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FFLO-wave-vector Lock-in Effect in Quasi-1D Superconductors

M. D. Croitoru - A. I. Buzdin

Abstract We study the phase transition into the Fulde-
Ferrell-Larkin-Ovchinnikov state in high magnetic field in
quasi-one dimensional superconductors within the quasi-
classical formalism, taking into account the interchain
Josephson coupling and the paramagnetic spin splitting. We
show that anomalies in the field-direction dependence of the
upper critical field when the magnetic field length equals to
the FFLO period, previously described in [29], are charac-
terized by the lock-in effect of the FFLO modulation wave
vector, which is governed by the magnetic length.

1 Introduction

The effect of high magnetic fields on the superconducting
state in compounds with reduced dimensionality has stirred
up one of the main research interests in the field of super-
conductivity in the last few decades [1, 2]. This has been
motivated, in particular by discoveries of superconduct-
ing high crystallographic quasi-one dimensional structures
with unique properties in magnetic field, e.g., the quasi-
1D organic Bechgaard salts (TMTSF),X, where anion X
is PFg, ClOy4, etc. [1-8] polysulfur nitride (SNy) [9], the
metal-chalcogenide-based compounds [10-15], transition
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metal carbides [16], the quasi-1D M;MogSes compounds
[17-19], lithium purple bronze [20], and arrays of 4
Angstrom superconducting carbon nanotubes embedded in
the linear pores channels of AFI zeolite single crystals
[21, 22]. A very large upper critical fields, exceeding the
Pauli paramagnetic limit, for a magnetic field aligned par-
allel to their most conducting layers in the these materials
as well as the NMR measurements and the anomalous
in-plane anisotropy of the upper critical field [3, 23] for
field parallel to the conducting chains, e.g., in the organic
compound (TMTSF), ClO4 favor the existence of Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) superconducting phase
with a spin singlet pairing [24, 25].

In [23, 26], it has been demonstrated that the FFLO
modulation strongly interferes with the orbital effect and
provides the main source of the critical field anisotropy.
Our subsequent analysis of the properties of the quasi-
low dimensional superconductors revealed that in some
of them the resonance between the period of the FFLO
modulation and the period of the interlayer coupling modu-
lation induced by the external field is possible [27-29]. The
obtained results predict the anomalous cusps in the temper-
ature and angular dependencies of the in-plane critical field.
Their experimental observation may serve as a direct evi-
dence for the appearance of the FFLO phase in quasi-1D and
quasi-2D superconductors [26-29]. This peculiar behavior
of the in-plane anisotropy of the FFLO phase completes the
anomalous oscillatory out-of-plane angular dependence of
the critical field in FFLO state [30-34].

In the studies of the orbital corrections to the upper crit-
ical field in the FFLO phase, we assumed that the absolute
value of the FFLO wave vector is determined in the pure
Pauli limit. However, the orbital contribution also influences
the absolute value of the FFLO modulation vector. One can
expect that the orbital correction can modify the absolute



value of the FFLO wave vector especially at resonances. To
clarify this issue in this work, we investigate influence of
the orbital motion on the FFLO characteristics in quasi-1D
superconductors.

2 The Model

We consider a quasi-one-dimensional (quasi-1D) conductor
with the following electron spectrum

Px

Ep= 2my

+2t).cos(py y)+2tzcos(pz ) s (D

where dy and d; are the interchain distances along the y
- and z-axis, respectively. We assume that the couplings
between chains in both directions are small [see Fig. 1], i.e.,
t; K T and ty K T, but sufficiently large to suppress the
CDW and SDW transitions, to stabilize the superconducting
long-range order and to make the mean field treatment jus-
tified, T3/Er < t;, T3/EF < ty. Here, Ty is the critical
temperature of the system at H = 0.

We choose the gauge, for which the vector potential of
the external magnetic field is A = [H x r] [[r = (x, 0, 0)]
is a coordinate along the x-chain], ie., A, = —xH, =
—xHsinasinf, Ay = xH; = xHcosasinf, A, = 0,
where H is the amplitude of the magnetic field and «
accounts for its direction from the positive z-axis in the
y — z plane, while @ is the angle accounting the field direc-
tion from the positive x-axis. Taking into account that the
system is near the second-order phase transition, we can
employ the linearized Eilenberger equation for a quasi-1D
superconductor in the presence of the magnetic field (in the
momentum representation with respect to the coordinate z)

[35]:
(Qn + 1) fo (x, y, p2) = Alx, y)sign(@p) )

with IT = 3 hopd a + 2it,; sin (p;d;) sin (Qxx), where we
have assumed that the vector potential varies slowly at
the interchain distances (this assumption means that we
neglect the diamagnetic screening currents and take the
magnetic field as uniform and given by the external field,
H), and for the purpose of simplicity we have chosen the

L

d

Fig. 1 Scheme of the quasi-1D conductor in a parallel magnetic field

external magnetic field in the x — y plane. Here, O, =
—nd;Hy/¢o = —nd;H sinasinf/¢y with ¢9 = mhc/e,
h = ppH is the Zeeman energy, v = vf,i is the Fermi
velocity along the x-axis, and 2, = w®, — ihsign(wy).
Usually, a quasi-1D superconductor can be considered as a
system in the clean limit, meaning that the mean free path
is much larger than the corresponding intra-chain coherence
length, 56‘ = vpx /(27 T,0). The order parameter is defined
self-consistently as

1
TA@ ) =27TRe Y (fo (., P), 3)
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where A is the pairing constant and the brackets denote
averaging over py and p; and vf,,

dydp d.dp; 1
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with N = m /27 pxdyd,. The temperature unit is so that

the Boltzmann constant kg = 1. We seek the solution of the
linearized Eilenberger equation (2) in the form

fw (xy y’ pZ) =eiqrzeimQ.l'fm ((Uns Pz) (5)
m

Because of the form for f, (x, y, p;) of (5) one can write
A(x,y) as

Ax,y) =€) 2 Ay, (k) . (6)

m

From symmetry considerations, it follows that A_j, =
A2p. Adopting a second-order approximation in the small
parameter t;/ T to the solution of (2) and substituting (5)
and ( 6) back into (2), and making use of the definition for

the order parameter function, (3—4), we obtain two systems
of coupled equations [36, 37]
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where B,?; = Q, £ ihvp(gx +6n0;) /2 with § =
0, 1. In (7), the following notations are introduced: P =

AT.p/A.T. with A = 1 — TLpa_gﬁz and AT.p = T, — Tep.

Here, T, p is the superconducting onset temperature in the
pure Pauli limit determined by

n

The solution of the system of (7) is given by
To =Tep [1 — Ac (So + Sp)] (12)

with the “orbital” term So = tzzbo (q, Q) and the ’’reso-
nance” term SR (q, Q) = ming Sﬁ (q, Q) with
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and those values of & = & are chosen that maximize the
critical temperature. The FFLO modulation vector q corre-
sponds to the maximum of 7 (q), and its direction is along
x-axis. For the out-of-resonance conditions [27], A1y = 0
and the solution is just T, = T.p/[1 + ASo] [29]. For the
in-resonance conditions § = 0 and Sﬁ (q,Q = —cet?.
The resonance occurs when |q+2Q| = |q|, ie., g =
+0Q. As was indicated in [27], the developed formalism
valid only for the field orientation satisfying the following
relation sin€ > t;¢o/mhd Hvr.

3 Results and Discussions

For the numerical calculations, we restrict ourselves to the
following parameters: dy = 0.339 nm, d, = 1.283 nm,
d; = 1.539 nm [12]. The superconducting tempera-
ture was chosen to be T,o = 6.5 K [13], and the band
couplings are ;, = 0.65 K~ t, and t; = 2.25 K. Intro-
ducing the dimensionless Fermi velocity parameter, n =
whd,vr [popup = hvrQx/pp. In this work, we consider
vp=12x lOSm/ sec, which corresponds to 7 = 3.16. The
summation over the Matsubara frequencies was performed
numerically.

Figure 2 illustrates the temperature dependence of the
absolute value of the FFLO modulation wave vector q cal-
culated without accounting for the orbital motion (red solid
line), when accounting the orbital effect with Ay, = 0
(green dashed line), and with A4y # O (green solid line)
when calculated in the clean limit. The blue dashed line
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Fig. 2 The absolute value of the FFLO modulation vector g versus of
Tcp / Teo for an s-wave quasi-1D superconductor when accounting for
the orbital effects within the first iteration. The upper panel: t./T: =
0.2. The lower panel: t./T. = 0.35. Solid line takes into account the
influence of resonance. Short dashed line shows the field vector Q

gives the upper critical field in the Pauli limit in terms of the
magnetic wave vector Q. The direction of the external mag-
netic field is characterized by 6, the angle the applied field
H makes from the principal x-axis of the quasi-1D com-
pound and, in this particular case, is fixed to 8 = 35 degrees.
The optimal direction of the modulation vector is along the
conductive chains for 0 < T < T* with T* ~ 0.56T for
the clean sample in the Pauli limit. The upper critical field
in the inhomogeneous superconducting state diverges at
T — 0 and appreciably higher than the paramagnetic limit
already for T.p/T.0 < 0.3 [38]. As seen from the figure,
the magnitude of the q vector monotonically increases from
zero at the tricritical point until infinity. At T.p / Too &~ 0.35,
the FFLO wave vector q intersects the magnetic wave vec-
tors Q and the resonance anomaly in the superconducting
characteristics occurs [27].



We clearly see that the orbital contribution influences the
absolute value of the FFLO modulation vector. The influ-
ence of the orbital effect on the modulation vector is rather
for £, = 1.30 K except for the region in the close proxim-
ity to the resonance. In the vicinity of the resonance, where
the unperturb g and Q curves intersect, appears an interest-
ing lock-in effect: while sweeping the T.p /T, across the
resonance the FFLO vector jumps from its almost unper-
turb value g, determined without the orbital contribution,
to the magnetic field vector Q, crosses the resonance and
then jumps back on the original gg curve. For the case ¢, =
2.25 K, the contribution of the orbital effect is seen already
near the tricritical point, which is shifted to the lower value
due to the orbital contributions even for A4, = 0.

In conclusion, we have described the behavior of the
FFLO modulation wave vector in quasi-1D superconductors
in high magnetic field with different hopping parameters.
We demonstrated that at the resonance the interplay between
the orbital and paramagnetic effects may result in a lock-
in effect between modulation wave vector and the magnetic
wave vector. This effect may become an additional tool to
evidence the FFLO state. In our study, we have assumed s-
wave pairing; however, the model can be easily extended
to the d-wave pairing [28]. We expect that all the obtained
results will remain qualitatively similar.
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