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Abstract—In the light of regularized dynamic time warping kernels, this paper re-considers the concept of time elastic centroid (TEC)

for a set of time series. From this perspective, we show that TEC can be readily addressed as a preimage problem. However, this

non-convex problem is ill-posed, and obtaining a sub-optimal solution may involve heavy computational costs, especially for long time

series. We then derive two new algorithms based on a probabilistic interpretation of kernel alignment matrices that expresses the

result in terms of probabilistic distributions over sets of alignment paths. The first algorithm is an agglomerative iterative heuristic

procedure inspired from a state-of-the-art DTW barycentre averaging algorithm. The second proposed algorithm uses a progressive

agglomerative heuristic method to perform classical averaging of the aligned samples but also averages the times of occurrence of the

aligned samples. By comparing classification accuracies for 45 time series datasets obtained by first nearest centroid/medoid classifiers

we show that: i) centroid-based approaches significantly outperform medoid-based approaches, ii) for the considered datasets, the

second algorithm which combines averaging in the sample space and along the time axes, emerges as the most significantly robust

heuristic model for time-elastic averaging with a promising noise reduction capability.

Index Terms—Time series averaging Time elastic kernel Dynamic Time Warping Time series clustering and classification.
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1 INTRODUCTION

Since Maurice Fréchet’s pioneering work [1] in the early
1900s, time-elastic matching of time series or symbolic
sequences has attracted much attention from the scien-
tific community in numerous fields such as information
indexing and retrieval, pattern analysis, extraction and
recognition, data mining, etc. This approach has im-
pacted a very wide spectrum of applications relating
to a multitude of socio-economic issues such as the
environment, industry, health, energy, defense and so on.

Among other time elastic measures, Dynamic Time
Warping (DTW) was widely popularized during the
1970s with the advent of speech recognition systems
[2], [3] and numerous variants that have since been
proposed to match time series with a certain degree of
time distortion tolerance.

The main issue addressed here is time series or shape
averaging in the context of a time elastic distance. This is
a long-standing issue that is currently becoming increas-
ingly prevalent; it is relevant for summarizing subsets
of time series, defining significant prototypes, identify-
ing outliers, performing data mining tasks (mainly ex-
ploratory data analysis such as clustering) and speeding
up classification, as well as regression or data analysis
processes in a big data context.

In this paper, we specifically tackle the question of av-
eraging subsets of time series, not from considering the
DTW measure itself as has been already largely explored,
but from the perspective of the so-called regularized
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DTW kernel (KDTW) that ensures positive definiteness.
From this new perspective, the estimation of a time
series average or centroid can be readily addressed as
a preimage (inverse) problem. However, this approach
has some theoretical and practical limitation that are
discussed in the following sections. A more promising
direct approach is developed here, which is based on a
probabilistic interpretation of kernel alignment matrices,
allowing a precise definition of the average of a pair of
time series from the expected value of local alignments
of samples. The tests carried out so far demonstrate the
robustness and the efficiency of this approach compari-
son to the state-of-the art approach.

The structure of this paper is as follows: after an
introduction, the second section summarizes the most
relevant related studies on time series averaging as well
as DTW kernelization. In the third section, we show
how the estimation of a time-elastic centroid can be
addressed as a preimage problem in the context of the
DTW regularized kernel (KDTW). In the fourth section,
we derive a probabilistic interpretation from the kernel
alignment matrices evaluated on a pair of time series. In
the fifth section, we define the average of a pair of time
series, and based on this pairwise averaging procedure,
we propose two sub-optimal algorithms designed for the
averaging of any subset of time series.

2 RELATED WORKS

Time series averaging in the context of (multiple) time
elastic distance alignments has been mainly addressed
in the scope of the Dynamic Time Warping (DTW)
measure [2], [3]. Although other time elastic distance
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measures such as the Edit Distance With Real Penalty
(ERP) [4] or the Time Warp Edit Distance (TWED) [5]
could be considered instead, without loss of generality,
we remain focused throughout this paper on DTW and
its kernelization.

2.1 DTW and time elastic centroid of a pair of time

series

A classical formulation of DTW can be given as follows.
If d is a fixed positive integer, we define a time series of
length T as a multidimensional sequence v = v(i), such
that, ∀i ∈ {1, .., T }, v(i) ∈ R

d.

Definition 2.1: If u and v are two time series with
respective lengths T1 and T2, an alignment path π = (πk)
of length p = |π| between u and u is represented by a
sequence

π : {1, . . . , p} → {1, . . . , T1} × {1, . . . , T2}

such that π1 = (1, 1), πp = (T1, T2), and (using the
notation πk = (ik, jk), for all k ∈ {1, . . . , p − 1},
πk+1 = (ik+1, jk+1) ∈ {(ik + 1, jk), (ik, jk + 1),
(ik + 1, jk + 1)}.

We define ∀k πk(1) = ik and πk(2) = jk, as the index
access functions at step k of the mapped elements in
the pair of aligned time series.

In other words, a warping path defines a way to travel
along both time series simultaneously from beginning to
end; it cannot skip a point, but it can advance one time
step along one series without advancing along the other,
thereby justifying the term time-warping.

If δ is a distance on R
d, the global cost of a warping

path π is the sum of distances (or squared distances or
local costs) between pairwise elements of the two time
series along π, i.e.:

cost(π) =
∑

(ik,jk)∈π

δ(vik , wjk )

A common choice of distance on R
d is the one generated

by the L2 norm:

δ(x, y) = ‖x− y‖22 =
d
∑

l=1

(xl − yl)
2.

Definition 2.2: For a finite time series, any warping path
has a finite length, and thus the number of existing warp-
ing paths is finite. Hence, there exists at least one path
π∗ whose cost is minimal, so we can define DTW(u, v) as
the minimal cost taken over all existing warping paths.
Hence

DTW(u, v) = min
π

cost(π(u, v)) = cost(π∗(u, v)). (1)

Definition 2.3: From the DTW measure, it is
straightforward to define the time elastic centroid c(u, v)
of a pair of time series u and v as the time series (ck)

whose elements are ck = Centroid(u(π∗
k(1)), v(π

∗
k(2)),

∀k ∈ 1, · · · , |π∗|, where Centroid corresponds to the
usual definition in Euclidean space.

2.2 Time elastic centroid of a set of time series

A single alignment path is required to calculate the
time elastic centroid of a pair of time series (Def. 2.3).
However, multiple path alignments need to be consid-
ered to evaluate the centroid of a larger set of time
series. Multiple alignments have been widely studied
in bioinformatics [6], and it has been shown that the
computational complexity of determining the optimal
alignment of a set of sequences under the sum of all
pairs (SP) score scheme is a NP-complete problem [7]
[8]. The time and space complexity of this problem
is O(Lk), where k is the number of sequences in the
set and L is the length of the sequences when using
dynamic programming to search for an optimal solution
[9]. This latter result applies to the estimation of the time
elastic centroid of a set of k time series with respect
to the DTW measure. Since the search for an optimal
solution becomes rapidly intractable with increasing k,
sub-optimal heuristic solutions have been subsequently
proposed, most of them falling into one of the following
three categories.

2.2.1 Progressive heuristics

Progressive heuristic methods estimate the time elastic
centroid of a set of k time series by combining pairwise
centroids (Def. 2.3). This kind of approach constructs a
binary tree whose leaves correspond to the time series
of the data set, and whose nodes correspond to the
calculation of a local pairwise centroid, such that, when
the tree is complete, the root is associated with the esti-
mated data set centroid. The proposed strategies differ
in the way the tree is constructed. One popular approach
consists of providing a random order for the leaves, and
then constructing the binary tree up to the root using this
ordering [10]. Another approach involves constructing a
dendrogram (a hierarchical ascendant clustering) from
the data set and then using this dendrogram to calculate
pairwise centroids starting with the closest pairs of
time series and progressively aggregating series that are
farther away [11] as illustrated on the left of Fig. 1.
Note that these heuristic methods are entirely based on
the calculation of a pairwise centroid, so they do not
explicitly require the evaluation of a DTW centroid for
more than two time series. Their degree of complexity
varies linearly with the number of time series in the data
set.

2.2.2 Iterative heuristics

Iterative heuristics are based on an iterated three-step
process. For a given temporary centroid candidate, the
first step consists of calculating the inertia, i.e. the sum
of the DTW distances between the temporary centroid
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(a) Progressive agglomeration (b) Iterative agglomeraation with refinement

Fig. 1. Progressive hierarchical with similar first agglomeration (left) v.s. iterative agglomeration (right) strategies. Final

centroid approximations are presented in red bold color. Temporary estimations are presented using a bold dotted
black line

and each time series in the data set. The second step
evaluates the best pairwise alignment with the tempo-
rary centroid for each time series uj(i) in the data set
(j ∈ {1 · · ·n}). A new time series ũj(i) is thus con-
structed that contains all the samples of time series uj(i),
but with time being stretched or compressed accord-
ing to the best alignment path. The third step consists
of producing a new temporary centroid candidate c(i)
from the set {ũj(i)} by successively averaging (in the
sense of the Euclidean centroid), the samples at every
timestamp i of the ũj(i) time series. Basically, c(i) =
∑

j=1..ni
ũj(i).11(i, j)/

∑

j=1..ni
11(i, j)), where 11(i, j) is an

indicator function equal to 1 if time series ũj is defined
for timestamp i, but which is otherwise 0.

Thus, the new centroid candidate replaces the previ-
ous one and the process is iterated until the inertia is no
longer reduced or the maximum number of iterations is
reached. Generally, the first temporary centroid candi-
date is taken as the DTW medoid of the considered data
set. This process is illustrated on the right of Fig. 1. The
three steps of this heuristic method were first proposed
in [12]. The iterative aspect of this heuristic approach
was initially introduced by [13] and refined by [14].
Note that, in contrast to the progressive method, this
kind of approach needs to evaluate, at each iteration, all
the alignments with the current centroid candidate. The
complexity of the iterative approach is higher than the
progressive approach, the extra computational cost being
linear with the number of iterations. More sophisticated
approaches have been proposed to escape some local
minima. [15] have evaluated a genetic algorithm for
managing a population of centroid candidates, thus im-
proving with some success the straightforward iterative

heuristic methods.

2.2.3 Optimization approaches

Given the entire set of time series S and a subset of n time
series S = {uj}j=1···n ⊆ S, optimization approaches at-
tempt to estimate the centroid of S from the definition of
an optimization problem, which is generally expressed
by Eq. 2 given below:

c = argmin
s∈S

n
∑

j=1

DTW(s, uj) (2)

To our knowledge, the first attempt to use this kind of
direct approach for the estimation of time elastic centroid
estimation was recently described in [16].

These authors (op.cit.) derived a solution of their
original non-convex constrained optimization problem,
by integrating a temporal weighting of local sample
alignments to highlight the temporal region of interest in
a time series data set, thus penalizing the other temporal
regions. Two time elastic measures were specifically
addressed: i) a dynamic time warping measure between
a time series and a weighted time series (representing
the centroid estimate) and ii) an (indefinite) kernel DTW
called DTAK [17]. Their results are very promising:
although the number of parameters to optimize is linear
with the size and the dimensionality of the time series,
the two steps gradient-based optimization process they
derived is very computationally efficient and shown to
outperform the state of the art approaches on some
challenging scalar and multivariate data sets. However,
as numerous local optima exist in practice, the method is
not guaranteed to converge toward the best possible cen-
troid, which is anyway the case in all other approaches.
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2.3 Discussion and motivation

According to the state of the art in time elastic cen-
troid estimation, an exact centroid, if it exists, can be
calculated by solving a NP-complete problem whose
complexity is exponential with the number of time series
to be averaged. Heuristic methods with increasing time
complexity have been proposed since the early 2000s.
Simple pairwise progressive aggregation is a less com-
plex approach, but which suffers from its dependence
on initial conditions. Iterative aggregation is reputed to
be more efficient, but entails a higher computational
cost. It could be combined with ensemble methods or
soft optimization such as genetic algorithms. The non-
convex optimization approach has the merit of directly
addressing the mathematical formulation of the centroid
problem in a time elastic distance context. This approach
nevertheless involves a higher complexity and must deal
with a relatively large set of parameters to be optimized
(the weights and the sample of the centroid). Its scalabil-
ity could be questioned, specifically for high dimensional
multivariate time series.

It should also be mentioned that some criticisms of
these heuristic methods have been made in [18]. Among
other drawbacks, the fact that DTW is not a metric
(the triangle inequality is not satisfied) could explain
the occurrence of unwanted behaviour such as centroid
drift outside the time series cluster to be averaged. We
should also be borne in mind that keeping a single best
alignment (even though several may exist, without men-
tioning the good ones) can increase the dependence of the
solution on the initial conditions. It may also increase
the aggregating order of the time series proposed by the
chosen method, or potentially enhance the convergence
rate.

In this study, we do not directly address the is-
sue of time elastic centroid estimation from the DTW
perspective, but rather from the point of view of the
regularized dynamic time warping kernel (KDTW) [19].
This perspective allows us to consider centroid estima-
tion as a preimage problem, which is in itself another
optimization perspective. More importantly, the KDTW
alignment matrices can be used to derive a probabilistic
interpretation of the pairwise alignment of time series.
This leads us to propose a robust interpolation scheme
jointly along the time axis and in the sample space. We
do not claim that using KDTW and its probabilistic in-
terpretation can solve all or even any of the fundamental
questions raised earlier: since the problem tackled here
is NP-complete, an exact solution requires exponentially
complex computations and any heuristic method must
handle numerous local minima. Our aim is to throw
some new light on the problem as well as obtain new
quantitative results showing, in this difficult context, that
the proposed alternative approach is worth considering.

2.4 Time elastic kernels and their regularization

Dynamic Time Warping (DTW), [2], [3] as defined in
Eq.1 can be recursively evaluated as

ddtw(Xp, Yq) = d2E(x(p), y(q)) (3)

+ Min







ddtw(Xp−1, Yq) sup
ddtw(Xp−1, Yq−1) sub
ddtw(Xp, Yq−1) ins

where dE(x(p), y(q) is the Euclidean distance (eventually,
the square of the Euclidean distance) defined on R

k

between the two positions/?points in sequences X and
Y taken at times p and q, respectively.

Apart from the fact that the triangular inequality does
not hold for the DTW distance measure, it is furthermore
not possible to define a positive definite kernel directly
from this distance. Hence, the optimization problem,
which is inherent to the learning of a kernel machine, is
no longer quadratic and, at least for some tasks, could
be a source of limitation.

Regularized DTW: recent studies [20], [19] lead us
to propose new guidelines to ensure that kernels con-
structed from elastic measures such as DTW are positive
definite. A simple instance of such a regularized kernel,
derived from [19], can be expressed in the following
form, which makes use of two recursive terms:

KDTW(Xp, Yq) = Kxy
dtw(Xp, Yq) +Kxx

dtw(Xp, Yq)

Kxy
dtw(Xp, Yq) =

1
3e

−νd2
E(x(p),y(q))

∑







h(p− 1, q)Kxy
dtw(Xp−1, Yq)

h(p− 1, q − 1)Kxy
dtw(Xp−1, Yq−1)

h(p, q − 1)Kxy
dtw(Xp, Yq−1)

Kxx
dtw(Xp, Yq) =

1
3

∑











h(p− 1, q)Kxx
dtw(Xp−1, Yq)e

−νd2
E(x(p),y(p))

∆p,qh(p, q)K
xx
dtw(Xp−1, Yq−1)e

−νd2
E(x(p),y(q))

h(p, q − 1)Kxx
dtw(Xp, Yq−1)e

−νd2
E(x(q),y(q))

(4)

where ∆p,q is the Kronecker symbol, ν ∈ R
+ is a stiffness

parameter which weights the local contributions, i.e. the
distances between locally aligned positions, and dE(., .)
is a distance defined on R

k.
The initialization is simply Kxy

dtw(X0, Y0) =
Kxx

dtw(X0, Y0) = 1.

The main idea behind this regularization is to
replace the operators min and max (which prevent
symmetrization of the kernel) by a summation operator
(
∑

). This allows us to consider the best possible
alignment, as well as all the best (or nearly the best)
paths by summing their overall cost. The parameter
ν is used to check what is termed as nearly-the-best
alignment, thus penalizing alignments that are too far
away from the optimal ones. This parameter can be
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easily optimized through a cross-validation.

3 KDTW CENTROID AS A PREIMAGE PROB-
LEM

In this section, we tackle the centroid estimation
question from a kernelized centroid point of view, the
kernel of interest being KDTW.

The Moore-Aronszajn theorem [21] establishes that a
reproducing kernel Hilbert space (RKHS) exists uniquely
for every positive definite kernel and vice-versa. Let H
be the RKHS associated to kernel κ defined on a set
X , and let 〈., .〉H be the inner product defined on H.
In addition, the representer property of the evaluation
functional in H is expressed as: for any ψ ∈ H and any
xj ∈ X , ψ(xj) = 〈ψ(.), κ(., xj)〉H.

Denoting φ(.) as the map that assigns the kernel
function κ(., x) to each input x ∈ X , the reproducing
property of the kernel implies that for any (xi, xj) ∈ X 2,
κ(xi, xj) = 〈φ(xi), φ(xj)〉H.

Furthermore, DH(xi, xj)
2 = ||φ(xi) − φ(xj)||

2
H =

〈φ(xi), φ(xi)〉H + 〈φ(xj), φ(xj)〉H − 2.〈φ(xi), φ(x)〉H is the
generalization of the squared Euclidean distance defined
in the feature space H, which can be expressed in kernel
terms as: DH(xi, xj)

2 = κ(xi, xi)
2+κ(xj, xj)

2−2.κ(xi, xj)
(the so-called kernel trick).

Finally, the representer theorem [22] states that any
function ϕ(.)∗ of a RKHS H minimizing a regularized
cost functional of the form:

n
∑

i=1

J(ϕ(xi), yi) + g(||ϕ||2H)

with predicted output ϕ(xi) for input xi and desired
output yj , where g(.) is a strictly monotonically increas-
ing function on R

+-, is equivalent to a kernel expansion
expressed in terms of available data ({(xi, yi)})

ϕ∗(.) =

n
∑

i=1

γiκ(xi, .), where ∀i, γi ∈ R. (5)

Hence, a direct definition of the kernelized centroid of
the set {xi, i = 1..n} expressed in the RKHS H feature
space associated with kernel κ can be written as:

ϕ∗(.) = arg min
ϕ(.)∈H

n
∑

i=1

||ϕ(.) − κ(., xi)||
2
H (6)

= arg min
ϕ(.)∈H

n · ||ϕ(.)||2H − 2 ·
n
∑

j=1

〈ϕ(.), κ(., xj)〉H

The representer theorem applies and thus ϕ∗(.) takes
the form given in Eq. 5, which allows us to rewrite Eq.
6 as follows:

Fig. 2. Centroid estimation viewed as a preimage prob-

lem.

ϕ∗(.) = arg min
{λi}i=1···n

n
∑

i=1

n
∑

j=1

γiγjκ(xi, xj)

− 2 ·
n
∑

i=1

n
∑

j=1

γjκ(xi, xj) (7)

Unfortunately, if the kernelized centroid is related to
a well-defined quadratic optimization problem in the
RKHS space H (Eq. 7), it is an ill-posed problem in
set X . This is known as the preimage problem, since
the pre-image of φ(.)∗ might not exist. Instead, we are
seeking the best approximation, namely x∗ ∈ X whose
map φ(x∗) = κ(., x∗) is as close as possible to ϕ(.)∗, as
illustrated in Fig.2.

Hence, if we remove the term that does depend upon
x, the optimization problem becomes:

x∗ = argmin
x∈X

n · ||κ(., x)||2H − 2 ·
n
∑

j=1

〈κ(., x), κ(., xj)〉H

= argmin
x∈X

n · κ(x, x) − 2 ·
n
∑

j=1

κ(x, xj) (8)

For KDTW, the non-convex optimization problem
cannot be straightforwardly addressed using gradient-
based approaches mainly because the derivative cannot
be determined analytically. Moreover, the number of
variables (linear with the length of the time series and
with the dimensionality of each sample) is generally
high so this approach often encounters combinatorial
difficulties related to the number of local minima. A
derivative-free method could nevertheless be applied for
local modelling of the functional to be optimized. In an
attempt to carry out such a preimage formulation to
estimate the time elastic centroid for a set of time se-
ries, we applied the state-of-the-art BOBYQA algorithm
developed for bound constrained optimization without
using derivatives [23]. Fig.3 and Fig.4 give the centroid
estimations for each category of the CBF and Trace
datasets, respectively [24]. On the top left diagram of
the figures, the values of the function to be minimized
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Fig. 3. Centroid estimation for the three categories con-
tained in the CBF dataset as a solution of the preimage

problem. In bold, the centroid time series; in light red, the

time series of the averaged dataset. At top left of figure,
the value of the minimized functional is plotted on a log-

scale versus the iteration index.
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Fig. 4. Centroid estimations of the first three categories

(out of four) contained in the Trace dataset as a solution of
the preimage problem. In bold blue, the centroid time se-

ries; in light red, the time series of the averaged dataset.

Top left diagram of figure shows value of the minimized
functional expressed on a log-scale, plotted against the

iteration index.

are plotted against the number of iterations. The op-
timization process is initialized using the medoid for
each category. We show that the required number of
iterations is quite high and depends on the number of
variables. For the CBF dataset, the time series is made up
of 128 samples while there are 275 samples for the Trace
dataset. The convergence rate is roughly ten times slower
for the Trace data set compared with the CBF dataset,
mainly because KDTW complexity is quadratic with the
length of the time series. The iteration cost becomes
somewhat prohibitive for long time series or large time
series datasets. Although this approach could be possibly
optimized, the parameters need to be carefully set up
(basically, definition of the trust region) and, in any case,
as stated above, the optimum so provided remains an
estimation of the centroid that is sought. Finally, note
that the functional starts to decrease after attaining the
number of iterations (in this case, twice the length of the
time series) initially required for local estimation of the
functional.

4 PROBABILISTIC INTERPRETATION OF TIME

ELASTIC KERNEL ALIGNMENT MATRICES

In this section, we consider the recursive term Kxy
dtw(., .)

that is used in Eq. 4. When evaluating the similarity
between two time series Xp and Yq with respective
lengths of p and q, this recursion allows the construction
of an alignment matrix AM(i, j) with i ∈ {1 · · ·p} and
i ∈ {1 · · · q}. The cell at location (i, j) contains the
summation of the global costs of all alignment paths,
as defined in definition 2.1, that connect cell (1, 1) with
cell (i, j). For any alignment path π, the global cost is
expressed as:

cost(π) =

|π|
∏

k=1

e−νd2
E(X(πk(1)),Y (πk(2))) (9)

i.e. the product along the path of the local alignment
costs. We can give a probabilistic interpretation of these
local costs exp(−νd2E(X(πk(1)), Y (πk(2)))): basically, we
can assume that these local costs correspond (within the
magnitude of the scalar multiplication constant) to the
local a priori probability of aligning sample X(πk(1))
with sample Y (πk(2)). By making this assumption, we
eventually attach a probability distribution to the set
of all alignment paths, with the cost(π) corresponding
(within the magnitude of the scalar multiplication con-
stant) to the probability attached to alignment path π.

Hence, the cell (i, j) of matrix AM , contains the sum
of the probabilities (within the magnitude of the scalar
multiplication constant) of the paths that connect cell
(1, 1) to cell (i, j).

Similarly, if, instead of X and Y , we evaluate the
similarity between Xr and Yr derived from X and Y by
reversing the temporal index, we obtain an alignment
matrix AMr whose cell (i, j) contains the sum of the
probabilities (to within a multiplicative scalar constant)
of the paths that connect cell (p, q) tp cell (i, j).
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Finally, multiplying properly cells of AM with cells
of AMr yields the Alignment Matrix Average (AMA)
defined as:

AMA(i, j) = AM(i, j) · AMr(p− i+ 1, q − j + 1) (10)

and whose cell (i, j) contains the sum of the probabili-
ties (upto the normalization constant) of the paths that
connect cell (1, 1) to cell (p, q) while going through the
cell (i, j).

From this path probability distribution, we can now
derive an alignment probability distribution between the
samples of X and the samples of Y as follows:

• For all i, the probability of aligning sample X(i) is
P (i) = 1; all samples need to be aligned.

• Similarly, for all j, the probability of aligning sample
Y (j) is P (j) = 1.

• The probability of aligning sample X(i) with sample
Y (j) is P (i, j) = P (i|j).P (j) = P (i|j). P (i|j) is the
probability that sample X(i) is aligned with sample
Y (j) given that the alignment process is in state j.
The estimation of P (i|j) is obtained by using matrix
AMA:

P (i|j) =
AMA(i, j)

∑p
i=1 AMA(i, j)

• Furthermore, the probability of aligning sample
X(i) with sample Y (j) is also P (i, j) = P (j|i).P (i) =
P (j|i). Similarly, the estimation of P (j|i) is obtained
by using matrix AMA:

P (j|i) =
AMA(i, j)

∑q
j=1 AMA(i, j)

(11)

Note that the normalization constant mentioned above
is eliminated.

Since P (i, j) = P (i|j) = P (j|i), we can finally estimate
the probability of aligning sample X(i) with sample Y (j)
as follows:

P (i, j) =
1

2
·

(

AMA(i, j)
∑p

i=1 AMA(i, j)
+

AMA(i, j)
∑q

j=1 AMA(i, j)

)

(12)
Eq. 12 forms the basis of our pairwise time elastic time

series averaging algorithm given below.
As an example, Fig 5 presents the AMA matrix corre-

sponding to the alignment of a positive halfwave with
a sinus wave. The three potential alignment pathes are
clearly identified in the light blue and red colors.

Fig. 5. AMA matrix for the alignment of a positive halfwave
with a sinus wave.

5 TIME ELASTIC CENTROID BASED ON THE

AMA ALIGNMENT MATRIX

Based on the structure of the KDTW kernel and the
AMA matrix, and by using the so-called DtwBarycenter
Averaging (DBA) method developed by [12], [14], [13],
we first present the KernelDtwNarycenter Averaging
(KDBA) algorithm for estimating a time elastic centroid
for a set of time series according to an iterative agglomer-
ative procedure as shown in Fig. 1b. Secondly, we detail
the concept of a time elastic average for a pair of time
series (KDTW-PWA), and then develop the progressive
heuristic approach presented in Fig. 1a that uses KDTW-
PWA to estimate another kind of time elastic centroid
(KDTW-C1) for a set of time series of any cardinal.

5.1 KDTW-Centroid of a set of time series based on

KDBA algorithm

Following the DBA algorithmic approach [12], [13], we
present here the development of our kernelized version
called KDBA. KDBA directly applies the definition of the
alignment matrix average (AMA) as given in Eq.10 and
its probabilistic interpretation Eq.12.

Algorithm 1 KDBA

1: procedure KDBA(R,S, ν)
2: // R: a reference time series
3: // S: a set of time series {S1, · · · , SN}
4: // ν: the stiffness parameter of KDTW kernel
5: Double AMA(.,.);
6: Vector-Of-SetOfSamples SampleAssociations(L);
7: Ts A(|R|); //Create a D dimensional
8: //time series of length L;
9: for Int i = 1 to |R| do SampleAssociations(i)={};

10: for Int n = 1 to |S| do
11: Evaluate AMA matrix for R, Sn with ν;
12: Ts ts//containing L ”zeroed” samples;
13: Double normFactor(|R|);
14: for Int i = 1 to |R| do
15: normFactor(i)=0;
16: for Int j = 1 to |Sn| do
17: ts(i) = ts(i) + Sn(j) ∗AMA(i, j);
18: normFactor(i) = normFactor(i)+
19: AMA(i, j);

20: ts(i) = ts1(i)/normFactor(i);
21: SampleAssociations(i)=(ts(i));

22: for Int i = 1 to |R| do
23: A(i)=barycenter(SampleAssociations(i));

24: return A

Let us consider a set S of N time series, S =
{S1, S2, · · · , SN}, and R a reference time series. Let |R|
and |Sn| be the lengths of R and Sn, respectively. Pn(i, j),
with i = 1{1, ...|Sn|} and j = 1{1, ...|R|}, is obtained from
the AMA matrix resulting from the alignment of Sn with
R, according to Eq.12. Algorithm 1 computes an average
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Algorithm 2 iKDBA

1: procedure IKDBA(C,S, ν)
2: //C: a reference time series
3: //S: a set of time series
4: //maxIter: maximum number of iterations
5: //ν: the stiffness parameter of KDTW kernel
6: Ts A; //a D dimensional Timeseries
7: Double inertia = computeInertia(C, S);
8: Boolean Continue=True;
9: Int i = 0;

10: while Continue do
11: A=C;
12: C=KDTW-C2(C,S, ν);
13: Double new inertia = computeInertia(C, S);
14: if new inertia > inertia OR i > maxIter then
15: Continue = False;

16: i=i+1;

17: return A

time series A according to the following equation:

∀i ∈ {1, · · · , |r|}, A(i) =
1

N

N
∑

n=1

|Sn|
∑

j=1

Pn(i, j)Sn(j) (13)

Note that the iterative average of time series produced
by algorithm 1 has the same size as the reference time
series R.

The algorithm 1 can be refined by iterating until no
further improvement is obtained [14]. An improvement
is observed when the sum of the distances (resp. sim-
ilarities) between the current average R and the new
pairwise average provided by KDBA, A, is lowered
(resp. increased). Algorithm 2 implements this iterative
strategy, which will necessarily find a local minimum
or will stop when a maximum number of iterations has
been reached.
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Fig. 6. Expected time location for the centroid (in red
circles) of two triangular-shaped time series shifted in

time (in blue ’+’ and black ’*’)

5.2 KDTW average of a pair of time series (KDTW-

PWA)

Algorithm 3 KDTW-PWA

1: procedure KDTW-PWA(X ,Y , AMA)
2: //X,Y: two time series of D dimensional samples
3: //AMA: the average alignment matrix for X,Y
4: Int p = |X |, q = |Y |, L = max{p, q};
5: Ts A(L), B(L); //Create 2 D dimensional
6: //time series of length L;
7: Double α;
8: Double NA(L), NB(L); //two double arrays
9: for Int i = 1 to L do

10: for d=1 to D do
11: A(i, d) = 0, B(i, d) = 0;

12: NA(i) = 0, NB(i) = 0;

13: for Int i = 1 to L do
14: if i < p then
15: for Int j = 1 to q do
16: α = (i+ j)/2− ⌊(i+ j)/2⌋;
17: for d=1 to D do
18: A(⌊(i+ j)/2⌋, d)+ =
19: α · (X(i, d) + Y (j, d)) ·AMA(i, j);
20: A(⌈(i+ j)/2⌉, d)+ =
21: (1−α)·(X(i, d)+Y (j, d))·AMA(i, j);

22: NA(⌊(i+ j)/2⌋)+ = α ∗AMA(i, j);
23: NA(⌈(i+ j)/2⌉)+ = (1−α)∗AMA(i, j);

24: if i < q then
25: for Int j = 1 to p do
26: α = (i+ j)/2− ⌊(i+ j)/2⌋;
27: for d=1 to D do
28: B(⌊(i+ j)/2⌋, d)+ =
29: α · (X(j, d) + Y (i, d)) ·AMA(j, i);
30: B(⌈(i+ j)/2⌉, d)+ =
31: (1−α)·(X(j, d)+Y (i, d))·AMA(j, i);

32: NB(⌊(i+ j)/2⌋)+ = α ∗AMA(j, i);
33: NB(⌈(i+ j)/2⌉)+ = (1−α)∗AMA(j, i);

34: for Int i = 1 to L do
35: for d=1 to D do
36: A(i, d) = (A(i, d)/NA(i)+B(i, d)/NB(i))/4;

37: return A

Similarly to DBA, the KDBA algorithm averages a set
of time series in the sample space but not along the
time axis. Basically, let us suppose we are averaging
two triangular-shaped time series such as represented
by the blue crosses and black dots on Fig.5.1. When
using DBA or KDBA algorithms with one of the two time
series acting as the reference, then the calculated average
would be the reference distribution itself. However, we
would also expect to average the time shift between the
two series, thus obtaining the distribution indicated by
the red dots in Fig.fig:time-shift. This is precisely our
main motivation for the deriving the following Pair Wise
Averaging (KDTW-PWA) algorithm designed to average
a pair of time series in the sample space but also along
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the time axis.
Algorithm 3 provides the KDTW-PWA average (A) of

the two time series X and Y according to Eq.14.

∀k = 1 · · ·L, A(k) =
∑

i,j| i+j

2
=k

(

P (i, j) ·
X(i) + Y (j)

2

)

=
∑

i,j| i+j

2
=k

(

P (i|j) + P (j|i)

2
·
X(i) + Y (j)

2

) (14)
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Fig. 7. Averaging triangular-shaped time series. On the

left, the two time series (in blue) are identical (superim-
posed) and the centroid (red) is amplified by a factor of

two. On the right, the two time series (in blue) have the

same shape but have been shifted in time. The KDTW-
PWA average is given in red, still amplified by a factor

of two. The corresponding (normalized) AMA alignment
matrices are given at the bottom.

As the time indices are considered discrete (integer
values), the time averaging (i+j)/2 is smoothed between
the floor and cell integer values, using the smoothing
coefficient α (line 17 of the algorithm).

Thus, the KDTW-PWA jointly averages the sample
values of the two time series and their time locations.
Eq. 14 allows us to interpret the centroid of a pair of
time series as the mathematical expectation of aligning
the two sequences of samples.

Fig. 8. Centroid corresponding to the pairwise alignment
for the sinus experiment depicted in Fig 5.

As an example, the centroid corresponding to the
pairwise alignment of the sinus experiment depicted in
Fig 5 is presented in Fig 8. Notice that in the centroid, the

negative halfwaves of the sine wave have been filtered.
This is because the negative halfwaves do not match
with the positive halfwave that is aligned with the sine
wave.

In Fig 7, we present a very simple experiment that
consists of averaging two identical triangular-shaped
time series (on left of figure) and two time series with
identical triangular shapes but shifted in time. At the
bottom of the figure, the corresponding AMA matrices
are presented. The KDTW-PWA distributions, presented
in red, are multiplied by a factor of two to facilitate
reading of the figure. We can see that, for both situations,
the centroid is precisely located at the correct averaged
time of occurrence of the two time series, whether or not
they are shifted in time. The most likely alignment areas
on the AMA matrices are shown in in red and the less
likely alignment areas in blue. The time shift is clearly
visible on the right-hand figure.

5.3 KDTW-Centroid of a set of time series based on

KDTW-PWA

Algorithm 4 pKDTW-PWA

1: procedure PKDTW-PWA(S, ν)
2: //S: a set of time series of D dimensional samples
3: //ν: the stiffness parameter of KDTW kernel
4: Ts A; //a D dimensional time series
5: SetOfTimeSeries S0;
6: while |S| > 1 do
7: S0 = ∅
8: while |S| > 1 do
9: Let ts1, ts2 the first two time series in S;

10: Evaluate the AMA matrix for ts1 and ts2
11: with ν as the stiffness parameter
12: A = KDTW-PWA(ts1, ts2, AMA);
13: S0 = S0 ∪ {A};
14: S = S \ {ts1, ts2};

15: S = S0 ∪ S;

16: Let A be the single element of S;
17: return A

To average a larger set of time series using the pairwise
average KDTW-PWA, we simply adopt the progres-
sive agglomerative approach presented in Fig.1a. This
heuristic approach, detailed in Algorithm 4 has O(n)
complexity, n being the size of the considered set of time
series.

The figures presented in Table 1 compare the centroid
estimates provided by the iterated DBA, iKDBA and
pKDTW-PWA algorithms. For the experiment, The DBA
and iKDBA were iterated at most 20 times. Although the
DBA and iKDBA estimates appear quite similar, the cen-
troid estimates provided by the pKDTW-PWA algorithm
is much smoother. This is a general property of the latter
algorithm, which implements a time averaging principle
based on the time expectation of sample occurrences,
thus somehow allowing it to filter noisy data. Note also
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DBA iKDBA pKDTW-PWA
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TABLE 1

Centroid estimation for the three categories of the CBF dataset. The centroid estimation is indicated as a bold black

line superimposed on of the time series (in light red) that are averaged. The centroid estimates provided by the DBA
algorithm are given on the left side, the estimates provided by the iKDBA algorithm in the centre and the estimates

provided by the pKDTW-PWA algorithm on the right side.

that the DBA and iKDBA estimates for the CBF data
set are close to the results provided by the preimage
approach (Fig.3).

6 EXPERIMENTATION

The purpose of this experiment is to evaluate the effec-
tiveness of the proposed time elastic averaging methods
against a double baseline, namely k-medoid-based ap-
proaches and the DBA algorithm. The first baseline allow
us to compare centroid-based with medoid-based ap-
proaches. The second baseline highlights the advantages
we can expect from using p.d elastic kernels instead of
indefinite kernels such as DTW in the context of time
series averaging. DBA is also currently considered as a
state of the art method to average a set of sequences
consistently with DTW.

For this purpose, we empirically evaluate the
effectiveness of the methods using a first nearest
centroid/medoid (1-NC) classification task on a set
of time series derived from widely diverse fields of

application. The task consists of representing each
category contained in a training data set by estimating
its medoid or centroid and then evaluating the error
rate of a 1-NC classifier on an independent testing data
set. Hence, the classification rule consists of assigning
to the tested time series the category which corresponds
to the closest (or most similar) medoid or centroid
according to DTW or KDTW measures.

In [25] a nice generalized k-NC task is described. The
authors demonstrate that by selecting the appropriate
number k of centroids (using DBA and k-means), they
achieve, without loss, a 70% speed-up in average, com-
pared to the original k-Near Neighbor task. Although,
in general, the classification accuracies is improved
when several centroids are used to represent the TRAIN
datasets, our main purpose is to highlight and amplify
the discrimination between time series averaging meth-
ods: this is why stick here with the 1-NC task.

DBA and iKDBA iterative centroid methods are



11

iterated at most 20 times and yield local estimates of the
centroid. The pKDTW-PWA progressive agglomerative
centroid method is only processed once, and hence is
roughly 20 times faster than iKDBA and about 10 times
faster than DBA.

A collection of 45 data sets is used to assess the
proposed algorithms. The collection includes synthetic
and real data sets, as well as univariate and multivariate
time series. These data sets are distributed as follows:

• 42 of these data sets are available at the UCR repos-
itory [24]. Basically, we used all the data sets except
for StarLightCurves, Non-Invasive Fetal ECG Thorax1
and Non-Invasive Fetal ECG Thorax2. Although these
last three data sets are still tractable, their compu-
tational cost is high because of their size and the
length of the time series they contain. All the data
sets are composed of scalar time series.

• One data set, uWaveGestureLibrary 3D was con-
structed from the uWaveGestureLibrary X—Y—Z
scalar data sets to compose a new set of multivariate
(3D) time series.

• One data set, CharTrajTT, is available at the UCI
Repository [26] under the name Character Trajectories
Data Set. This data set contains multivariate (3D)
time series and is divided into two equal sized data
sets (TRAIN and TEST) for the experiment.

• The last data set, PWM2, which stands for Pulse
Width Modulation [27], was specifically defined to
demonstrate a weakness in dynamic time warping
(DTW) pseudo distance. This data set is composed
of artificial scalar time series.

For each dataset, a training subset (TRAIN) is defined
as well as an independent testing subset (TEST). We use
the training sets to extract single medoids or centroid
estimates for each of the categories defined in the data
sets.

Furthermore, for KDTWMedoid, iKDBA and pKDTW-
PWA, the ν parameter is optimized using a leave-one-out
(LOO) procedure carried out on the TRAIN data
sets. The ν value is selected within the discrete set
{.05, .1, .25, .5, 1, 2, 5, 10, 25, 50, 100}. The value that
minimizes the LOO classification error rate on the
TRAIN data is then used to provide the error rates that
are estimated on the TEST data.

The classification results are given in Table 2. It can be
seen from this experiment, that

i) Centroid-based methods outperform medoid-based
methods: DBA yields lower error rates compared
to DTWMedoid, as do iKDBA and pKDTW-PWA
compared to KDTWMedoid.

ii) iKDBA outperforms DBA: under the same experi-
mental conditions (maximum of 20 iterations), the
kernalized version of the DTW measure leads to

better classification accuracy. To some extent, this
confirms previous results obtained for SVM classifi-
cation [19] on such kinds of datasets.

iii) pKDTW-PWA outperforms iKDBA: this results
seems to show that joint averaging in the sample
space and along the time axis improves the
classification accuracy. As pKDTW-PWA provides a
centroid estimation in a single agglomerative step,
we can conjecture that this method converges faster
toward a satisfactory centroid candidate.

The average ranking for all five tested methods,
which supports our preliminary conclusion, is given at
the bottom of Table 2.

Following the study of [28] on statistical tests available
to evaluate the significance of differences in error rate
between classifiers over multiple data sets, we conducted
a Friedman’s significance test, a sort of non-parametric
counterpart of the well-known ANOVA. This test ranks
the algorithms for each data set separately, the best
performing algorithm being given a rank of 1, the second
best rank 2, etc.

According to this test, the null hypothesis is rejected
(with a P − value < 2.2e − 16). Post-hoc tests can then
be carried out to compare pairwise algorithms using
the Wilcoxon-Nemenyi-McDonald-Thompson test [29].
For this purpose, we use the R code provided by [30]
to generate the parallel coordinate plots and boxplots
presented in Fig.9 as well as the results reported in
Table 3.

TABLE 3

Significance test: Algorithm1 is considered to be
significantly better than Algorithm2 according to the

Friedman’s test if the P-value (in bold characters)

associated with the pairwise test is less than 0.05.

Algorithm1 Algorithm2 P-value

DBA DTWMedoid 1.98e-05
KDTWMedoid DTWMedoid 2.99e-03
iKDBA DTWMedoid 1.38e-10
pKDTW-PWA DTWMedoid 1.09e-12
KDTWMedoid DBA 7.84e-01
iKDBA DBA 3.10e-01
pKDTW-PWA DBA 2.60e-02
iKDBA KDTWMedoid 1.90e-02
pKDTW-PWA KDTWMedoid 4.07e-04
pKDTW-PWA iKDBA 8.36e-01

Table 3 reports the P-values for each pair of tested
algorithms. This post-hoc analysis partially confirms
our previous analysis of the classification results. If
we consider that the null hypothesis is rejected when
the P-value is less than 0.05, the post-hoc analysis
shows that centroid-based approaches perform signif-
icantly better than medoid-based approaches. Further-
more, KDTWMedoid appears to be significantly better
than DTWMedoid.
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TABLE 2

Comparative study using the UCR and UCI data sets: classification error rates evaluated on the TEST data set (in %)

obtained using the first nearest neighbour classification rule for DTWMedoid, DBA (centroid), KDTWMedoid, iKDBA
(centroid) and pKDTW − PWA (centroid). A single medoid/centroid extracted from the TRAIN data set represents

each category.

DATASET # Cat | L DTWMedoid DBA KDTWMedoid iKDBA pKDTW-PWA

Synthetic Control 6|60 3.00 2.00 3.33 2.00 4.67
Gun Point 2|150 44.00 32.00 52.00 25.33 25.33
CBF 3|128 7.89 5.33 8.11 4.67 5
Face (all) 14|131 25.21 18.05 20.53 17.34 17.04
OSU Leaf 6|427 64.05 56.20 53.31 52.89 54.54
Swedish Leaf 15|128 38.56 30.08 31.36 30.24 24.00
50Words 50|270 48.13 41.32 23.40 20.44 19.34
Trace 4|275 5.00 7.00 23.00 20.00 2.00
Two Patterns 4| 128 1.83 1.18 1.17 1.03 1.12
Wafer 2|152 64.23 33.89 43.92 12.11 31.96
Face (four) 4|350 12.50 13.64 17.05 6.82 10.23
Lightning-2 2|637 34.43 37.70 29.51 29.51 22.95
Lightning-7 7|319 27.40 27.40 19.18 17.81 20.55
ECG200 2|96 32.00 28.00 29.00 28.00 27.00
Adiac 37|176 57.54 52.69 40.67 72.12 41.43
Yoga 2|426 47.67 47.87 47.53 49.80 49.90
Fish 7|463 38.86 30.29 20.57 19.42 17.14
Beef 5|470 60.00 53.33 56.67 53.33 53.33
Coffee 2|286 57.14 32.14 32.14 32.14 21.43
OliveOil 4|570 26.67 16.67 30 20.00 13.33
CinC ECG torso 4|1639 74.71 53.55 66.67 59.85 49.64
ChlorineConcentration 3|166 65.96 68.15 65.65 67.94 65.78
DiatomSizeReduction 4|345 22.88 5.88 11.11 5.56 1.96
ECGFiveDays 2|136 47.50 30.20 10.92 19.75 17.88
FacesUCR 14|131 27.95 18.44 20.73 16.63 15.61
Haptics 5|1092 68.18 64.61 63.64 59.74 57.47
InlineSkate 7|1882 78.55 76.55 78.36 74.73 75.82
ItalyPowerDemand 2|24 31.68 20.99 5.05 6.31 6.22
MALLAT 8|1024 6.95 6.10 6.87 4.22 3.58
MedicalImages 10|99 67.76 58.42 58.68 58.03 61.71
MoteStrain 2|84 15.10 13.18 12.70 13.58 9.42
SonyAIBORobot SurfaceII 2|65 26.34 21.09 26.230 23.29 25.81
SonyAIBORobot Surface 2|70 38.10 19.47 39.77 15.31 7.65
Symbols 6|398 7.64 4.42 3.92 3.82 3.62
TwoLeadECG 2|82 24.14 13.17 27.04 17.65 22.39
WordsSynonyms 25|270 70.85 64.26 64.26 63.32 58.15
Cricket X 12|300 67.69 52.82 61.79 57.17 61.28
Cricket Y 12|300 68.97 52.82 46.92 44.61 54.87
Cricket Z 12|300 73.59 48.97 56.67 51.79 59.74
uWaveGestureLibrary X 8|315 38.97 33.08 34.34 32.94 33.42
uWaveGestureLibrary Y 8|315 49.30 44.44 42.18 40.31 40.14
uWaveGestureLibrary Z 8|315 47.40 39.25 41.96 40.39 39.84
uWaveGestureLibrary 3D 8|315 10.11 6.00 13.74 25.65 8.43
CharTrajTT 3D 20|178 6.58 5.18 4.20 11.83 4.34
PWM2 3|128 43.00 35.00 21.00 20.33 11.67

# Best Scores - 0 8 6 13 22
# Uniquely Best Scores - 0 6 3 10 20
Average rank - 4,29 2,8 3,16 2.22 1,89

Furthermore, pKDTW-PWA is evaluated as signifi-
cantly better than DBA but not significantly better than
iKDBA in this experiment. Note also that DBA is not

shown to perform significantly better than KDTWMedoid.

This post-hoc analysis is summarized in Fig.10 which
shows the ranking graph for the five algorithms tested
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A₄ - A₃ ; PostHoc P.value: 0.01908

A₅ - A₃ ; PostHoc P.value: 0.00038

A₅ - A₄ ; PostHoc P.value: 0.83635

Fig. 9. Post hoc analysis of the Friedman’s test: (A1) DTWMedoid, (A2) DBA, (A3) KDTWMedoid, (A4) iKDBA and (A5)
pKDTW-PWA.

Fig. 10. Dominance graph for the five tested algorithms,

according to the significance relation corresponding to

Table 3 with a P-value threshold set at .05.

in our experiments.

7 CONCLUSION

In this paper, we address the reputedly difficult problem
of averaging a set of time series in the context of a time
elastic distance measure such as Dynamic Time Warping.
The new perspective provided by the kernelization of
the elastic distance firstly allows us to consider the av-
eraging of time series as a preimage problem. This latter
is unfortunately an ill-posed non-convex problem that
could suffer from combinatorial number of local optima
when dealing with long multidimensional time series.
Furthermore, this kind of preimage problem can only
be resolved using gradient-free optimization procedures
that are computationally very costly (since extensive
functional evaluation is required).

However, this new kernelization approach allows a
re-interpretation of pairwise kernel alignment matrices
as distributions of probability over alignment paths.
Based on this re-interpretation, we propose two distinct
algorithms, iKDBA and pKDTW-PWA, based on itera-
tive and progressive agglomerative heuristic methods,

respectively, that are developed to compute approximate
solutions to the multi-alignment of time series.

We present an extensive experiment carried out on
synthetic and real data sets, mostly containing univari-
ate but also some multivariate time series. Our results
show that centroid-based methods significantly outper-
form medoid-based methods in the context of a first
nearest neighbour classification task. Most strikingly, the
pKDTW-PWA algorithm, which integrates joint averag-
ing in the sample space and along the time axis, is sig-
nificantly better than the state-of-the art DBA algorithm,
with a potentially lower computational cost. Indeed,
the simple one-pass progressive agglomerative heuristic
procedure is used in the pKDTW-PWA algorithm can be
further optimized.
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