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An elementary analytical theory of overturning ship bow waves
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a State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

 b École Centrale de Nantes, CNRS, Nantes, France
c School of Physics, Astronomy & Computational Sciences, George Mason University, Fairfax VA, USA

A fully-analytical theory that approximately predicts the size, shape and thickness of the overturning detached bow wave, and the width of the 
wavebreaking wake behind the plunging bow wave, generated by a ship with a fine bow that advances (at constant speed along a straight path) in calm 
water is reported. The theory yields simple analytical ‘cause-and-effect’ relations that provide useful physical insight and explicitly relate a ship’s
speed, draft, and main parameters characterizing the bow shape (entrance angles of the top and bottom waterlines, rake angle, flare) to the 
corresponding overturning bow wave and wavebreaking wake. Qualitative comparisons with experimental observations and CFD calculations show 
that while the elementary analysis underlying the theory cannot be expected to yield accurate predictions, the theory predicts trends correctly and 
provides practical estimates of the influence of basic ship design parameters (speed, draft, bow shape) on main characteristics of the overturning bow 
wave and the related wavebreaking wake created by a ship bow.

1. Introduction

A ship that advances at constant speed along a straight path

in calm water generates a bow wave – a highly visible, complex,

and important feature of the flow due to a ship hull – that can be

unsteady and turbulent, or can consist of an overturning detached

thin sheet of water that is mostly steady, until it hits the main

free surface and undergoes turbulent breaking up and diffusion.

The boundary between these two basic flow regimes, the ‘unsteady

bow wave regime’ and the ‘steady overturning bow wave regime’,

is considered in [1–3]. Hereafter, we only consider the ‘steady’

overturning bowwave regime, which mostly occurs for ships with

fine bows. Understanding of the bow wave created by a ship

hull is important for design because a ship bow wave is a major

contributor to the drag associated with wavebreaking, which can

be a significant part of the total drag experienced by a ship [4].
Experimental investigations of ship bowwaves, including over-

turning bow waves of interest here, have been reported in the

literature; e.g. [5–15]. Overturning ship bowwaves cannot be pre-

dicted using traditional theoretical methods, e.g. thin-ship theory
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and potential-flow panel methods, for computing flows around

ship hulls. However, divergent overturning bowwaves can be pre-

dicted and evaluated using the 2D+ T theory and numerical (CFD)

methods; e.g. [16–31]. Although CFDmethods can be used to com-

pute overturning detached ship bowwaves, as is indeed illustrated

in this study, such numerical calculations are not practical for rou-

tine applications, notably at early design stages when numerous

alternative ship designs typically need to be considered. CFDmeth-

ods likewise are ill suited for performing systematic parametric

studies, required to analyze the influence of a ship’s speed and

draft, and the shape of a ship bow.
The primary practical objective of the present study is to de-

velop a simple fully-analytical (albeit highly-simplified) theory

that provides direct ‘cause-and-effect’ relationships between – on

the ‘cause’ side – the ship speed and the bow geometry (draft, en-

trance angles at the top and bottom waterlines, rake angle, flare)

and – on the ‘effect’ side – main geometrical characteristics (size,

shape, thickness) of the resulting detached overturning bow wave

and the width of the related wavebreaking wake. Another main

objective of the study is to gain basic physical insight, that is not

readily provided by the detailed experimental measurements or

CFD calculations reported in the literature on ship bowwaves; e.g.

[6,7,24,26], into the relatively complex dynamics of overturning

ship bow waves.
To these ends, we consider a simple fully-analytical theory

based on elementary considerations. The theory ignores effects of
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Fig. 1. Left: A ship hull waterline with the angle α and the unit vectors t = (cosα, sinα, 0) andm = (−sinα, cosα, 0) tangent and normal to the waterline. Center: A ship

hull section with the unit vectors m, k = (0, 0, 1), n = m cos γ − k sin γ and s = k cos γ + m sin γ , the hull flare angle γ and the angle µ between the free surface and

the horizontal plane. Right: Ship centerplane with the stem and keel lines, the rake angle β and the unit vector q = (−sinβ, 0, cosβ).

viscosity and surface tension. Although this basic approximation

greatly simplifies the flow analysis, the inviscid-flow analysis

of an overturning ship bow wave remains extremely complex,

notably due to strong nonlinearities in the free-surface boundary

condition. Approximations are therefore made in the elementary

theory considered here, although it accounts for nonlinearities as

required tomodel overturning ship bowwaves. The theory consists

of four main steps.

The initial step is the contact curve, commonly called bowwave

profile, between the ship hull and the free surface. In the second

step, the flow velocity at the bow wave profile is determined, an-

alytically in terms of the bow wave profile, from the exact (for an

inviscid flow) boundary conditions at the ship hull surface and the

free surface. The third step determines the overturning detached

bow wave and the wave’s size, shape, and intersection with the

mean free surface. This step is an elementary Lagrangian analy-

sis, based on Newton’s equations, that ignores interactions among

water particles. The last step determines the thickness of the over-

turning detached ship bowwave via elementary considerations re-

lated to mass conservation, specifically by relating the volume of

water that flows through an overturning bow wave to the water

displaced by the advancing ship hull. These four steps fully deter-

mine the size, shape and thickness of an overturning detached bow

wave and the width of the related wavebreaking wake in terms of

the ship speed and the bow geometry (draft and shape) for a broad

class of fine ship bows. Thus, the theory is particularly simple, and

markedly different from alternative approaches.

2. Basic assumptions and relations

We then consider the ‘steady’ overturning bowwave generated

by a ship. The ship is presumed to advance along a straight path,

at constant speed Vs, through calm water of effectively infinite

depth and lateral extent. We ignore unsteady fluctuations and

instabilities of the overturning bow wave, as well as the flow that

occurs after the overturning bow wave pierces the free surface

and undergoes highly unsteady and turbulent breaking up and

diffusion. We also ignore effects of surface tension and viscosity.

The Z axis is vertical and points upward, with the mean free

surface taken as the plane Z = 0. The X axis is along the ship path

and points toward the ship stern, with the origin X = 0 taken at

the intersection between the ship stem and the mean free-surface

plane Z = 0. This system of coordinates is attached to the moving

ship. The flow observed in thismoving frame of reference is steady,

and the flow velocity U is given by the sum of an apparent uniform

stream Vs along the X axis and the (disturbance) flow velocity due

to the ship. Nondimensional coordinates x, flowvelocityu and time

θ are defined as

x ≡ X g/V 2
s u ≡ U/Vs θ = Θ g/Vs. (1)

The draftD of the ship bow is used as reference length to define the

Froude number

F = Vs/

gD (2)

where g stands for the acceleration of gravity. The nondimensional

draft d is then given by d ≡ 1/F 2. We will also use the alternative

nondimensional coordinates

X/D ≡ F 2x. (3)

The five unit vectors t,m,n, s, k shown in Fig. 1 are defined at

the ship hull surface. The vector t is tangent to the ship hull surface

and, on the positive side 0 ≤ y of the ship hull considered here,

points toward the ship stern. The two orthogonal vectors t and m

lie in a horizontal plane and are defined as

t = (cosα, sinα, 0) m = (−sinα, cosα, 0) (4)

where 0 ≤ α is the angle between the ship hull and the x axis,
as shown on the left of Fig. 1. The vector m is collinear with the
horizontal projection of the unit vector n normal to the ship hull.
The vectors n andm point outside the ship, as shown in the center
of Fig. 1.

The angle γ between the normal vector n to the ship hull and

themean free-surface plane z = 0, i.e. the flare angle, is positive for

typical hulls considered here, and negative for tumble home hulls.

As shown in the center of Fig. 1, the unit vector s = t×n is tangent

to the ship hull and points upward, and the unit vector k is vertical

and points upward. We have

k = (0, 0, 1) n = m cos γ − k sin γ

s = k cos γ + m sin γ .
(5)

Nondimensional local coordinates (t,m, z) associated with the
three orthogonal unit vectors (t,m, k) are used further on.

At the ship stem, we also define the unit vector q = (−sinβ,
0, cosβ)where β is the angle between the ship stem and the ver-

tical, i.e. the rake angle. The rake angleβ is positive for typical hulls,

considered here, and negative for tumble home hulls. The vector q

is tangent to the ship stem and points upward, as shown on the

right side of Fig. 1. At the ship bow, the vector n is collinear with

the vector q × t and given by

n = (−sinα, cosα,−sinα tanβ)/


1 + sin2 α tan2 β.

This relation and expressions (4) and (5) yield n · m = cos γ =
1/

1 + sin2 α tan2 β . At a ship stem, the flare angle γ is deter-

mined in terms of the waterline half entrance angle α and the rake

angle β via the relation

tan γ = sinα tanβ. (6)

E.g., for α = 15◦, this relation yields γ ≈ 8.5◦ for β = 30◦, and
γ ≈ 14.5◦ for β = 45◦.

In the vicinity of the contact line between the free surface and

the ship hull, the free surface is defined as z = ζ (t,m) and the

slope ζm of the free surface along the unit normal vector m is

expressed as

ζm ≡ tanµ with −π/2 − γ ≤ µ ≤ π/2 − γ . (7)

Here, µ is the angle between the free surface and the mean free-
surface plane z = 0, as shown in Fig. 1.
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Fig. 2. Four-parameter (draft D, rake angle β , and entrance angles 2α and 2α′ of
top and bottom waterlines) family of ship bows with rake and flare.

3. Contact line between the ship hull and the free surface

The first step in the theory is the determination of the contact

line between a ship hull surface and the free surface. This contact

line, commonly called wave profile, can be determined via any

alternative flow-calculation methods: semi-analytical theories

based on various approximations (thin-ship, slender-ship, 2D +
T theories), potential-flow panel (boundary integral equation)

methods that rely on the use of a Green function (elementary

Rankine source, or Havelock source that satisfies the radiation

condition and the Kelvin–Michell linearized free-surface boundary

condition), or computational-fluid-dynamics methods to solve the

Euler or RANS equations. These alternative calculationmethods are

reported in a huge body of literature, not reviewed here; a partial

list of illustrative references may be found in e.g. [32].

As already noted, any calculation method can be used to deter-

mine the wave profile. A simpler alternative to the use of ‘numer-

ical bow wave profiles’ exists for a broad class of fine ship bows,

for which approximate ‘analytical bow wave profiles’ are avail-

able. This class of ship bows is considered here for the purpose of

developing a fully-analytical theory that provides simple ‘cause-

and-effect’ relationships between – on the ‘cause’ side – the ship

speed and the bow geometry (draft, entrance angles at the top and

bottom waterlines, rake angle) and – on the ‘effect’ side – main

geometrical characteristics (size, shape, thickness) of the resulting

detachedoverturning bowwave and thewidth of the relatedwave-

breaking wake.

Thus, although the theory can be applied to any ship bow for

which the wave profile can be determined (analytically, numeri-

cally, or experimentally), we focus on the particular class of simple

ship bows considered in [33,34]. As shown in Fig. 2, this family of

ship bows is defined by four parameters: the ship draft D, the rake

angle β , and the hull entrance angles 2α and 2α′ at the top water-

line (at the free surface Z = 0) and at the bottom waterline (at the

hull draft Z = −D), respectively. The family of ship bows is defined

by the relation

Y = ±(X + Z tanβ)[tanα + (tanα − tanα′)Z/D] (8a)

with −D ≤ Z and −Z tanβ ≤ X , or the corresponding nondimen-

sional relation

y = ±(x + z tanβ)[tanα + (tanα − tanα′)F 2z] (8b)

with −1/F 2 ≤ z and −z tanβ ≤ x.
The parameter ϕ defined in terms of the waterline entrance

angles α and α′ as

− 1 ≤ ϕ ≡ (tanα − tanα′)/(tanα + tanα′) ≤ 1 (9)

is called the flare parameter for simplicity, as in [33,34], even

though the rake angle β also influences the flare angle γ . Indeed,
the flare angle γ for the family of ship bows defined in Fig. 2 is

given by

tan γ = sinα tanβ + cosα (tanα − tanα′)X/D. (10)

As depicted in Fig. 3, a bow wave profile is largely determined

by four basic characteristic features: the height Zb of the bowwave

Fig. 3. Ship draftD and speed Vs , rise of water Z0 at the ship stem, bowwave height

Zb , distance Xb between the ship stem and the bow wave crest, and distance X0

between the ship stemand the crossing of the bowwavewith themean free-surface

plane Z = 0.

(elevation of the bowwave crest above themean free-surface plane

Z = 0), the location Xb (measured from the ship stem X = 0) of the

bow wave crest, the water height Z0 at the ship stem X = 0, and

the length X0 of the bowwave (specifically, X0 defines the location,

measured from the ship stem, of the intersection of the bow wave

profile with the mean free-surface plane Z = 0). The four basic

variables Zb, Xb, Z0 and X0 are approximately determined by the

simple analytical relations

zb ≡
Zb g

V 2
s

≈
tanα + tanα′

cosα + cosα′
2.2

1 + F
ζb(F , β, ϕ) (11a)

xb ≡
Xb g

V 2
s

≈
cos8 α + cos8 α′

2

1.1

1 + F
ξb(F , β, ϕ) (11b)

z0 ≡
Z0 g

V 2
s

≈
2

π

tanα + tanα′

cosα + cosα′
Es(F)

1 + F 2
ζ0(F , β, ϕ) (11c)

x0 ≡
X0 g

V 2
s

≈
cos8 α + cos8 α′

2
[ξ0(F , β, ϕ)+ 2.3] (11d)

given in [34]. Here, F is the draft-based Froude number (2), and

Es(F) in (11c) is defined in [34,35] as

Es(F) ≡ 1 +
2/3

1 + F 2
+

19/45

(1 + F 2)2
+

26/105

(1 + F 2)3

+
601/4725

(1 + F 2)4
+

1502/31185

(1 + F 2)5
+ 4.16 (1 + F 2)e−13F−0.26.

The four functions ζb(F , β, ϕ), ξb(F , β, ϕ), ζ0(F , β, ϕ) and ξ0(F , β,
ϕ) are tabulated in [34] for six draft-based Froude numbers F
that correspond to F/(1 + F) = 0.3, 0.4, . . . , 0.8, nine rake

angles β = 60◦, 45◦, . . . ,−60◦, and nine values of the hull flare

parameter ϕ = 1, 0.75, . . . ,−1. These ranges of Froude numbers,

rake angles, and flare encompass most cases of practical interest.

In particular, the Froude-number range 0.3 ≤ F/(1 + F) ≤ 0.8
corresponds to draft-based Froude numbers F in the range 0.43 ≤
F ≤ 4 and– for a shipwith length/draft ratio Ls/D = 20– to length-

based Froude numbers FL ≡ Vs/
√
gLs in the range 0.1 ≤ FL ≤ 0.9.

The relations (11) and (3) yield

Z0
D

= O(1)
Zb
D

= O(F)
Xb

D
= O(F)

X0

D
= O(F 2) as F → ∞.

(12)

Expression (11a) for the bow wave amplitude zb and the upper

bound zb ≤ 1/2 for steady free-surface flow show that a ‘steady’

overturning ship bow wave can only exist if

4.4 (tanα + tanα′)/(cosα + cosα′) ≤ (1 + F)/ζb.

This condition is satisfied as we only consider small waterline

entrance angles α ≤ 20◦ and α′ ≤ 20◦.
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The front and back of a bow wave are approximated by the

parabolic arcs

ζ − z0
zb − z0

=

2 −

x

xb


x

xb
for xs ≤ x ≤ xb (13a)

ζ

zb
= 1 −


x − xb
x0 − xb

2

for xb ≤ x ≤ x0. (13b)

Here, ζ is used instead of z to emphasize that the foregoing

expressions define the wave profile z = ζ (x). Furthermore, xs in
(13a) corresponds to the intersection x = xs of the bow wave

profile with the ship stem line x = −z tanβ . The intersection xs
and the corresponding water elevation zs are given by

xs = −zs tanβ zs ≈ z0/


1 + 2

zb − z0
xb

tanβ


. (13c)

This relation for zs is based on an approximation in which, within

the short segment xs ≤ x < 0, the parabolic arc (13a) is replaced

by its tangent at x = 0.
In the special case β = 0 and α′ = α, the four-parameter

(D, α, α′, β) family of ship bows defined in Fig. 2 is identical to the

two-parameter (D, α) family of wedge-shaped bows considered

in [1]. In this special case, (9) yields ϕ = 0, the functions ζb, ξb, ζ0
in (11) are equal to 1 as shown in [33,34], and (11a)–(11c) are

identical to the corresponding relations given in [1] as expected.

The relations (11a)–(11c) and the related parabolic approximation

(13a) to the bow wave front are shown in [1] to be in good overall

agreement with experimental measurements for both wedge-

shaped ship bows (Wigley hull and three sharp-ended strut-like

hulls) with various entrance angles 2α and a rectangular flat plate

at several incidence (yaw) angles α, i.e. in the special case β = 0

and α′ = α.
For the more general family of ship bows depicted in Fig. 2,

the analytical bow wave profile given by the two complementary

parabolic arcs (13) and the relations (11) are in good overall

agreement with CFD bow wave profiles obtained via Euler-flow

calculationmethods [34]. Thus, the simple analytical relations (13)

and (11), with the tables for the related functions ζb, ξb, ζ0, ξ0
given in [34], provide a practical analytical approximation to the

bow wave profile for xs ≤ x ≤ x0. This simple approximation is

useful for a broad class of fine bows with rake and flare, common

for fast ships that generate overturning bowwaves of interest here.

The slope ζ ′ ≡ dζ (x)/dx of the wave profile (13) is given by

ζ ′ = 2
zb − z0

xb


1 −

x

xb


for xs ≤ x ≤ xb (14a)

ζ ′ =
−2 zb
x0 − xb

x − xb
x0 − xb

for xb ≤ x ≤ x0. (14b)

At the ship stem, (14a) and (13c) yield

ζ ′
s ≈ 2

zb − z0
xb


1 +

zs
xb

tanβ


. (14c)

The asymptotic relations (12) and expressions (11a) and (11b) then

yield

ζ ′
s ≈

2 zb
xb

≈
tanα + tanα′

cosα + cosα′
8 ζb/ξb

cos8 α + cos8 α′ as F → ∞. (14d)

Thus, the wave slope ζ ′
s is O(1) in the high Froude number limit

F → ∞.

The ship hull surface in the vicinity of themean free surface can

be represented as y = η(x, z). A point of the wave profile is then

determined by the coordinates x, z = ζ (x) and y = η(x, z = ζ (x)).
The coordinates of a neighboring point of the wave profile are

x + dx, ζ + ζ ′dx and y + ηxdx + ηzζ
′dx, with ηx = tanα and

ηz = tan γ . The distance dℓ between two neighboring points of

the wave profile then is

dℓ = dx σ/ cosα with

σ ≡

1 + (ζ ′)2 cos2 α/ cos2 γ + ζ ′ sin(2α) tan γ ≈ 1. (15)

This relation is used further on.

4. Flow velocity at the contact line

The second step in the theory is the evaluation of the flow

velocity u at the contact curve between a ship hull surface and the

free surface. This second step is given in [36] and is straightforward.

Indeed, the three components of the velocity vectoru at the contact

curve can be determined, in a simple way via exact analytical

relations, from the previously-considered wave profile (the first

step in the theory) and the three boundary conditions that hold

along the wave profile (kinematic boundary conditions at the

ship hull surface and at the free surface, and dynamic boundary

condition at the free surface).

The analysis given in [36] is repeated here for completeness, as

it is short and notations differ. We have

u ≡ ut + vm + wk ≡ ut + v′n + w′s.

Expressions (5) show that the velocity components v and w and

the components v′ andw′ are related as

v = v′ cos γ + w′ sin γ and w = w′ cos γ − v′ sin γ .

As already noted, three boundary conditions hold at the contact

curve between the ship hull surface and the free surface. One of

these boundary conditions is the kinematic (no-flux) condition

v′ = 0 that holds at the ship hull surface. This condition yields

v = w′ sin γ andw = w′ cos γ . We then have v = w tan γ and

u = ut + w(k + m tan γ ) ≡ t u + sw/ cos γ (16)

where the two velocity components u and w are determined by

the two boundary conditions that hold at the free surface z =
ζ (t,m). These free-surface boundary conditions are the dynamic

(constant-pressure) condition

u2 + w2/ cos2 γ = 1 − 2 ζ

and the kinematic (no-flux) condition u · ∇[z − ζ (t,m)] = 0, i.e.

w(1 − tan γ tanµ) = u ζ t

where tanµ ≡ ζm in accordance with (7).

These two free-surface boundary conditions and the relation

(16) then yield

u =

1 − 2 ζ

(1 − tan γ tanµ)t + (k + m tan γ ) ζ t
(1 − tan γ tanµ)2 + ζ 2

t / cos
2 γ

. (17a)

This expression shows that the magnitude of the flow velocity u is

given by

|u| =

1 − 2 ζ (17b)

as expected from the Bernoulli relation. Furthermore, (17a) yields

u =

1 − 2 ζ t if ζ t = 0. (17c)

e.g. at the crest of a ship bow wave, and

u =

1 − 2 ζ (t + ζ tk)


1 + ζ 2

t if γ = 0 (17d)

i.e. for a wall-sided ship hull. Expressions (17) follow from exact

(if surface-tension and viscosity effects are neglected) boundary

conditions at the ship hull surface and the free surface and are

therefore exact (under this basic simplification).
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Fig. 4. Bow wave profile Z/D and velocity components u ≡ U/Vs and w ≡ W/Vs for the class of ship bows defined in Fig. 2 with β = 30◦ and α′ = α = 15◦ at four

draft-based Froude numbers F = 0.67, 1, 1.5, 2.33.

Expression (17a) also yields the approximation

u ≈

1 − 2 ζ

t + (k + m tan γ ) ζ ′ cosα
1 + (ζ ′)2 cos2 α/ cos2 γ

w ≈ u ζ ′ cosα (18a)

if | tan γ tanµ| ≪ 1. Here, the relation ζ t = ζ ′ cosα with ζ ′ ≡
dζ (x)/dx was used. In the particular case α′ = α, (10) shows

that the approximation (18a) holds if | sinα tanβ tanµ| ≪ 1.

Expressions (18a) and (4) then yield

ux

uy

uz


≈

√
1 − 2 ζ

1 + (ζ ′)2 cos2 α/ cos2 γ

×




(1 − ζ ′ tan γ sinα) cosα

sinα + ζ ′ tan γ cos2 α

ζ ′ cosα



 . (18b)

These expressions define the x, y, z components ux, uy, uz of the
flow velocity u at the wave profile in terms of the waterline and
flare angles α and γ and the wave profile z = ζ (x); in the special
case of the family of ship bows shown in Fig. 2, the flare angle γ and
the wave elevation ζ (x) in (18b) are given by (10), (11) and (13).

For purposes of illustration, the velocity components u and w
along the unit vectors t and k, defined by the approximation (18a)

as

u
w


≈

√
1 − 2 ζ

1 + (ζ ′)2 cos2 α/ cos2 γ


1

ζ ′ cosα


(19)

are depicted in Fig. 4 for the class of ship bows defined in Fig. 2

with β = 30◦ and α′ = α = 15◦ at four draft-based Froude

numbers F = 0.67, 1, 1.5 and 2.33. The corresponding analytical

bowwave profiles defined by (13) and (11), and the bow stem line

X = Xs are also shown in Fig. 4. The flare angle γ in (19) is given by

(10) with β = 30◦ and α = 15◦. As expected, the vertical velocity

componentw in Fig. 4 is positive on the front of the bow wave, i.e.

for Xs ≤ X ≤ Xb, vanishes at thewave crest X = Xb, and is negative

on the backXb ≤ X ≤ X0 of the bowwave. Thewave profile and the

related velocity components u and w vary somewhat abruptly at

the wave crest X = Xb because the curvature of the two parabolic

arcs (13) is discontinuous there.

5. Modeling of the dynamics of an overturning bow wave

The third step in the theory is the determination of the

motions of fluid particles within a detached thin sheet of water

that leaves a ship hull at the ship-hull/free-surface contact curve

(flow-detachment curve) with velocity u given by the analytical

approximation (18). This third step is an elementary Lagrangian

analysis of the motions of fluid particles, which are assumed to

move freely under the action of gravity. Interactions among water

particles are then ignored in this elementary analysis, and the

motions of fluid particles within the detached thin sheet of water

are completely determined (in a straightforward way) from the

gravitational acceleration, the ‘initial’ flow velocity along the bow

5



Fig. 5. Relative angle ψs − αs of the bow wavebreaking wake for the class of ship bows defined in Fig. 2. The left figure depicts the variation of ψs − αs with respect to the

scaled Froude number 0.3 ≤ F/(1 + F) ≤ 0.8 for αs = 15◦ and β = 30◦ . The center figure depicts the variation of ψs − αs with respect to the rake angle 0◦ ≤ β ≤ 60◦ for

F = 1.5 and αs = 15◦ . The right figure depicts the variation of ψs − αs with respect to the waterline entrance angle 0◦ ≤ αs ≤ 20◦ for F = 1.5 and β = 30◦ .

wave profile, and Newton’s equations applied to ‘independent’

water particles, as shown in Section 5.1. This Lagrangian analysis

also defines the geometry (size and shape) of the overturning

bow wave and of the related wavebreaking wake, considered in

Sections 5.2 and 5.3.

5.1. Motions of fluid particles within an overturning bow wave

Newton’s equations show that the path of a water particle is

determined by

d2t∗/dθ2 = 0 d2m∗/dθ2 = 0 d2z∗/dθ2 = −1.

Here, the time θ and the coordinates t∗,m∗, z∗ are nondimensional

in accordance with (1). A water particle that leaves a point (t =
0,m = 0, z = ζ ) of the flow-detachment curve, with initial

velocity (18), at the time θ = 0 follows the path

t∗ = θ u m∗ = θ w tan γ

z∗ = ζ + θ w − θ2/2 withw ≈ u ζ ′ cosα.
(20a)

A fluid particle moves along the path (20a) with velocity

dt∗/dθ = u dm∗/dθ = w tan γ

dz∗/dθ = w − θ = w − t∗/u.
(20b)

The parametric equations (20a) yield

m∗ ≈ t∗ζ ′ cosα tan γ

z∗ ≈ ζ + t∗ζ ′ cosα − (t∗)2/(2 u2)
(21a)

z∗ ≈ ζ + m∗/ tan γ − (m∗)2/(2w2 tan2 γ ). (21b)

Thus, the projections of the path of a water particle on the hori-

zontal plane (t,m) and the vertical planes (k, t) or (k,m) are a

straight line and parabolic curves, respectively, as expected from

Newton’s equations.

The first of expressions (21a) yieldsm∗/t∗ ≈ ζ ′ cosα tan γ . The
projection of the path of a water particle on the horizontal plane is

then a straight line at an angle ψ from the x axis (the ship track)

given by

tan(ψ − α) = ζ ′ cosα tan γ . (22a)

This relation yields α < ψ if 0 < ζ ′ and ψ < α if ζ ′ < 0, i.e. for

the front xs ≤ x ≤ xb or the back xb ≤ x ≤ x0 of the bowwave. The

condition ψ < α does not imply that the overturning detached

bow wave is inside the ship hull (not physically acceptable) for a

positive flare angle γ . At the wave crest, we have ζ ′ = 0 and (22a)

yields ψb = αb, i.e. water particles move along a (parabolic) path

that lies in a plane tangent to the ship hull. At the ship stem, we

have α = αs and (22a), (14c) and (6) yield

tan(ψs − αs) ≈
zb − z0

xb


1 +

zs
xb

tanβ


sin(2αs) tanβ. (22b)

This relation yields ψs = αs if β = 0 and ψs ≥ αs as expected,

and shows that the angle ψs − αs increases as the rake angle β
increases. Furthermore, (22b) and (11) show that the angleψs −αs

also increases as the (half) entrance angle αs of the top waterline

increases. Expressions (22b), (12) and (11) yield

ψs = O(1) as F → ∞ ψs ∼ αs as αs → 0. (22c)

Fig. 6 (next section) shows that the angle ψs determines the outer

limit of the intersection curve between the overturning bow wave

and the mean free-surface plane z = 0. The angle ψs defined

by (22b) is then called ‘angle of the bow wavebreaking wake’

hereinafter.

Fig. 5 depicts the variation of the relative angle ψs − αs

(measured from the hull top waterline) of the bow wavebreaking

wake with respect to the (draft-based) Froude number F , the rake

angle β and the top-waterline (half) entrance angle αs for the class

of ship bows defined in Fig. 2. Specifically, the left side of Fig. 5

depicts the variation of the angleψs −αs with respect to the scaled

Froude number F/(1 + F) in the range 0.3 ≤ F/(1 + F) ≤ 0.8,

i.e. 0.43 ≤ F ≤ 4, for αs = 15◦ and β = 30◦. This figure shows

thatψs −αs is approximately proportional to F/(1+F). The center
of Fig. 5 depicts the variation of the angle ψs − αs with respect to

the rake angle β in the range 0◦ ≤ β ≤ 60◦ for F = 1.5 and

αs = 15◦. The angle ψs − αs is approximately proportional to β .

The right side of Fig. 5 depicts the variation of the angleψs−αs with

respect to the top-waterline half entrance angle αs in the range

0◦ ≤ αs ≤ 20◦ for F = 1.5 and β = 30◦. This figure shows that

ψs − αs is approximately proportional to α2
s for small values of αs.

Fig. 5 shows that the angle ψs of the bow wavebreaking wake can

be fairly large, in agreementwith common observations of the bow

waves of fast boats.

If 0 < w, the water trajectory (20a) reaches a top height for

θ = w, i.e. for

t∗top = uw m∗
top = w2 tan γ z∗

top = ζ + w2/2. (23)

Themaximum height z∗
top reached bywater particles that leave the

ship-hull/free-surface contact curve at an initial height z = ζ is

significantly larger than ζ only if w is large, e.g. near a ship stem.

Expression (23) yields t∗top = 0,m∗
top = 0 and z∗

top = ζ if w = 0,

e.g. at a crest of the flow-detachment curve. Thus, the maximum

height z∗
top occurs at the ship hull in this special case, as expected.
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Fig. 6. Shape of overturning detached bow wave for the class of ship bows defined in Fig. 2 with (top left) F = 1, α = 15◦ = α′ , β = 30◦ , (bottom left)

F = 1.5, α = 15◦ = α′, β = 30◦ , (bottom right) F = 1.5, α = 15◦ = α′ , β = 45◦ , or (top right) F = 1.5, α = 20◦ = α′, β = 30◦ . The detached bow waves are

depicted in terms of the draft-scaled coordinates X/D ≡ F 2x.

5.2. Shape of an overturning bow wave

The local coordinates t∗ andm∗ associated with the orthogonal

unit vectors t and m correspond to the global coordinates x∗ and

y∗ given by

x∗ = x + t∗ cosα − m∗ sinα y∗ = y + m∗ cosα + t∗ sinα.

Here, (x, y, ζ ) is the point of the ship hull surface that corresponds
to the origin of the system of local coordinates related to the unit
vectors t andm, and α is the angle between the x axis and the unit
horizontal vector t tangent to the hull at the point (x, y, ζ ).

The foregoing relations with the relations (21a) and expression

(19) for u yield the parametric equations

x∗ ≈ x + t∗(1 − ζ ′ tan γ sinα) cosα

y∗ ≈ y + t∗(sinα + ζ ′ tan γ cos2 α)

z∗ ≈ ζ + t∗[ζ ′ cosα − (t∗/2)
× {1 + (ζ ′)2 cos2 α/ cos2 γ }/(1 − 2 ζ )]





with 0 ≤ t∗ ≤ t∗z=0. (24a)

Here, the function y ≡ y(x, z) defines the hull surface, the related

angle α is given by tanα = ∂y(x, z)/∂x, γ stands for the local

flare angle, ζ ≡ ζ (x) defines the bow wave profile z = ζ (x)
and ζ ′ ≡ dζ/dx is the related slope. Furthermore, t∗z=0 stands

for the value of t∗ for which the water trajectory defined by (20a)

intersects the mean free-surface plane z∗ = 0. Thus, t∗z=0 is given

by t∗z=0 = u (w +

w2 + 2 ζ ). Expressions (19) then yield

t∗z=0 =

1 − 2 ζ

×
√
1 − 2 ζ ζ ′ cosα +


2ζ + (1 + 2ζ tan2 γ )(ζ ′)2 cos2 α

1 + (ζ ′)2 cos2 α/ cos2 γ
. (24b)

The overturning detached bow wave originates at the contact

curve between the ship hull and the free surface and ends at its

intersection with the free-surface plane z∗ = 0. These two bound-

ary curves correspond to t∗ = 0 and t∗ = t∗z=0 in the paramet-

ric equations (24a), respectively, and are then given by x∗
0 = x,

y∗
0 = y(x, z = ζ (x)), z∗

0 = ζ (x) with xs ≤ x for the contact curve

(bow wave profile), and by

x∗
z=0 ≈ x + t∗z=0(1 − ζ ′ tan γ sinα) cosα

y∗
z=0 ≈ y + t∗z=0(sinα + ζ ′ tan γ cos2 α)


(24c)

for the intersection of the overturning bow wave with the mean

free-surface plane z∗ = 0.

Expressions (24)with (11), (13), (14a) and (14b) fully determine

the shape of an overturning detached bow wave in terms of the

ship speed and the bow geometry. These relations ignore surface

tension and viscosity, assume | tan γ tanµ| ≪ 1, and are based on

an elementary Lagrangian analysis that ignores interactions among

fluid particles within the detached bow sheet as already noted.

Expressions (20b) show that the flow velocity at the boundary

of the bow wavebreaking wake, i.e. for t∗ = t∗z=0 = u (w +
w2 + 2 ζ ), is given by

dt∗/dθ = u dm∗/dθ = w tan γ dz∗/dθ = −

w2 + 2 ζ .

Expression (19) for the velocity components u and w then shows

that the magnitude of the flow velocity is


(dt∗/dθ)2 + (dm∗/dθ)2 + (dz∗/dθ)2 = 1 (25)

in agreement with the Bernoulli relation. Thus, the overturning

bow wave intersects the mean free surface (along the boundary of

the bow wavebreaking wake) with flow velocity (approximately)

equal to the ship speed.

Fig. 6 depicts the overturning detached bow wave given by the

parametric equations (24), and expressions (13) and (11) for the

wave profile, for the class of ship bows defined in Fig. 2with F = 1,
α = 15◦ = α′, β = 30◦ in the top left corner, F = 1.5, α = 15◦ =
α′, β = 30◦ in the bottom left corner, F = 1.5, α = 15◦ = α′, β =
45◦ in the bottom right corner, or F = 1.5, α = 20◦ = α′, β = 30◦

in the top right corner. The overturning detached bow waves in

Fig. 6 are depicted in terms of the nondimensional draft-scaled co-

ordinates X/D ≡ F 2x. The top and bottom figures on the left of

Fig. 6 show that the overturning bow wave grows significantly as

the ship speed increases. The figures on the left and right sides

of the bottom row show that the overturning bow wave becomes

broader as the rake angleβ increases. Finally, the top right and bot-

tom left figures show how the overturning bowwave grows as the

waterline entrance angle α increases.

Fig. 7 depicts the boundary of the bow wavebreaking wake,

i.e. the intersection curve between the overturning detached bow

wave and the plane z = 0, defined by (24c) for the class of ship

bowsdefined in Fig. 2. This boundary curve is depictedwith respect

7



Fig. 7. Boundary of the bowwavebreakingwake, i.e. intersection curve between the overturning detached bowwave and themean free surface, in the local nondimensional

draft-scaled coordinates T/D ≡ F 2t and M/D ≡ F 2m associated with the unit vectors t and m, for the class of ship bows defined in Fig. 2. The left side depicts the wake

boundaries for α = 15◦ = α′, β = 30◦ and three Froude numbers that correspond to F/(1 + F) = 0.5, 0.6, 0.7. The center figure depicts the wake boundaries for

F = 1.5, α = 15◦ = α′ and three rake angles β = 10◦, 30◦, 50◦ . The right side depicts the wake boundaries for F = 1.5, β = 30◦ and three waterline (half) entrance angles

α = α′ = 10◦, 15◦, 20◦ .

Fig. 8. Intersection curve between the front portion of the overturning detached bowwave and the mean free surface, in the local nondimensional draft-scaled coordinates

T/D ≡ F 2t and M/D ≡ F 2m associated with the unit vectors t and m, for the class of ship bows defined in Fig. 2 with F = 1.5, three rake angles β = 15◦ (left side), 30°

(center) or 45° (right), and five waterline (half) entrance angles α = α′ = 5◦, 7.5◦, 10◦ , 12.5◦, 15◦ .

to the nondimensional draft-scaled local coordinates T/D ≡ F 2t
and M/D ≡ F 2m associated with the unit vectors t and m. The

ship stem is located at the origin (0, 0) and the horizontal t axis

corresponds to the positive side 0 ≤ y of the ship hull in Fig. 7 (the

negative side y ≤ 0 of the hull is located below the horizontal t
axis, at an angle 2α with this axis). Distorted T/D and M/D scales

are used for clarity.

The left figure depicts the wake boundaries for α = 15◦ =
α′, β = 30◦ and three Froude numbers that correspond to F/(1 +
F) = 0.5, 0.6 and 0.7, i.e. to F = 1, 1.5 and 2.3. This figure shows

that the wake boundary grows rapidly as the ship speed increases.

The center figure depicts the wake boundaries for F = 1.5, α =
15◦ = α′ and three rake angles β = 10◦, 30◦ and 50°. This figure

shows that the wake boundary is displaced outward as the rake

angle β increases. Finally, the right figure depicts the wake bound-

aries for F = 1.5, β = 30◦ and three waterline (half) entrance

angles α = α′ = 10◦, 15◦ and 20°, and illustrates the large influ-

ence of α.

The boundary of the bow wavebreaking wake is depicted

further in Fig. 8. This figure shows the intersection curve between

the mean free surface and the front portion (related to the front

of the bow wave profile) of the overturning detached bow wave

for the class of ship bows defined in Fig. 2, at a Froude number

F = 1.5, for three rake angles β = 15◦ (left side), 30° (center)

or 45° (right side), and five waterline (half) entrance angles α =
α′ = 5◦, 7.5◦, 10◦, 12.5◦ or 15°. Fig. 8 shows that the front part of

the intersection curve is nearly tangent to the ship hull for α = 5◦,
but is nearly orthogonal to the hull for α = 15◦. Furthermore, the

gradual transition from ‘tangential’ to ‘transversal’ intersections for

5◦ < α < 15◦ is not significantly affected by the rake angle β ,

which mostly causes an outward displacement of the intersection

curves.

Fig. 6 and (further on) the similar Figs. 13–15, and Figs. 7

and 8, show that the front and back portions of the detached

bow waves (associated with the front and back portions of the

bow wave profiles) are separated by sharp transition curves. This

transition – which readily follows from the fact that the vertical

velocity component w is positive or negative along the front or

back portions of the bowwave profile, respectively, as illustrated in

Fig. 4 – is qualitatively consistent with experimental observations,

although the transition between the overturning front portion and

the back portion is smoother for real bow waves. Indeed, Fig. 4

shows that, in the simple flow model considered here, the two

parabolic arcs (13) that approximate the front and back of the

bow wave profile have a discontinuous curvature, and the vertical

velocity componentw has a discontinuous slope, at thewave crest.

5.3. Wavebreaking wake behind an overturning bow wave

The boundary of the bow wavebreaking wake, given by the

intersection curve (24c) between the overturning detached bow

wave and the mean free surface, is now considered further. The

coordinates (x∗
s , y

∗
s ) of the intersection point between the mean

free-surface plane z = 0 and the outer boundary curve of the

overturning bow wave (the path of water particles that originate
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Fig. 9. Nondimensional draft-scaled width Y ∗
s /D ≡ F 2y∗

s and length Ls/D ≡ F 2ℓs of the bow wavebreaking wake for the class of ship bows defined in Fig. 2. The left side

depicts the variations of Y ∗
s /D and Ls/Dwith respect to the scaled Froude number 0.3 ≤ F/(1 + F) ≤ 0.8 for α = 15◦ = α′ and β = 30◦ . The center depicts the variations

of Y ∗
s /D and Ls/D with respect to the rake angle 0◦ ≤ β ≤ 60◦ for F = 1.5 and α = 15◦ = α′ . The right depicts the variations of Y ∗

s /D and Ls/D with respect to the

waterline entrance angle 0◦ ≤ α = α′ ≤ 20◦ for F = 1.5 and β = 30◦ .

from the ship stem) are given by the relations (24c) with y = 0,
x = xs, ζ = zs and ζ

′ = ζ ′
s , i.e.

x∗
s ≈ t∗s (1 − ζ ′

s tanβ sin2 αs) cosαs − zs tanβ
y∗
s ≈ t∗s (1 + ζ ′

s tanβ cos2 αs) sinαs


(26a)

where t∗s is defined by (24b) as

t∗s =

1 − 2 zs

×

√
1 − 2 zsζ

′
s cosαs +


2zs + (1 + 2zs tan2 β sin2 αs)(ζ ′

s )
2 cos2 αs

1 + (1 + tan2 β sin2 αs)(ζ ′
s )

2 cos2 αs

.

(26b)

In the foregoing two expressions, the relation (6) was used, αs

stands for the value of the top-waterline (half) entrance angle α
at the ship stem, and the elevation zs and the slope ζ ′

s of the wave

profile are given by (13c) and (14c). Expressions (26a) define the

angle ψs of the bow wavebreaking wake as

tanψs ≡
y∗
s

x∗
s + zs tanβ

≈
1 + ζ ′

s tanβ cos2 αs

1 − ζ ′
s tanβ sin2 αs

tanαs. (26c)

This expression can be verified to agree with (22a) as expected.

Expressions (26a) also show that the distance ℓs between the

ship stem (xs, 0) and the related intersection point (x∗
s , y

∗
s ) of the

overturning ship bow wave is

ℓs ≈ t∗s


1 + (ζ ′

s )
2 tan2 β sin2 αs cos

2 αs. (26d)

Expressions (26a)–(26d), (14d) and (11) show that t∗s , x
∗
s , y

∗
s and

ℓs are O(1) in the high-speed limit F → ∞. The relation (3) then

yields

X∗
s

D
= O(F 2)

Y ∗
s

D
= O(F 2)

Ls

D
= O(F 2) as F → ∞.

(26e)

Here, X∗
s , Y

∗
s and Ls stand for the dimensional variables that

correspond to the nondimensional (speed-scaled) variables x∗
s , y

∗
s

and ℓs. Thus, the size of the bowwavebreakingwake grows rapidly,

in proportion to V 2
s , as the ship speed Vs increases, in agreement

with the common observation that fast boats create large bow

wakes.

Fig. 9 depicts the nondimensional draft-scaled width Y ∗
s /D ≡

F 2y∗
s and length Ls/D ≡ F 2ℓs of the bow wavebreaking wake

for the class of ship bows defined in Fig. 2. The left side of Fig. 9

depicts the variations of the width Y ∗
s /D and length Ls/D of the

bowwavebreakingwakewith respect to the scaled Froude number

F/(1 + F) in the range 0.3 ≤ F/(1 + F) ≤ 0.8, i.e. 0.43 ≤ F ≤ 4,
for α = 15◦ = α′ and β = 30◦. The center of Fig. 9 depicts the
variations of Y ∗

s /D and Ls/D with respect to the rake angle β in
the range 0◦ ≤ β ≤ 60◦ for F = 1.5 and α = 15◦ = α′. The
right side of Fig. 9 depicts the variations of Y ∗

s /D and Ls/D with
respect to the top-waterline half entrance angle α in the range
0◦ ≤ α = α′ ≤ 20◦ for F = 1.5 and β = 30◦.

The left side of Fig. 9 shows that the width and the length of
the bow wavebreaking wake increase rapidly as the ship speed
increases, in accordance with the asymptotic relations (26e).
Indeed, the bowwavebreakingwake can be quitewide at high ship
speeds. e.g., the wake-width 2 Y ∗

s is more than 13 times the ship
draft for F/(1 + F) = 0.8, i.e. for F = 4. The center of Fig. 9 shows
that the width of the wake increases almost in proportion to the
rake angle β , but the wake-length is not significantly affected by
β . The right side of Fig. 9 shows that the wake-width increases
significantly as the waterline entrance angle 2α increases; the
wake-length increases approximately in proportion to α for α ≤
10◦, but decreases for 15◦ < α. The variations of the width Y ∗

s /D
and the length Ls/D of the bow wavebreaking wake depicted in
Fig. 9 further illustrate the variations of thewake-boundary shown
in Fig. 7.

The coordinates (x∗
b, y

∗
b) of the intersection point between the

mean free-surface plane z = 0 and the curve (path of water

particles) in the overturning bow wave that originates from the

crest of the bow wave are given by the relations (24c) with x =
xb, y = yb, ζ = zb, ζ

′ = 0, and t∗z=0 =
√
2zb(1 − 2zb) in

accordance with (24b). We then have

x∗
b ≈ xb +


2zb(1 − 2zb) cosαb

y∗
b ≈ yb +


2zb(1 − 2zb) sinαb

(27a)

where αb stands for the value of α at the crest of the bow wave.

Thus, the curve in the overturning ship bow wave that originates

from the bowwave crest intersects the free surface at a distance ℓb
and an angle ψb from the x axis given by

ℓb ≈

2zb(1 − 2zb) ψb = αb. (27b)

Expressions (27a), (27b) and (11) show that x∗
b − xb, y

∗
b − yb and ℓb

are O(1/
√
F) as F → ∞. The relation (3) then yields

X∗
b − Xb

D
= O(F 3/2)

Y ∗
b − Yb

D
= O(F 3/2)

Lb

D
= O(F 3/2) as F → ∞

(27c)

for the corresponding nondimensional draft-scaled variables.

Fig. 7 shows that the intersection curve between an overturning

ship bow wave and the plane z = 0 approximately consists of two
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Fig. 10. Nondimensional draft-scaled lengths L
f
w/D and L

b
w/D of the bow wave profile front and back, and related lengths L

f
0/D and L

b
0/D of the free-surface intersection

curves of the portions of the overturning detached bow wave that originate from the bow wave front and back, for the class of ship bows defined in Fig. 2. The left figure

depicts the variations of the lengthsL
f
w/D,L

b
w/D andL

f
0/D,L

b
0/Dwith respect to the scaled Froude number F/(1+F) in the range 0.3 ≤ F/(1+F) ≤ 0.8 for α = 15◦ = α′

and β = 30◦ . The center figure depicts the variations of the same functions with respect to the rake angle β in the range 0◦ ≤ β ≤ 60◦ for F = 1.5 and α = 15◦ = α′ . The
right figure depicts the variations with respect to the waterline half entrance angle α in the range 0◦ ≤ α = α′ ≤ 20◦ for F = 1.5 and β = 30◦ .

straight line segments that are associated with the front xs ≤ x ≤
xb and the back xb ≤ x ≤ x0 of the bowwave profile. The ‘bowwave

front segment’ joins the intersection points (x∗
b, y

∗
b) and (x

∗
s , y

∗
s )

defined by (27a), (26a) and (26b). The ‘bow wave back segment’

joins the point (x∗
b, y

∗
b) and the point (x0, y0) where x0 is given by

(11d) and y0 ≡ y(x0) is the related waterline offset. The lengths

ℓ
f
0 and ℓ b

0 of the ‘wave-intersection’ curves that correspond to the

front and the back of the bow wave profile are then

ℓ
f
0 ≈


(x∗

s − x∗
b)

2 + (y∗
s − y∗

b)
2

ℓ b
0 ≈


(x0 − x∗

b)
2 + (y0 − y∗

b)
2.

(28a)

The arc lengths ℓ f
w and ℓ b

w of the front and back of the parabolic

wave profiles (13a) and (13b) are

ℓ f
w

ℓ b
w


=


xb
x0 − xb



×

√
1 + 4P2

2
+

ln(2P +
√
1 + 4P2)

4P



with P ≡

(zb − z0)/xb
zb/(x0 − xb)


. (28b)

Expressions (28a), (28b), (27a), (26a), (26b) and (11) yield

L
f
w

D
= O(F)

L
b
w

D
= O(F 2)

L
f
0

D
= O(F 2)

L
b
0

D
= O(F 2) as F → ∞

(28c)

for the nondimensional draft-scaled lengths L
f
w/D ≡ F 2ℓ f

w ,

L
b
w/D ≡ F 2ℓ b

w , L
f
0/D ≡ F 2ℓ

f
0 and L

b
0/D ≡ F 2ℓ b

0 . The arc lengths

L
f
w andL

b
w of the front and the back of the bowwave profile corre-

spond to the attached portion of the bowwave, and the lengthsL
f
0

and L
b
0 correspond to the front and the back of the detached por-

tion of the overturning ship bow wave. Thus, the lengths L
f
w,L

b
w

and L
f
0,L

b
0 define main geometrical features of an overturning

ship bow wave.
The nondimensional draft-scaled lengths L

f
w/D and L

b
w/D of

the front and the back of the bow wave profile, and the lengths

L
f
0/D and L

b
0/D of the free-surface intersection curves of the

portions of the overturning detached bow wave that originate at

the bow wave front and back, are depicted in Fig. 10 for the class

of ship bows defined in Fig. 2. The left side of Fig. 10 depicts the

variations of L
f
w/D,L

b
w/D and L

f
0/D,L

b
0/D with respect to the

scaled Froude number F/(1+F) in the range 0.3 ≤ F/(1+F) ≤ 0.8
for α = 15◦ = α′ and β = 30◦. The center and the right side of

Fig. 10 show the variations of the same functions with respect to

the rake angle β in the range 0◦ ≤ β ≤ 60◦ for F = 1.5 and

α = 15◦ = α′, or with respect to the waterline half entrance angle

α in the range 0◦ ≤ α = α′ ≤ 20◦ for F = 1.5 and β = 30◦,
respectively.

The left side of Fig. 10 shows that the lengths L
b
w,L

b
0 and L

f
0

increase more rapidly than the length L
f
w of the front of the bow

wave profile as the Froude number F increases, in agreement with

the asymptotic relations (28c). In particular, L
f
0 is smaller than L

f
w

for small and moderate values of F , but is larger than L
f
w at high

speed; specifically, for 0.74 < F/(1 + F) in the case considered

on the left of Fig. 10. The center of Fig. 10 shows that the lengths

L
b
w andL

b
0 related to the back of the bowwave are not appreciably

affected by the rake angleβ , and that the lengthsL
f
w andL

f
0 associ-

ated with the bow wave front are also not significantly affected by

β for β smaller than about 30°, and increase for 30◦ < β . The right
side of Fig. 10 shows that the lengths L

b
w and L

b
0 associated with

the back of the bow wave decrease appreciably as α increases, in

accordance with (11b) and (11d). The length L
f
w of the front of the

bowwave profile is much less affected (only decreases slightly) by

α. The corresponding length L
f
0 of the intersection of the detached

wave stemming from the front of the bow wave profile has a min-

imum for α around 13°, in agreement with the center of Fig. 8.

In all the cases considered in Fig. 10, we have L
f
w < L

b
0 < L

b
w ,

in agreement with Fig. 6. We also have L
f
0 < L

b
0 < L

b
w . These

relations can be expected to hold in all cases. However, the length

L
f
w of the front of the bowwave profile is not larger than the length

L
f
0 of the free-surface intersection of the corresponding detached

bowwave in every case. Specifically, Fig. 10 shows thatwe canhave

L
f
w < L

f
0 at high speed or for very large rake anglesβ or very small

waterline entrance angles α.

6. Thickness of an overturning bow wave

The fourth step in the theory is the determination of the

thickness of an overturning detached ship bow wave. This last

step is based on elementary considerations related to mass

conservation. Specifically, the volume of water that flows through

an overturning bow wave is related to the water displaced by the

advancing ship hull.

The relation (25) shows that the flowvelocity at the intersection

curve between an overturning detached ship bow wave and the

mean free-surface plane z = 0 is approximately equal to the ship
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speed Vs. The corresponding nondimensional speed is vs ≈ 1. The

related nondimensional fluxes of water φf and φ b transported by

an overturning detached bow wave are then approximately given

by

φf ≈ 2δ f
0 ℓ

f
0 φ b ≈ 2δ b

0 ℓ
b
0

with φ ≡ Φ g2/V 5
s

δ ≡ ∆ g/V 2
s .

Here, the factor 2 accounts for the port and starboard sides of

the ship hull, ℓ
f
0 and ℓ b

0 are the approximate lengths of the free-
surface intersection curves of the front and back portions of the
overturning detached bow wave (related to the front and the back

of the bowwave profile), andδ f
0 andδ b

0 are the average thicknesses
of the front and back portions of the detached bow wave.

We now assume that all the water that is displaced by the

ship hull, which advances with nondimensional speed vs = 1 as

already noted, flows through the overturning bow wave. Thus, the

flux of water φf transported by the front portion of the detached

bow wave is equal to the nondimensional cross-section area a ≡
A g2/V 4

s of themeanwetted ship hull (below themean free-surface

plane) at the station x = xb corresponding to the bow wave crest.

Similarly, the fluxφ b is equal to a(x0)−a(xb)where a(x0) and a(xb)
are the cross-section areas at the stations x = x0 and x = xb. We

then have

φf = a(xb) φ b = a(x0)− a(xb)

with a(x) ≡ 2

 0

−1/F2
dz y(x, z).

Here, 1/F 2 is the nondimensional ship draft d ≡ D g/V 2
s . These

expressions for φf and φ b assume that all the water displaced

by a moving ship hull flows through the overturning bow wave,

as already noted. However, at low Froude numbers, the displaced

water is mostly pushed sideways (in the horizontal direction) by

the moving ship hull, and indeed we expect that φf → 0 and

φ b → 0 as F → 0. Even in the high-Froude-number limit F → ∞,

only a portion C∞ of thewater displaced by amoving ship hullmay

flow through the overturning bow wave. The coefficient C∞ may

depend on the shape of the ship bow; in particular, the portion C∞

of thewater displaced by amoving ship hull may be expected to be

smaller for a ship hull with higher draft/beam ratio. The relations

φf = a(xb) and φ
b = a(x0)− a(xb) are then modified as

φf = C∞ a(xb) [F/(1 + F)]N

φ b = C∞ [a(x0)− a(xb)] [F/(1 + F)]N .
These relations yield φf ∼ 0 and φ b ∼ 0 as F → 0, and φf ∼
C∞a(xb) and φ

b ∼ C∞[a(x0) − a(xb)] as F → ∞. The coefficient
C∞ and the exponentN in the foregoing expressions are associated
with hydrodynamic effects not taken into account in the elemen-
tary theory now considered. C∞ is taken equal to 1 hereinafter.

The foregoing alternative relations for the fluxes φf and φ b

transported by an overturning detached ship bow wave and

(3) yield the following equivalent expressions for the average

thicknesses of the front and back portions of a detached bowwave

along its intersection with the mean free surface:

δ f
0 ≡

∆f
0 g

V 2
s

≈
C∞FN

(1 + F)N
a(xb)

2 ℓ
f
0

∆f
0

D
≈

C∞FN

(1 + F)N
A(Xb) /D

2

2F 2ℓ
f
0

(29a)

δ b
0 ≈

C∞FN

(1 + F)N
a(x0)− a(xb)

2 ℓ b
0

∆b
0

D
≈

C∞FN

(1 + F)N
[A(X0)− A(Xb)] /D2

2F 2ℓ b
0

(29b)

where A(X) ≡ 2
 0

−D dZY (X, Z). Furthermore, F 2ℓ
f
0 ≡ L

f
0/D and

F 2ℓ b
0 ≡ L

b
0/D are given by expressions (28a), (26a), (26b), (27a),

(13c), (14c) and (11).
The local nondimensional thickness δ ≡ 1 g/V 2

s of an overturn-

ing detached ship bowwave at a point of the contact curve between

the ship hull and the free surface is now considered. The thickness

∆ of a detached bowwave at the ship hull is called ‘root thickness’

for distinction with the ‘free-surface thickness’ ∆0 considered in

(29). Expression (17b) for themagnitude of the flow velocity at the

contact curve shows that the flux of water dφ for a differential el-

ement of length dℓ of the wave profile is

dφ = 2 δ dℓ

1 − 2 ζ = 2 δ dx


1 − 2 ζσ/ cosα.

Here, the factor 2 accounts for the port and starboard sides of the

ship hull, and (15) was used. If all the water that is displaced by

the ship hull (which advances with nondimensional speed vs = 1)

flows through the overturning bow wave, the flux dφ is equal to

dφ = da = a′dx, where a′ ≡ da(x)/dx is the derivative of the cross-
section area of the mean wetted ship hull. As already explained,

this relation is modified as

dφ = a′dx C∞FN/(1 + F)N (30)

to (roughly) account for the fact that only a portion of the water

displaced by a ship hull flows through the overturning bow wave.

We then obtain the approximate relations

δ ≡
1 g

V 2
s

≈
C∞FN

(1 + F)N
da/dx

2 σ

cosα
√
1 − 2 ζ

∆

D
≈

C∞FN

(1 + F)N
dA/dX

2D σ

cosα
√
1 − 2 ζ

(31)

for the local root thickness of an overturning ship bow wave.
For the four-parameter family of ship bows depicted in Fig. 2,

the cross-section area A and its derivative dA/dX are given by

A =
X2

tanβ


tanα −

tanα − tanα′

3 tanβ

X

D


for 0 ≤ X ≤ D tanβ

A = D [X(tanα + tanα′)− D tanβ(tanα + 2 tanα′)/3]
for D tanβ ≤ X .

In the particular case α′ = α, these relations yield

A = X2 tanα/ tanβ

dA/dX = 2X tanα/ tanβ for 0 ≤ X ≤ D tanβ
(32a)

A = D(2X − D tanβ) tanα

dA/dX = 2D tanα for D tanβ ≤ X .
(32b)

Expression (32a) for dA/dX yields dA/dX = 0 for X = 0 if β ≠
0. Expressions (31) then show that the root thickness ∆ is null
at the stem (the corresponding free-surface thickness ∆0 of the
plunging bow wave, at the point where the path of water particles
that originate from the stem intersects the plane z = 0, is also
null).

For the class of ship bows defined in Fig. 2 with α′ = α, expres-
sions (31), (29), (32) and (3) show that the local root thickness∆ of

an overturning detached bow wave, and the average free-surface

thicknesses ∆f
0 and ∆b

0 of the front and back portions of the de-

tached wave are given by

∆

D
≈

C∞FN

(1 + F)N
sinα

σ
√
1 − 2 ζ


x′

1



if


x′ ≤ 1

1 ≤ x′


with x′ ≡

F 2x

tanβ
(33a)

∆f
0

D
≈

C∞FN

(1 + F)N
tanα tanβ

2 F 2ℓ
f
0


(x′

b)
2

2 x′
b − 1


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Fig. 11. Elevation Z/D of bow wave profile and corresponding root thickness∆/D
of the overturning bowwave for the class of ship bowsdefined in Fig. 2with F = 1.5,

α = 15◦ = α′ and β = 30◦ . The four vertical lines correspond to the ship stem

X = Xs , the line X = D tanβ associated with expressions (32) for the cross-section

area A and its derivative, and the crest X = Xb and the length X = X0 of the bow

wave profile. The root thickness ∆/D is shown for C∞ = 1 and N = 2, 4 or 6 in

expression (31).

if


x′
b ≤ 1

1 ≤ x′
b


with x′

b ≡
F 2xb
tanβ

(33b)

∆b
0

D
≈

C∞FN

(1 + F)N
tanα tanβ

2 F 2ℓ b
0





(x′
0)

2 − (x′
b)

2

2 x′
0 − 1 − (x′

b)
2

2 (x′
0 − x′

b)





if




x′
b < x′

0 ≤ 1

x′
b ≤ 1 ≤ x′

0

1 ≤ x′
b < x′

0



 with x′

0 ≡
F 2x0
tanβ

. (33c)

In (33a), the elevation ζ of the bow wave profile and σ ≈ 1 are

given by (13) and (15). The lengths ℓ
f
0 and ℓ b

0 in (33b) and (33c)

are given by (28a) where (x∗
b, y

∗
b) and (x

∗
s , y

∗
s ) are given by (27a)

with αb ≡ α, and by (26a) and (26b) with αs ≡ α. Expressions
(33a)–(33c) yield

∆

D
≈

C∞FN sinα

(1 + F)Nσ
√
1 − 2 ζ

∆f
0

D
≈

C∞FN tanα

(1 + F)N
xb

ℓ
f
0

∆b
0

D
≈

C∞FN tanα

(1 + F)N
x0 − xb

ℓ b
0

(33d)

in the limit β = 0. Expressions (33b), (33c), (28c), and (11) also

yield

∆f
0

D
= O


1

F


and

∆b
0

D
= O(1) as F → ∞. (33e)

The theoretical prediction that the thickness∆
f
0 of the front portion

of an overturning detached bowwave vanishes in the limit F → ∞
is consistent with the experimental observations that a high-speed
ship generates an overturning detached bowwave that is very thin,
and indeed is commonly called bow spray sheet becausewater par-
ticles are easily transported on deck.

Fig. 11 depicts the elevation Z/D of the bow wave given by
(13) and (11), and the corresponding overturning bow wave root
thickness 1 /D given by (33a), where three values N = 2,N = 4
and N = 6 of the exponent N are considered with C∞ = 1, for the
class of ship bows defined in Fig. 2withα = 15◦ = α′ andβ = 30◦

at F = 1.5. The four vertical lines in the figure correspond to the
ship stem X = Xs given by (13c) and (11), the line X = D tanβ
associated with expressions (32) for the cross-section area A and
its derivative dA/dX , and the crest X = Xb and the length X = X0 of
the bowwave profile given by (11b) and (11d). Fig. 11 shows that∆
is null at the ship stem X = Xs, increases approximately linearly in
the region Xs ≤ X ≤ D tanβ between the stem X = Xs and the line
X = D tanβ , where dA/dX varies linearly, and is nearly constant
in the region D tanβ ≤ X ≤ X0 where dA/dX remains constant.
The exponent N has a significant influence on the root thickness∆
as expected. Specifically, the largest values of ∆ for C∞ = 1 and
N = 2, 4 or 6 are approximately equal to 13%, 5% or 2% of the ship
draft D, respectively.

Fig. 12 depicts the average detached bow wave free-surface

thicknesses∆f
0/D and∆b

0/D given by (33b) and (33c), with C∞ = 1
and N = 6, for the class of ship bows defined in Fig. 2 with α′ = α.

The left side of Fig. 12 depicts the variations of ∆f
0/D and ∆b

0/D
with respect to the scaled Froude number F/(1 + F) in the range
0.3 ≤ F/(1 + F) ≤ 0.8, i.e. 0.43 ≤ F ≤ 4, for α = 15◦ and
β = 30◦. The center and right sides of Fig. 12 show the variations

of ∆f
0/D and ∆b

0/D with respect to the rake angle β in the range
0◦ ≤ β ≤ 60◦ for F = 1.5 and α = 15◦, or with respect to the
waterline half entrance angle α in the range 0◦ ≤ α ≤ 20◦ for
F = 1.5 and β = 30◦, respectively.

The left side of Fig. 12 shows that the thickness∆b
0 increases as F

increases, and tends toward a finite value as F → ∞ in agreement
with the asymptotic approximation (33e). As F increases, the

thickness∆f
0 first increases toward amaximum, reached for F/(1+

F) ≈ 0.6 (F ≈ 1.5) and approximately equal to 4% of the ship draft
D, and then slowly decreases toward 0 as F → ∞, in agreement
with (33e). The center of Fig. 12 shows that∆b

0 is unaffected by the

rake angle β , and that ∆f
0 is also not significantly affected by β for

β < 20◦ but decreases significantly as β increases beyond about
20°. The right side of Fig. 12 shows that the thickness∆b

0 increases

as α increases and that ∆f
0 reaches a maximum approximately

Fig. 12. Average (nondimensional) thicknesses∆f
0/D and∆b

0/D of the free-surface intersections of the front and back portions of the overturning bowwave for the class of

ship bows defined in Fig. 2. The thicknesses ∆f
0/D and ∆b

0/D are shown for C∞ = 1 and N = 6 in expressions (33b) and (33c). The left figure depicts the variations of ∆f
0/D

and∆b
0/Dwith respect to the scaled Froude number 0.3 ≤ F/(1+ F) ≤ 0.8 for α′ = α = 15◦ and β = 30◦ . The center figure depicts the variations of∆f

0/D and∆b
0/Dwith

respect to the rake angle 0◦ ≤ β ≤ 60◦ for F = 1.5 and α = 15◦ . The right figure depicts the variations of ∆f
0/D and ∆b

0/D with respect to the waterline entrance angle

0◦ ≤ α′ = α ≤ 20◦ for F = 1.5 and β = 30◦ .
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Fig. 13. Bow waves generated by a rectangular flat plate, of draft D = 0.2 m and length 0.782 m, towed at an incidence (yaw) angle α = 15◦ , a heel (flare) angle γ = 10◦ ,
and a speed Vs = 1.5 m/s (top), 2 m/s (center) or 2.5 m/s (bottom).

equal to 4.5% of the ship draftD forα ≈ 13◦. This behavior is closely

related to the behavior of L
b
0 and L

f
0 depicted on the right side of

Fig. 10. In particular, themaximumof the thickness∆f
0 forα ≈ 13◦

in Fig. 12 corresponds to the minimum of the length L
f
0 in Fig. 10.

The largest values of the thickness ∆f
0 in the center and the right

side of Fig. 12 are approximately equal to 5% of the ship draft D
(about 0.25 m for a 5 m draft).

7. Experimental observations and numerical computations

The experimental measurements reported in [1] show that a

rectangular flat plate immersed at a depth D and towed at an

incidence (yaw) angle α generates a wave that is close to the bow

wave of a wedge-shaped ship bow with waterline entrance angle

2α and draft D. This approximate analogy between a flat plate

at a yaw angle α and a wedge-shaped ship bow with waterline

entrance angle 2α is used here to test if the overturning bowwaves

predicted by the foregoing elementary theory are qualitatively

realistic, and in particular if the theory correctly predicts the

influence of (sensitivity to) the speed Vs, the waterline entrance

angle α and the flare angle γ .
A rectangular flat plate, immersed at a depth (draft) D = 0.2 m,

was then towed at three yaw angles α = 10◦, 15◦, 20◦, three heel

(flare) angles γ = 10◦, 15◦, 20◦, and three speeds Vs = 1.5 m/s,

2 m/s, 2.5 m/s. Photographs of the waves generated by the plate

are shown in Figs. 13–15 for 9 of the 27 cases. The plate is 0.78 m

long, is immersed at a depth 0.20 m as already noted, and rises

0.30 m above the mean free surface (the total height of the plate

is then 0.50 m). As can be seen in the photographs, the upper (non

immersed) portion of the plate is marked with circular dots, which

are 5 mm in diameter and spaced 20 mm apart in the horizontal

and vertical directions.

Figs. 13–15 show a side-to-side comparison of experimental

observations (photographs) of overturning bow waves generated

by the plate (towed at a yaw angle α) and theoretical bow waves

– given by the parametric equations (24) and the relations (11),

(13), (14a) and (14b) for the bow wave profile – generated by

an ‘equivalent’ wedge-shaped bow (with waterline entrance angle

2α). The two horizontal lines that correspond to the intersection

of the plate with the undisturbed free-surface plane Z = 0 and the

upper border of the plate, at a height Z = 0.30 m, are marked as

thick lines in the 3D views of theoretical bowwaves in Figs. 13–15.

The waterline entrance angles α = α′ and the flare angle γ
in Eqs. (24) are defined without ambiguity as the yaw and heel

angles at which the plate is towed. However, a rake angle β cannot

be clearly defined for a plate, which is not precisely comparable

to a wedge. Indeed, the stem line is orthogonal to the top and

bottom waterlines for a flat plate, but (unlike a ship stem) does

not lie in the vertical plane Y = 0. The rake angle β is taken
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Fig. 14. Bowwaves generated by a rectangular flat plate, of draft D = 0.2m and length 0.782m, towed at a speed Vs = 2m/s, a heel (flare) angle γ = 15◦ , and an incidence

(yaw) angle α = 10◦ (top), 15° (center) or 20° (bottom).

as β = 0 here, as in [1]. Thus, the functions ζb, ξb, ζ0 and ξ0 in

(11) are evaluated with β = 0 and ϕ = 0. The comparisons of

experimental observations (for a plate) and theoretical predictions

(for an approximately equivalent wedge) shown in Figs. 13–15 are

then somewhat questionable, but are useful to verify if the theory

yields realistic predictions, and in particular correctly predicts the

influence of the speed Vs, the waterline entrance angle α and the

flare angle γ as required for practical applications to ship design.

Fig. 13 shows observed and computed bow waves generated

by the plate towed at a yaw angle α = 15◦, a heel (flare) angle

γ = 10◦, and three speeds Vs = 1.5 m/s (top), 2 m/s (center)

or 2.5 m/s (bottom). Thus, this figure shows the influence of

speed. Both the photographs and the related theoretical 3D views

show that the size of the bow wave (both the wave profile, i.e.

the attached portion of the wave, and the overturning detached

bow wave) increases significantly as the speed Vs increases. The

theoretical and experimental bow wave profiles appear to be in

fair agreement, as observed in [1]. However, the experimental

overturning bow waves appear to be appreciably larger than the

corresponding theoretical predictions. These discrepancies might

be partly due to the fact that the leading edge of the plate (which

largely determines the extent of the overturning bow wave) is not

located in the vertical plane Y = 0. However, the discrepancies

may also be a consequence of the approximations that underlie the

theory, including the neglect of viscous effects as noted further on.

Fig. 14 shows observed and computed bow waves for the plate

towed at a speed Vs = 2 m/s, a heel (flare) angle γ = 15◦, and
three yaw angles α = 10◦ (top), 15° (center) or 20° (bottom).

Thus, this figure shows the influence of the yaw angle α. Both
the photographs and the related theoretical 3D views show that

the size of the bow wave (both the wave profile and the related

overturning detached bow wave) increases significantly as the

yaw angle α increases. As in Fig. 13, the theoretical wave profiles

are in better agreement with experimental observations than the

overturning bow waves.

Fig. 15 shows observed and computed bow waves for the plate

towed at a speed Vs = 2.5 m/s, an incidence (yaw) angle α = 20◦,
and three heel (flare) angles γ = 10◦ (top), 15° (center) or 20°

(bottom). Thus, this figure shows the influence of flare. Both the

photographs and the related theoretical 3D views show that flare

(unlike speed and yaw) does not significantly influence the bow

wave profile and the size of the overturning bow wave, although

its outer boundary is pushed away from the plate as the heel (flare)

angle γ increases. Again, the theoretical wave profiles are in better
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Fig. 15. Bow waves generated by a rectangular flat plate, of draft D = 0.2 m and length 0.782 m, towed at a speed Vs = 2.5 m/s, an incidence (yaw) angle α = 20◦ , and a

heel (flare) angle γ = 10◦ (top), 15° (center) or 20° (bottom).

agreement with experimental observations than the overturning

bow waves.

Expression (33d) for the average thickness ∆f
0, with C∞ = 1

and N = 6, yields ∆f
0 ≈ 0.41 cm, 0.68 cm or 0.68 cm for α =

15◦, γ = 10◦ and Vs = 1.5 m/s, 2 m/s or 2.5 m/s, i.e. for the top,

center or bottom of Fig. 13, respectively. For Vs = 2 m/s, γ = 15◦

and α = 10◦, 15◦ or 20°, i.e. the top, center or bottom of Fig. 14,

expression (33d) yields ∆f
0 ≈ 0.60 cm, 0.48 cm or 0.38 cm, re-

spectively. For Vs = 2.5 m/s, α = 20◦ and γ = 10◦, 15◦ or 20°,

i.e. the top, center or bottom of Fig. 15, expression (33d) yields
∆f

0 ≈ 0.70 cm, 0.47 cm or 0.36 cm, respectively. Thus, for the

cases considered here, expression (33d) predicts thicknesses ∆f
0

between approximately 0.4 cm and 0.7 cm. This range of variation

is qualitatively consistentwith Figs. 13–15 (where the circular dots

are 0.5 cm in diameter and spaced 2 cm apart as already noted)

and visual observations, although no quantitative comparison can

be made because the thickness of the detached bow wave was not

measured (measurements of wave thickness are difficult).

For further comparison, numerical solutions – obtained using

the CFD flow solver ISIS-CFD reported in [37] – based on the

Euler or RANS equations are shown in the lower left or right

corners, respectively, of Fig. 16 for the plate towed at a speed

Vs = 2.5 m/s, a yaw angle α = 20◦ and a heel angle γ = 15◦. The
‘theoretical bow wave’ predicted by the approximate theory and

the ‘experimental bow wave’ shown in the center row of Fig. 15

are shown again in the upper left or right corners, respectively,

of Fig. 16. The bow wave height predicted by the RANS numerical

computations is appreciably smaller than the experimental wave

height and the wave heights predicted by the Euler solution

and the analytical theory, which all appear to agree fairly well.

The ‘Euler wave crest’ appears to be located further away from

the leading edge of the plate (stem) than the experimental and

theoretical wave crests, which appear to be in good agreement.

In fact, the theoretical wave profile appears to better agree with

the experimental profile than both the Euler and RANS profiles.

However, the overturning bow wave predicted by the theory is

significantly shorter than the experimental bow wave, as already

noted, and the ‘numerical bow waves’ (both Euler and RANS).

Figs. 13–16 suggest that a main shortcoming of the elementary

theory considered here is that it significantly underpredicts the

length and the width of a detached overturning ship bow wave.

Interactions among flowing fluid particles, ignored in the theory,

mostly stem from the action of a pressure gradient and/or viscous

shear stresses. Both of these effects can reasonably be assumed to

be small for a thin sheet of water that is detached from a solid rigid

wall (viscous shear is not significant in a sheet of water that is not

attached to a rigid surface) and that flows freely under the action of

gravity (the atmospheric pressure acts both above and below the

thin sheet of water). This basic assumption implies that the shape
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Fig. 16. Experimental observation (photograph on upper left corner), numerical solutions of Euler (lower left) or RANS (lower right) equations given by CFD flow solver

ISIS-CFD, and theoretical prediction (upper right) of bow wave generated by a rectangular flat plate, of draft D = 0.2 m and length 0.782 m, towed at a speed Vs = 2.5 m/s,

a yaw angle α = 20◦ , and a heel angle γ = 15◦ .

of a detached overturning bowwave can be presumed to be largely

determined by gravity and the ‘initial’ flow velocity along the bow

wave profile, as assumed in the theory. However, the initial flow

velocity at the bow wave profile may well be appreciably affected

by viscous and surface tension effects, ignored in the theory.

Indeed, the viscous boundary layer at a ship hull is analogous to a

vortex sheet, which could have the effect of appreciably increasing

the initial flow velocity across the thin sheet of water that flows

away from the ship hull along the contact (flow detachment) curve

between the ship hull and the free surface. Thus, the initial flow

velocity along the bow wave profile, and consequently the size of

the overturning bowwave, might be increased via a multiplicative

factor κ . A vortex sheet over the ship hull surface, associatedwith a

discontinuous tangential flow velocity equal to the strength of the

vortex sheet, could then reasonably be assumed to result in a factor

κ in the range 1 < κ < 2, in line with the discrepancies shown in

Figs. 13–16.

8. Conclusion

The elementary analytical theory of overturning ship bow

waves reported here is based on simplifying approximations and

consequently suffers from limitations, like all approximate the-

ories. Specifically, viscosity and surface tension are ignored, an

analytical approximation is used for the bow wave profile (con-

tact curve between the ship hull surface and the free surface),

interactions among water particles within the overturning de-

tached bow wave are neglected and the shape of the overturning

bow wave is entirely determined by gravity and the ‘initial’ flow

velocity along the bowwave profile, and the thickness of the over-

turning detached wave is determined via an elementary consid-

eration of the quantity of water displaced by the advancing ship

hull. The latter relation involves two parameters, 0 < C∞ ≤ 1

and N , that are not determined on theoretical grounds within the

present elementary theory. The reasonable values C∞ = 1 and

N = 6 appear to yield realistic predictions. Rational choices for

the unknown parameters C∞ and N require further analytical, nu-

merical or experimental studies. Another important limitation of

the highly-simplified analysis considered here stems from the fact

that the class of wedge-like ship bows depicted in Fig. 2 does not

allow curvature ofwaterlines or framelines, which can be expected

to have a growing influence as the Froude number increases.

Quantitative comparisons of theoretical predictions, experi-

mental measurements, and CFD predictions are reported in [1,33–

35,38] for the wave profile; but only qualitative comparisons of

overturning ship bowwaves are given here, specifically in Figs. 13–

16. These qualitative comparisons are sufficient to demonstrate

both the limitations and the merit of the theory. Figs. 13–16 show

that the theory cannot be expected to provide accurate predictions,

in accordance with the elementary analysis uponwhich the theory

is based, but appears to predict trends correctly and to yield useful

estimates of the influence of the ship speed, draft, and bow shape

on main characteristics of the overturning bow wave created by a

ship hull.

Indeed, the main merit of the highly simplified theory (and re-

lated expressions, parametric studies and figures) considered here

is that it provides physical insight into the effect of a ship’s speed

and draft, and of major parameters that define the bow shape (en-

trance angles at the top and bottomwaterlines, rake angle, flare) on

main geometrical characteristics (size, shape and thickness) of the

overturningdetachedbowwave and thewidth of the relatedwave-

breakingwake. These simple ‘cause-and-effect’ analytical relations

can be immediately applied, without complex hydrodynamic cal-

culations, and can provide guidance that may be useful for design,

especially at early stages, and in the optimization process involved

in the design of a ship bow. The theory could also be used to ex-

tend the capabilities of methods like thin-ship theory and panel

methods that cannot predict overturning ship bow waves, and to

guide experimentalmeasurements and numerical computations of

overturning ship bowwaves. In short, themain result of the highly-

simplified analytical theory expounded here is simple analytical
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‘cause-and-effect’ relations that provide basic physical insight and

that can readily be used for practical applications.

In principle, ‘cause-and-effect’ relations can be obtained via sys-

tematic series of experimental measurements or CFD calculations.

However, experimental investigations and numerical methods are

ill suited for performing extensive parametric studies, from which

simple ‘cause-and-effect’ relations could be obtained and physical

insight could be gained. In fact, none of the experimental or numer-

ical investigations reported in the literature includes parametric

studies. Furthermore, complete detailed experimental measure-

ments of the shape and the thickness of an overturning ship bow

wave are complex and have not been reported in the literature.

A highly-simplified analysis similar to that considered here to

analyze overturning ship bow waves might perhaps also be useful

to analyze the detached flow aft of a ship hull with a transom stern.

Similarly, useful extensions to unsteady flows associated with the

seakeeping of a ship in waves might perhaps also be possible.
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