β log z 0 (µ) ≤ 3 2 , which implies, since 0 < z 0 (µ) ≤ 1, 0 ≤ z 0 (µ) ≤ e - 2µ 3β . (21) 
Since for all x ≥ 0, e x ≥ 1 + x, then for p ≥ 1, e px ≥ 1 + x which implies e -x ≤ 1 (1+x)

1 p
. Therefore from [START_REF] Jeltsch | A 0 -Stability and Stiff Stability of Brown's Multistep Multiderivative Methods[END_REF], we have for all 0

< µ ≤ µ 2 0 ≤ z 0 (µ) ≤ 1 (1 + 2µ 3β ) 1 p , (22) 
which means that for all 0 < µ ≤ µ 2

ρ v (A p (µ)) ≤ 1 (1 + 2µ 3β ) 1 p . ( 23 
)
And thanks to Lemma 2.1 used with µ 0 = µ 2 , we conclude the proof.

Consistency error and order of the p-LIBDF scheme

We recall the definition of consistency and order of a numerical scheme (see Definitions 2.5 and 2.6 in [START_REF] Mäkelä | On the Concepts of Convergence, Consistency, and Stability in Connection with some Numerical Methods[END_REF]) :

Definition 3.0.2. Suppose that the numerical scheme can be written as

y n+1 = Ψ(t n+1 , y n+1-p , y n-p , . . . , y n , h) for all p -1 ≤ n ≤ N -1. For ȳ ∈ C p+1 ([0, T ])
solution of (1), we define the local truncation error committed by one step of the method : τ n = ȳ(tn+1)-Ψ(tn+1,ȳ(tn+1-p),ȳ(tn-p),...,ȳ(tn),h) h

, then the method is said to be consistent if : τ = sup

p-1≤n≤N -1 |τ n | is such that lim h→0 τ = 0. ( 24 
)
The method has order of accuracy p if :

τ = O(h p ). ( 25 
)
Considering the definition of consistency and order, we have Proposition 3.1. To prove Proposition 3.1, we need to use a constant Lipschitz of f . Since f ∈ C p (R), then if we take as constant Lipschitz the value sup z∈R |f (z)|, this value may be equal to infinity. To avoid this situation, thanks to (2), we introduce the interval J p defined by It is important to notice, thanks to [START_REF] Ascher | Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations[END_REF], that there exists an interval J which do not depend on T such that J p ⊂ J, and hence L p admit a upper bound which does not depend on T , for instance L = sup z∈J |f (z)|.

J p := [m 0 (ȳ) -M p (ȳ)h p , m 1 (ȳ) + M p (ȳ)h p ], where m 0 (ȳ) = inf t∈[0,T ] ȳ(t)
Let us now proceed to the proof of Proposition 3.1.

Proposition 3.1. The p-LIBDF scheme has order of accuracy p and its local truncation error τ n satisfies for all p -1 ≤ n ≤ N -1,

160 |τ n | ≤ (C p M p+1 (ȳ) + M p (ȳ)(L p + |f (c)|)) h p ,
where C p > 0 is a constant depending only on p.

Proof. The p-LIBDF scheme reads:

y n+1 = p-1 i=0 α i y n-i + βh(f (P p,n (y)) + f (c)(y n+1 -P p,n (y))).
To study the consistency and the order of p-LIBDF scheme, we consider the local truncation error:

τ n = 1 h ȳ(t n+1 ) - p-1 i=0 α i ȳ(t n-i ) + βh(f (P p,n (ȳ)) + f (c)(ȳ(t n+1 ) -P p,n (ȳ))) ,
where ȳ is the sequence defined by ȳ = {ȳ(t i )} i∈ 0N . The local truncation error τ n can be rewritten as:

τ n = τn + β(f (ȳ(t n+1 )) -f (P p,n (ȳ)) -f (c)(ȳ(t n+1 ) -P p,n (ȳ))), ( 26 
)
where τn is the local truncation error of the p-BDF scheme given by,

τn = 1 h ȳ(t n+1 ) - p-1 i=0 α i ȳ(t n-i ) + βhf (ȳ(t n+1 )) ,
It is well-known that the p-BDF scheme has order of accuracy p (see [START_REF] Süli | An Introduction to Numerical Analysis[END_REF]) and hence there exists a constant C p > 0 such that for all p -1 ≤ n ≤ N -1, |τ n | ≤ C p M p+1 (ȳ) h p . Furthermore, thanks to (9), we have P p,n (ȳ) ∈ J p and since f is a Lipschitz function on J p of constant L p , we deduce that,

|f (ȳ(t n+1 )) -f (P p,n (ȳ))| ≤ L p |ȳ(t n+1 ) -P p,n (ȳ)|. (27) 
Then, we infer,

|f (ȳ(t n+1 )) -f (P p,n (ȳ)) -f (c)(ȳ(t n+1 ) -P p,n (ȳ))| ≤ (L p + |f (c)|) |ȳ(t n+1 ) -P p,n (ȳ))| ≤ M p (ȳ)(L p + |f (c)|) h p ,
where we have used again [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF] for the last inequality. Therefore, from [START_REF] Marden | Geometry of Polynomials[END_REF], we obtain for all p -

1 ≤ n ≤ N -1, |τ n | ≤ C 1 h p , with C 1 = (C p M p+1 (ȳ) + 165 M p (ȳ)(L p + |f (c)|
)) which concludes the proof.

Convergence of order p for the p-LIBDF

Convergence of order p means that for sufficiently accurate starting approximations y 0 , y 1 , ..., y p-1 , the global error satisfies max

0≤i≤N |y i -ȳ(t i )| = O(h p ).
Thanks to the Propositions 2.1 and 3.1, we get the convergence of order p for the p-LIBDF by borrowing the arguments used for the proof of the Dahlquist's Equivalence Theorem (see theorem 6.3.4 of [START_REF] Gautschi | Numerical Analysis: an Introduction[END_REF] or Theorem 5.10 of [START_REF] Henrici | Discrete Variable Methods in Ordinary Differential Equations[END_REF]). In most of existing proofs, the constant symbolized by the O(h p ) notation is proportional to e LT , where T is the length of the simulation interval and L a Lipschitz constant of the function f (see [START_REF] Süli | An Introduction to Numerical Analysis[END_REF] p. 318, [START_REF] Burden | Numerical Analysis[END_REF] p. 271 and [START_REF] Ascher | Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations[END_REF] p. 41). However, this constant can be greatly improved in some situations, indeed in this section, under the assumption of existence of a stable equilibrium point, through Theorem 4.2, we obtain a constant independent of T and which does not blow up as the best Lipschitz constant or the stiffness of the problem get more and more large.

To prove our Theorem 4.2, we need to introduce α p,µ > 0 the real defined by,

α p,µ = sup x ∞ e 1 µ x µ ; x ∈ R p , x = 0 , (28) 
the norm • ∞,µ defined by • ∞,µ :=

• µ e 1 µ and to use a serie of Lemmata.

These Lemmata are obtained under the assumption that there exists a stable equilibrium point of the system (1). In Lemma 4.2, we show that all the numerical sequence obtained from p-LIBDF scheme is contained in a ball whose its radius R µ may be very large and may depend on µ = βh|f (c)|. In Proposition 4.1, under the assumption that sup λ>0 α p,λ < +∞, we show in fact that the radius R µ admits a lower bound independent of µ and hence all the numerical sequence lies inside a ball with its radius independent of µ. In Lemma 4.3, we show that the continuous solution of ( 1) is also contained in a ball. Thanks to [START_REF] Sack-Davis | Fixed Leading Coefficient Implementation of SDFormulas for Stiff ODEs[END_REF], we can notice that for all x ∈ R p ,

x ∞ ≤ α p,µ x ∞,µ . (29) 
We denote by R(µ) := ρ v (A p (µ)). Then, we begin with the following Lemma.

Lemma 4.1. The sequence {u n } n∈N * defined by u n+1 ≤ a n u n + b, u 0 = 0 is majored for n ≥ 1 by :

u n ≤ n k=1 n-1 l=k a l b. ( 30 
)
Proof. The proof follows easily by using an induction argument. 

D n =     y n -c y n-1 -c ... y n+1-p -c     . ( 31 
)
The real R > 0 satisfies, R ≥ R µ where,

R µ = inf J with J := x ∈ R + ; g(x) ≥ 2|f (c)| νp,µ (1 + µ) 1-R(µ) µ if J = ∅ +∞ elsewhere (32)
and the function g is defined for all x ≥ 0, by:

g(x) = x sup z∈Ix |f (z)|,
where

I x = c -x √ ν p,µ , c + x √ ν p,µ and ν p,µ = (2 p -1) 2 α 2 p,µ .
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Proof. The p-LIBDF scheme is defined for all p -1 ≤ n ≤ N -1 by

y n+1 = p-1 k=0 α k y n-k + hβ(f (P p,n (y)) + f (c)(y n+1 -P p,n (y))). ( 33 
)
Since f (c) = 0 and (34) By using a Taylor expansion of order two, we deduce that there exists θ n ∈ (c, P p,n (y)) such that,

f (P p,n (y)) -f (c) + f (c)((y n+1 -c) -(P p,n (y)) -c) = f (θ n ) 2 (P p,n (y)) -c) 2 . ( 35 
)
We introduce c = {c i } i∈ 0,N with c i = c. We can notice that

p-1 k=0 (-1) k C k+1 p = 1, indeed p-1 k=0 (-1) k C k+1 p = p =1 (-1) -1 C p = - p =0 (-1) C p + 1 = -(1 + (-1)) p + 1 = 1.
Then thanks to (8), we deduce that

c = P p,n (c). ( 36 
)
By setting d = {d i } i∈ 0,N with d i = y i -c and using (35),(36), from [START_REF] Wang | Central schemes for the modified Buckley-Leverett equation[END_REF] we deduce,

d n+1 = p-1 k=0 α k 1 -βhf (c) d n-k + hβf (θ n ) 2(1 -hβf (c)) P p,n (d) 2 .
Hence, after setting f n = f (θn) 2 P p,n (d) 2 and µ = βh|f (c)|, we obtain,

D n+1 = A p (µ)D n + F n (µ), (37) 
where,

D n =     d n d n-1 ... d n+1-p     , F n =     βhfn 1+µ 0 ... 0     . ( 38 
)
We take the norm • µ of equation ( 37) to obtain,

D n+1 µ ≤ |A p (µ) | µ D n µ + F n (µ) µ . ( 39 
)
We set R(µ) = |A p (µ) | µ and we notice

F n (µ) µ = βh|f n | 1 + µ e 1 µ .
We re-write (39) as follows,

D n+1 µ ≤ R(µ) D n µ + βh|f n | 1 + µ e 1 µ . (40) 
Let us give an estimate of f n . We notice thanks to (8

) that |P p,n (d)| ≤ γ p D n ∞
and thanks to [START_REF] Scheidegger | The Physics of Flow Through Porous Media[END_REF], we obtain,

|P p,n (d)| ≤ γ p α p,µ D n ∞,µ . (41) 
Therefore, thanks to (41) we get

|f n | ≤ νp,µ 2 |f (θ n )| D n 2 
∞,µ with ν p,µ = γ 2 p α 2 p,µ . Then from (40), we get, 

D n+1 ∞,µ ≤ R(µ) D n ∞,µ + ν p,µ βh 2(1 + µ) |f (θ n )| D n 2 ∞,µ . (42 
D n+1 ∞,µ ≤ R(µ) D n ∞,µ + ν p,µ βh 2(1 + µ) sup z∈In |f (z)| D n 2 ∞,µ . ( 43 
) Let R > 0 such that R ≥ D p-1 ∞,µ .
We prove by induction the following proposition P(n):

for all p -1 ≤ n ≤ N , D n ∞,µ ≤ R.
The proposition P(n) is true for n = p -1. Let us assume that for n ∈ p -1, N -1 , the Proposition P(n) is true, then from (43), it is inferred,

D n+1 ∞,µ ≤ R(µ) R + ν p,µ βh 2(1 + µ) sup z∈In |f (z)| R 2 . ( 44 
)
Then to obtain

D n+1 ∞,µ ≤ R, (45) 
thanks to (44) it suffices to get

R(µ) R + βhν p,µ 2(1 + µ) R 2 sup z∈I R |f (z) ≤ R,
where

I R = c - √ ν p,µ R, c + √ ν p,µ R , which means also, βhν p,µ 2(1 + µ) R sup z∈I R |f (z) ≤ 1 -R(µ). (46) 
Since µ = βh|f (c)|, then we get βh = µ |f (c)| , henceforth, inequality (46) can be re-written as follows,

R sup z∈I R |f (z)| ≤ 2|f (c)| ν p,µ (1 + µ) 1 -R(µ) µ . (47) 
Therefore if (47) holds then we get (45). We consider the function g defined for all x ≥ 0, by:

g(x) = x sup z∈Ix |f (z)|,
where

I x = c -x √ ν p,µ , c + x √ ν p,µ . Since g is continuous and g(0) = 0, then the value R µ defined by R µ = inf x ∈ R + ; g(x) ≥ 2|f (c)| νp,µ (1 + µ) 1-R(µ)
µ is strictly positive and can be eventually equal to +∞ in the case where the set is empty. By requiring that the initial datas y 0 , y 1 , ..., y p-1 are such that D p-1 ∞,µ ≤ R µ , then by taking R = R µ , inequality (47) holds and hence (45) holds also which means that the proposition P(n + 1) is true. Therefore, we deduce that for all for all p -1 ≤ n ≤ N ,

D n ∞,µ ≤ R, which concludes the proof. Proposition 4.1. Let c be a zero of f such that f (c) < 0. Let µ = βh|f (c)| ∈ D p , µ > 0.
Under the assumption that there exists κ p > 0 depending only on p such that sup λ>0 α p,λ ≤ κ p (see 28 for α p,λ ) then there exists η p > 0 depending only on p such that the real R µ defined in [START_REF] Spayd | The Buckley-Leverett equation with dynamic capillary pressure[END_REF] satisfies R µ ≥ R p where R p > 0 is the real defined by,

R p = inf J with J := {x ∈ R + ; g(x) ≥ η p |f (c)|} if J = ∅ +∞ elsewhere (48)
and the function g is defined for all x ≥ 0, by:

g(x) = x sup z∈Qx |f (z)|,
and the function g is defined for all x ≥ 0, by:

210 g(x) = x sup z∈Qx |f (z)|,
which concludes the proof.

Lemma 4.3. Let c be a zero of f such that f (c) < 0 and 0 < ϑ < 1. Then there exists a constant R ϑ > 0 such that if |y 0 -c| < R ϑ , then the solution ȳ of (1) satisfies for all t ∈ [0, T ], |y(t) -c| ≤ |y 0 -c|e ϑf (c)t . A possible value for R ϑ is:
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R ϑ = sup{R > 0; ∀z ∈ R, |z -c| ≤ R ⇒ f (z) ≤ ϑf (c)}.
Proof. Since f (c) = 0, then from (1), we get for all t ∈ [0, T ],

d(ȳ(t) -c) dt = f (ȳ(t)) -f (c). (54) 
Multiplying equation (54) with ȳ(t) -c yields to, 1 2

d|ȳ(t) -c| 2 dt = (f (ȳ(t)) -f (c))(ȳ(t) -c). (55) 
Thanks to Taylor expansion, for any t ∈ [0, T ], there exists θ(t) ∈ (c, y(t)) such that,

f (ȳ(t)) -f (c) = f (θ(t))(ȳ(t) -c).
Then, from (55), we obtain, 1 2

d|ȳ(t) -c| 2 dt = f (θ(t))|ȳ(t) -c| 2 . ( 56 
)
Since f is continuous and f (c) < 0, then for any 0 < ϑ < 1 there exists R ϑ > 0 such that for all z ∈ R such that |z -c| ≤ R ϑ , we have f (z) ≤ ϑf (c) < 0. We require that y 0 be such that |y 0 -c| < R ϑ . Let us show that for all t ∈ [0, T ], |y(t) -c| ≤ R ϑ . If there exists t 0 ∈ [0, T ] such that |y(t 0 ) -c| > R ϑ , then, the value t * = inf{t ∈ [0, T ]; |y(t) -c| > R ϑ } is well defined. Due to the definition of t * and the fact that y is continuous, we have

|y(t * ) -c| = R ϑ (57) 
and then t * = 0. Furthermore, thanks again to the definition of t * , we get that for all t ∈ [0, t * ],

|y(t) -c| ≤ R ϑ (58) 
and since θ(t) ∈ (c, y(t)) then we get also |θ(t) -c| ≤ R ϑ which implies that f (θ(t)) ≤ ϑf (c) < 0. Therefore, from (56), we deduce that for all t ∈ [0, t * ],

1 2

d|ȳ(t) -c| 2 dt ≤ ϑf (c)|ȳ(t) -c| 2 . ( 59 
)
We notice 1 2

d dt |ȳ(t) -c| 2 e -2ϑf (c)t = e -2ϑf (c)t 1 2 d|ȳ(t) -c| 2 dt -ϑf (c)|ȳ(t) -c| 2 .
Therefore inequality (59) can be rewritten as follows, 1 2

d dt |ȳ(t) -c| 2 e -2ϑf (c)t ≤ 0. ( 60 
)
Then, from (60), we deduce that for all t ∈ [0, t * ],

|ȳ(t) -c| ≤ |y 0 -c|e ϑf (c)t . (61) 
Since |y 0 -c| < R ϑ and f (c) < 0, then we obtain that |ȳ(t * ) -c| < R ϑ which leads to a contradiction with (57). Therefore, we have that for all t ∈ [0, T ],

|y(t) -c| ≤ R ϑ . From (58), by applying to T the same arguments used for t * , we infer that for all t ∈ [0, T ],

|ȳ(t) -c| ≤ |y 0 -c|e ϑf (c)t ,
which concludes the proof. Now, we turn to the proof of our Theorem. Thanks to Proposition 3.1 and (2), the third condition in Theorem 4.2 (where τ is defined in Definition 3.0.2) can be traduced in terms of a condition on h independent of the time of simulation T . For simplicity, we assume that there is no error on the initial datas (which implies E p-1 = 0) Theorem 4.2. Let c be a zero of f such that f (c) < 0. Let µ = β|f (c)|h ∈ D p and 0 < ϑ < 1. Under the assumption that there exists κ p > 0 depending only on p such that sup λ>0 α p,λ ≤ κ p (see 28 for α p,λ ), there exists R p > 0 depending only on p, R ϑ > 0 depending only on ϑ, Θ p,ϑ > 0, Φ p,ϑ > 0 and Ψ p,ϑ depending only on p, ϑ such that if

D p-1 ∞,µ ≤ R p |y 0 -c| ≤ R ϑ τ ≤ Θ p,ϑ e -2 Ψ p,ϑ |f (c)| |f (c)| 2 E p-1 = 0. then for all p -1 ≤ n ≤ N -1, E n ≤ Φ p,ϑ e Ψ p,ϑ |f (c)| |f (c)| τ . For all p -1 ≤ n ≤ N -1, E n := E n ∞,µ with, E n =     y n -ȳ(t n ) y n-1 -ȳ(t n-1 ) ... y n+1-p -ȳ(t n+1-p )     and D p-1 =     y p-1 -c y p-2 -c ... y 0 -c     . (62)
Proof. The p-LIBDF scheme is the following, for all p -1 ≤ n ≤ N -1,

y n+1 = p-1 k=0 α k y n-k + hβ(f (P p,n (y)) + f (c)(y n+1 -P p,n (y))). ( 63 
)
The definition of the local truncation error of the p-LIBDF yields to,

ȳ(t n+1 ) = p-1 k=0 α k ȳ(t n-k ) + βh(f (P p,n (ȳ)) + f (c)(ȳ(t n+1 ) -P p,n (ȳ)))) + hτ n , (64) 
where ȳ = {ȳ(t i )} i∈ 0,N .
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By substracting (63) and (64), and using the fact that the application P p,n (•) is linear, we deduce:

n+1 = p-1 k=0 α k n-k + βh(f (P p,n (y)) -f (P p,n (ȳ)) + f (c)( n+1 -P p,n ( ))) -hτ n , (65) 
where = { i } i∈ 0,N with i = y i -ȳ(t i ). By using a Taylor expansion of order two, we deduce that there exists θ n ∈ (P p,n (y), P p,n (ȳ)) ⊂ (0, T ) such that,

f (P p,n (y)) = f (P p,n (ȳ)) + f (P p,n (ȳ))P p,n ( ) + f (θ n ) 2 P p,n ( ) 2 . ( 66 
)
By plugging the expression (66) in (65), it comes:

(1 -βhf (c)) n+1 = p-1 k=0 α k n-k + βh(f (P p,n (ȳ)) -f (c))P p,n ( ) +βh f (θ n ) 2 P p,n ( ) 2 -hτ n . (67) 
By using a Taylor expansion of order one, we deduce that there exists β n ∈ (c, P p,n (ȳ)) ⊂ (0, T ) such that,

f (P p,n (ȳ)) -f (c) = f (β n )P p,n (ȳ -c), (68) 
where c = {c i } i∈ 0,N , with c i = c. By plugging the expression (68) in (67), we infer,

(1 -βhf (c)) n+1 = p-1 k=0 α k n-k + βhf (β n )P p,n (ȳ -c)P p,n ( ) +βh f (θ n ) 2 P p,n ( ) 2 -hτ n . (69) 
We set

φ n = βhf (β n )P p,n (ȳ -c)P p,n ( ) + βh f (θ n ) 2 P p,n ( ) 2 . (70) 
Then, we get,

(1 -hβf (c)) n+1 = p-1 k=0 α k n-k + φ n -hτ n , which implies, n+1 = p-1 k=0 α k 1 -hβf (c) n-k + φ n -hτ n 1 -hβf (c)
.

Hence, by setting µ = βh|f (c)|, we obtain,

E n+1 = A p (µ)E n + B n , (71) 
where,

E n =     n n-1 ... n+1-p     , B n =     φn-hτn 1+µ 0 ... 0     (72) 
We take the norm • µ of equation ( 71) to obtain,

E n+1 µ ≤ |A p (µ) | µ E n µ + B n µ . (73) 
From (70), we deduce,

|φ n | ≤ βhK n |P p,n (ȳ -c)| |P p,n ( )| + 1 2 P p,n ( ) 2 ,
where

K n = max(|f (θ n )|, |f (β n )|). Thanks to (8) with γ p = 2 p -1, we deduce, |P p,n ( )| ≤ γ p E n ∞ . (74) 
Then, we obtain,

|φ n | ≤ βhK n (γ p |P p,n (ȳ -c)| E n ∞ + 0.5γ 2 p E n 2 ∞ ).
Thanks to [START_REF] Scheidegger | The Physics of Flow Through Porous Media[END_REF], after setting ν p := γ p κ p ≥ γ p α p,µ , we deduce,

|φ n | ≤ βhK n (ν p |P p,n (ȳ -c)| E n ∞,µ + 0.5ν 2 p E n 2 ∞,µ ).
Furthermore, we notice that B n = |φn-hτn| 1+µ e 1 µ . We set E n = E n ∞,µ and R(µ) = |A p (µ) | µ , then from (73), we deduce, 

E n+1 ≤ R(µ) + βhK n ν p 1 + µ |P p,n (ȳ -c)| E n + βhK n ν 2 p 2(1 + µ) E 2 n + hτ 1 + µ , (75) 
D p-1 ∞,µ ≤ R p (76) implies for all p ≤ n ≤ N D n ∞,µ ≤ R p (77) 
where for all p -1 ≤ n ≤ N ,

D n =     y n -c y n-1 -c ... y n+1-p -c     . (78) 
Thanks to (29), we get

D n ∞ ≤ α p,µ D n ∞,µ ≤ κ p D n ∞,µ . (79) 
Furthermore, thanks to Lemma 4.3, there exists R ϑ > 0 depending only on ϑ such that

|y 0 -c| ≤ R ϑ (80) 
implies for all t ∈ [0, T ]

|ȳ(t) -c| ≤ |y 0 -c|e ϑf (c)t . (81) 
In what follows, we assume that (76) and (80) hold. Then (77) and (81) hold 245 and thanks also to (79), we infer that there exists R p,ϑ > 0 depending only on p, ϑ such that for all p -1 ≤ n ≤ N -1, 

K n ≤ K p,ϑ := sup z∈[c-R p,ϑ ,c+R p,ϑ ] |f ( 
E n+1 ≤ R(µ) + βhK p,ϑ ν p 1 + µ z p (t n ) E n + βhK p,ϑ ν 2 p 2(1 + µ) E 2 n + hτ 1 + µ . ( 82 
)
We set 0 = hτ 1 + µ . We prove by induction the following proposition : for all

p -1 ≤ n ≤ N , E n ≤ θ 0 , (83) 
with θ > 1 satisfying (86). We require that E p-1 ≤ θτ , then the proposition is true for n = p -1. We suppose that the proposition is true until the rank n and we show that . In what follows, we require that, θ = 3 2

ψ p,θ 1 -G(µ) . ( 86 
)
After using the value of b, we deduce that to get E n+1 ≤ θ 0 , it suffices to have 

Then by requiring that inequality (91) holds, we obtain that E n+1 ≤ θ 0 and the proposition at the rank n + 1 is true. Therefore, we deduce that for all p -1 ≤ n ≤ N ,

E n ≤ θ 0 ,
which gives us with the values of θ and 0 ,

E n ≤ 3 2 ψ p,ϑ (1 -G(µ)) hτ 1 + µ = 3 2β|f (c)| ψ p,µ,h (1 -G(µ)) µ 1 + µ τ = 3ψ p,ϑ 2β|f (c)| τ w(µ) ≤ 3ψ p,ϑ 2β|f (c)| τ Γ p .
which allows us to conclude the proof.

and m 1

 1 (ȳ) = sup t∈[0,T ] ȳ(t). Then, we introduce L p the constant Lipschitz of f on J p defined by L p = sup z∈Jp |f (z)|. This constant Lipschitz L p of f is then sufficient to obtain the proof of our Proposition 3.1.
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 42 Let c be a zero of f such that f (c) < 0. Let µ = βh|f (c)| ∈ D p .There exists R > 0 depending only on p, µ, f , f , such that if D p-1 ∞,µ ≤ R then we get for all p ≤ n ≤ N , D n ∞,µ ≤ R, where,

p- 1 k=0 α k = 1 ,

 11 then from (33), we deduce, y n+1 -c = p-1 k=0 α k (y n-k -c)+hβ(f (P p,n (y))-f (c)+f (c)((y n+1 -c)-(P p,n (y))-c)).

)

  Since c = P p,n (c), then P p,n (y) = P p,n (y) -c + c = P p,n (y -c) + c = P p,n (d) + c and thanks again to (41) this give us that θ n ∈ (c, c+ P p,n (d)) ⊂ I n := c -√ ν p,µ D n ∞,µ , c + √ ν p,µ D n ∞,µ . Therefore, we deduce that |f (θ n )| ≤ sup z∈In |f (z)|.Hence, from (42) we get,

where τ = max n∈ p- 1 ,N - 1

 11 |τ n |. Thanks to Lemma 4.2 and Proposition 4.1, there exists R p > 0 depending only on p such that

  z)|. Thanks again to (81), we get |P p,n (ȳ -c)| ≤ z p (t n ) := ζ p exp(-ϑ|f (c)|t n-p ) with ζ p = (2 p -1)|y 0 -c|. Inequality (75) becomes,

250 2 p 2 1 ( 1 +( 1 -, 1 p

 221111 it is true until the rank n + 1.20By using the induction hypothesis, we get :E n+1 ≤ R(µ) + βhK p,ϑ ν p 1 + µ z p (t n ) E n + βhK p,ϑ ν + βhK p,ϑ ν p 1 + µ z p (t l ) bThanks to Lemma 2.2, there exists p > 0 depending only on p such that,R(µ) ≤ G(µ) := p µ) G(µ) zp(t l ) bSince t l = h l, then we observe thatn l=k z p (t l ) ≤ ζ p 1 -e -ϑµ β . Therefore, we get, G(µ) zp(t l ) ≤ ω p,µ,ϑ := exp K p,ϑ ζ p ν p (1 + µ)G(µ) βh then we have (1 + µ)G(µ) ≥ 1 υp (1 + µ) 1-1p where υ p = max(1, p ) . Since the second derivative of h -→ e -ϑ|f (c)|h is decreasing, then we get that for all h > 0, h 1 -e -ϑ|f (c)|h ≤ 1 ϑ|f (c)| Therefore, we get, 260 ω p,µ,ϑ ≤ ψ p,ϑ := exp K p,ϑ ζ p ν p υ p β ϑ|f (c)| , and we obtain E n+1 ≤ b ψ p,ϑ 1 -G(µ)

1 (.

 1 used the value of θ (86). Since h = µ β|f (c)| and G(µ) := positive function w on ]0, +∞[ defined for all x > 0 by: We notice that w(x) → 1 p p as x → 0 + and w(x) → 1 as x → +∞, hence we deduce that Γ p = inf x>0 w(x) > 0. Then, inequality (90) holds if we have,

where Q x = [c -xχ p , c + xχ p ] and χ p = (2 p -1)κ p .

Proof. We recall that R µ is defined by:

(49) and the function g is defined for all x ≥ 0, by:

where

and ν p,µ = (2 p -1) 2 α 2 p,µ . Since α p,µ ≤ κ p , we have ν p,µ ≤ p := (2 p -1)κ p , then we get for all x ≥ 0,

Furthermore, thanks to Lemma 2.2, there exists ς p > 0 depending only on p such that for all µ ∈ D p , µ > 0, we have,

, which give us combined with the fact that α p,µ ≤ κ p ,

We introduce the positive continuous function G on ]0, +∞[ defined for all µ > 0 by:

.

We notice that G p (µ) → 1 p ς p as µ → 0 and G(µ) → 1 as µ → +∞, then we deduce that Υ p := inf µ>0 G p (µ) > 0. Then, from (51), we infer,

Therefore, thanks to (50) and (52), from (49) we obtain that R µ ≥ R p , where R p > 0 is a real depending only on p, defined by: