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Extreme geometri quantiles in a multivariate regular variationframeworkStéphane Girard(1) & Gilles Stup�er(2)
(1) Team Mistis, Inria Grenoble Rh�ne-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier edex, Frane

(2) Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,13002 Marseille, FraneAbstrat. Considering extreme quantiles is a popular way to understand the tail of a distribution.While they have been extensively studied for univariate distributions, muh less has been done for multi-variate ones, primarily beause there is no universally aepted de�nition of what a multivariate quantileor a multivariate distribution tail should be. In this paper, we fous on extreme geometri quantiles.In Girard and Stup�er (2014) Intriguing properties of extreme geometri quantiles, their asymptotis areestablished, both in diretion and magnitude, under suitable integrability onditions, when the norm ofthe assoiated index vetor tends to one. In this paper, we study extreme geometri quantiles when theintegrability onditions are not ful�lled, in a framework of regular variation.AMS Subjet Classi�ations: 62H05, 62G32.Keywords: Extreme quantile, geometri quantile, asymptoti behavior, multivariate regular variation.1 IntrodutionLet X be a random vetor in R
d. Up to now, several de�nitions of multivariate quantiles of X havebeen introdued in the statistial literature, see Ser�ing (2002) for a review of various possibilities for thisnotion. Here, we fous on the notion of �spatial� or �geometri� quantiles, introdued by Chaudhuri (1996),whih generalizes the haraterization of a univariate quantile shown in Koenker and Bassett (1978). Fora given vetor v in the unit open ball Bd of Rd, where d ≥ 2, a geometri quantile related to v is a solutionof the optimization problem de�ned by
argmin
q∈Rd

E(‖X − q‖ − ‖X‖)− 〈v, q〉, (1)1



where 〈·, ·〉 is the usual salar produt on R
d and ‖ · ‖ is the assoiated Eulidean norm. Any solution q(v)of the problem (1) is alled a v−th quantile. A v−th quantile q(v) ∈ R

d thus possesses both a diretion andmagnitude. It an be seen that geometri quantiles are atually speial ases of M−quantiles introduedby Brekling and Chambers (1988) whih were further analyzed by Kolthinskii (1997). Suh quantileshave various appealing properties: for any v ∈ Bd, the v−th quantile is unique whenever the distributionof X is not onentrated on a single straight line in R
d (see Chaudhuri, 1996), geometri quantiles areequivariant under any orthogonal transformation (Chaudhuri, 1996) and they haraterize the assoiateddistribution, namely, if two random vetors X and Y yield the same quantile funtion q, then they havethe same distribution (Kolthinskii, 1997). Remark that on the one hand, for v = 0, the well-knowngeometri median is obtained, whih is the simplest example of a �entral� quantile (see Small, 1990) andan be omputed in an e�ient way, see Cardot et al. (2013). On the other hand, for v 6= 0, the norm

‖v‖ measures the deviation of the quantile q(v) from the geometri median of the distribution. Sine vhas a diretion in addition to its magnitude, this immediately leads to a notion of diretional outlyingnessof a point (Chaouh and Goga, 2010). Figure 1 provides an illustration on a real data set from the PimaIndians Diabetes Database1 already onsidered by Cheng and De Gooijer (2007) and Chaouh and Goga(2010), among others. It appears that geometri iso-quantile urves tend to give a fair idea of the shapeof the data loud for moderate values of ‖v‖.These properties make geometri quantiles reasonable andidates when trying to de�ne multivariate quan-tiles, whih is why their estimation has been studied in several papers. We refer for instane to Chakraborty(2001) for the introdution of a transformation-retransformation proedure to obtain a�ne equivariantestimates of multivariate quantiles. It is stressed that the shape of the transformed quantile ontoursorresponds to that of the level sets of the probability distribution funtion when the underlying distribu-tion is elliptially ontoured, see also Cambanis et al. (1981). Chakraborty (2003) generalizes geometriquantiles to a multiresponse linear model while Dhar et al. (2013) de�nes a multivariate quantile-quantileplot using geometri quantiles. Conditional geometri quantiles an also be de�ned by substituting aonditional expetation to the expetation in (1): we refer to Cadre and Gannoun (2000) for the esti-mation of the onditional geometri median and to Cheng and de Gooijer (2007) for the estimation ofan arbitrary onditional geometri quantile. The estimation of a onditional median when there is anin�nite-dimensional ovariate is onsidered in Chaouh and Laïb (2013).Our fous in this paper is on extreme geometri quantiles, that is, when ‖v‖ → 1. The estimation ofunivariate extreme quantiles, whih requires the estimation of the so-alled extreme value index, has beenextensively studied, see for instane the monograph by de Haan and Ferreira (2006). In this ase, thereis also a growing interest about linking the random variable of interest to a ovariate in order to analyzemultidimensional datasets, see Gardes and Girard (2012), Daouia et al. (2013) or Stup�er (2013), amongothers. Only a few papers however onsider multivariate extreme quantiles. Most of them rely on the1ftp.is.ui.edu/pub/mahine-learning-databases/pima-indians-diabetes2



study of extreme level sets of the probability density funtion of X when it is absolutely ontinuous withrespet to the Lebesgue measure. See for instane Cai et al. (2011) for an appliation to the estimation ofextreme risk regions for �nanial data and Einmahl et al. (2013) who fous on bivariate distributions withan appliation to insurane data. We also refer to Chernozhukov (2005) for extreme quantile estimationin a linear quantile regression model.Girard and Stup�er (2014) obtained the asymptotis, in diretion and magnitude, of the geometri quantile
q(λu) in the limit λ ↑ 1, for any u on the unit hypersphere Sd−1 of Rd. They proved that, if E‖X‖2 < ∞,then the magnitude of this quantile always behaves asymptotially like (1 − λ)−1/2, and so does themagnitude of the di�erene between u and the diretion of q(λu). In partiular, extreme geometriquantiles from a vetor of independent uniform random variables and from a multivariate Gaussian randomvetor have asymptotially the same magnitude, although their probability density funtions learly donot have the same behavior at in�nity. Compared to the univariate theory of extreme quantiles, this issomewhat surprising sine one ould expet the quantile to feature the asymptoti deay of the probabilitydensity funtion of X .In this study, we provide an equivalent of the diretion and magnitude of an extreme geometri quantilewhen the integrability ondition is violated. To this end, it is assumed that X has a probability densityfuntion f satisfying an hypothesis of multivariate regular variation. As a orollary of our results, itappears that, in this ontext, the magnitude of an extreme geometri quantile depends on the index ofmultivariate regular variation of f . In other words, when E‖X‖2 = ∞, the magnitude of an extremegeometri quantile does indeed feature the asymptoti behavior of the probability density funtion of X ,similarly to the univariate ase. Some statistial impliations of this result are highlighted: in partiular,it is shown how to derive Weissman type estimators (Weissman, 1978) for extreme geometri quantiles.The main results of our paper are stated in Setion 2 and some numerial illustrations are given inSetion 3. Proofs are deferred to Setion 4.2 Main resultsWhen X has a probability density funtion f on R

d, d ≥ 2, problem (1) an be rewritten as
argmin
q∈Rd

∫

Rd

(‖x− q‖ − ‖x‖)f(x)dx− 〈v, q〉.Note that, as Chaudhuri (1996) points out, the integral above is always �nite even though ‖X‖ maynot have a �nite expetation. In this ontext, sine the distribution of X is not onentrated on a singlestraight line, there is a unique solution q(v) of (1) for every v ∈ Bd (see Chaudhuri, 1996 and Theorem 2.17in Kemperman, 1987): the vetor q(v) is alled the geometri quantile of X assoiated with v. Besides,
3



in this ase, q(v) is the unique solution of the equation
v +

∫

Rd

x− q

‖x− q‖f(x)dx = 0 (2)with unknown q (here, t/‖t‖ = 0 when t = 0). Moreover, Girard and Stup�er (2014, Proposition 1) provedthat problem (1) has a solution if and only if v ∈ Bd. A diret onsequene of this result is that, if v → uwith v ∈ Bd and u ∈ Sd−1, then
‖q(v)‖ → ∞ and q(v)

‖q(v)‖ → u, (3)see Theorem 1 in Girard and Stup�er (2014), where the onvergene of vetor funtions is to be understoodelementwise. Their main result (Theorem 2 in Girard and Stup�er, 2014) is reported here for the sake ofself-ontainedness.Proposition 1. Let u ∈ Sd−1 and let Πu : y 7→ y − 〈y, u〉u denote the orthogonal projetion onto thehyperplane of Rd having normal vetor u.(i) If E‖X‖ < ∞, then
‖q(λu)‖

(
q(λu)

‖q(λu)‖ − u

)
→ E(Πu(X)) as λ ↑ 1.(ii) If E‖X‖2 < ∞ and M denotes the ovariane matrix of X, then

‖q(λu)‖2(1− λ) → 1

2
(trM − u′Mu) as λ ↑ 1,where u′ denotes the transpose of the vetor u.The goal of this paper is to obtain results analogue to those of Proposition 1 in the more general settingwhere the integrability assumptions are not ful�lled. To this end, we work in a framework of multivariateregular variation introdued in Cai et al. (2011). Surveys on multivariate regular variation inlude Jessenand Mikosh (2006) and the monograph by Resnik (2006). More preisely, the following ondition isonsidered:

(Mα) The probability density funtion f of X is a ontinuous funtion on a neighborhood of in�nity,suh that the funtion y 7→ ‖y‖df(y) is bounded in any ompat neighborhood of 0 and there exist apositive funtion Q on R
d and a funtion V whih is regularly varying at in�nity with index −α < 0, suhthat

∀y 6= 0,

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 and sup
w∈Sd−1

∣∣∣∣
f(tw)

t−dV (t)
−Q(w)

∣∣∣∣→ 0 as t → ∞.Remark �rst that in ondition (Mα), the funtion V is determined only up to asymptoti equivalene.Sine V onverges to 0 at in�nity, we may and will assume in what follows that V is bounded on [0,∞)and, by Theorem 1.3.3 p.14 in Bingham et al. (1987), ontinuous on a neighborhood of in�nity. Moreover,if ondition (Mα) holds, then Q is a homogeneous ontinuous funtion of degree −d− α on R
d \ {0} and

f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + o(1)) as ‖y‖ → ∞, see Lemma 3 in Setion 4. Sine V is regularlyvarying with index −α, the funtion f is then roughly of order ‖y‖−d−α as ‖y‖ → ∞ and therefore the4



parameter α ontrols the asymptoti deay of f at in�nity. In partiular, swithing to polar oordinates,it is easily seen that E‖X‖β is then �nite if β < α.We are now in position to ompute the asymptoti diretion and magnitude of q(λu) as λ ↑ 1 under theassumption (Mα). Let us highlight that, when α > 1, E‖X‖ is �nite and the asymptoti diretion isprovided by Proposition 1(i). Similarly, when α > 2, E‖X‖2 is �nite and the asymptoti magnitude isprovided by Proposition 1(ii).Theorem 1. Let u ∈ Sd−1.(i) If (Mα) holds with α ∈ (0, 1), then
1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→
∫

Rd

Πu(y)

‖y − u‖Q(y)dy as λ ↑ 1.(ii) If (Mα) holds with α ∈ (0, 2), then
1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.Sine V is regularly varying with index −α, it follows from Theorem 1(ii) that, in model (Mα), when

α ∈ (0, 2), the norm ‖q(λu)‖ of the extreme quantile behaves roughly like (1 − λ)−1/α as λ ↑ 1. In thisase, we thus see that the magnitude of an extreme geometri quantile does indeed feature the behaviorof X far from the origin.However, this result exludes the limit ases α = 1 for the asymptoti diretion and α = 2 for theasymptoti magnitude. The method we use to handle these ases is somewhat di�erent; in partiular, weshall work with the funtions L : t 7→ tαV (t) and
L : t 7→

∫ t

1

L(r)
dr

r
(4)(this notation will be retained throughout the paper). Sine L is slowly varying as in�nity, so is L and

L(r)/L(r) → ∞ as r → ∞, see Proposition 1.5.9a p.26 in Bingham et al. (1987). Furthermore, we de�ne,if Σ is a positive de�nite d × d symmetri matrix, the ellipsoid Ed−1
Σ = {x ∈ R

d |x′Σ−1x = 1} and itsrelated surfae measure µΣ given by µΣ(C) = (detΣ)
1/2

σ
(
Σ−1/2C

) for every Borel measurable subset Cof Ed−1
Σ , where σ is the standard surfae measure on Sd−1. Then, for every integrable funtion h on R

dand every a < b ∈ [0,∞], we have
∫

Rd

h(x)1l[a,b]

((
x′Σ−1x

)1/2)
dx =

∫ b

a

∫

Ed−1

Σ

h(rw)rd−1dr µΣ(dw). (5)Our seond main result is the following:Theorem 2. Let u ∈ Sd−1 and Σ be an arbitrary positive de�nite d× d symmetri matrix.(i) If (M1) holds and L(t) → ∞ as t → ∞ then
‖q(λu)‖

L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→
∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw) as λ ↑ 1.5



(ii) If (M2) holds and L(t) → ∞ as t → ∞ then
‖q(λu)‖2

L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.Let us remark that both limits are independent of the arbitrary matrix Σ. A onvenient hoie is to take
Σ as the identity matrix and thus to integrate on the unit sphere, but it may be interesting to onsiderother, nontrivial ases, see the disussion about elliptially ontoured distributions in Corollary 2.It may be seen from this result that, in the partiular lass (M2) and when L(t) → ∞ as t → ∞ (whihensures that E‖X‖2 = ∞), the magnitude of an extreme geometri quantile does again feature the behaviorof X far from the origin, through the funtion L. The in�uene of L is illustrated in the following example:Example If L(t) = cβ(log t)

β1l(1,∞)(t), where β > −1 and cβ > 0, then
‖q(λu)‖2(log ‖q(λu)‖)−β−1(1− λ) → c′β

∫

Sd−1

〈Πu(w), w〉Q(w)σ(dw) as λ ↑ 1where c′β > 0. Lemma 2 (see Setion 4) entails
‖q(λu)‖ = Cβ(u)(1 − λ)−1/2

[
log

(
1

1− λ

)](β+1)/2

(1 + o(1)) as λ ↑ 1where Cβ(u) > 0. Consequently, in this ase, the larger is β (and thus, the slower f onverges to 0 atin�nity), the larger is the order of the extreme geometri quantile.Colleting the results from Proposition 1, Theorem 1 and Theorem 2, we obtain the following, somehowuni�ed result:Corollary 1. Let u ∈ Sd−1.(i) If (Mα) holds with α ∈ (0, 1), then
1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)

‖y − u‖Q(y)dyand 1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.(ii) If (M1) holds and L(t) → ∞ as t → ∞, then for any arbitrary positive de�nite d × d symmetrimatrix Σ,

‖q(λu)‖
L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw)and 1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.(iii) If (Mα) holds with α ∈ (1, 2), then

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)f(y)dyand 1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.6



(iv) If (M2) holds and L(t) → ∞ as t → ∞, then for any arbitrary positive de�nite d × d symmetrimatrix Σ,
‖q(λu)‖

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)f(y)dyand ‖q(λu)‖2
L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.It therefore appears that the norm of an extreme quantile an be asymptotially expanded as
‖q(λu)‖ = [A2,α(u)]

1/min(2,α)B2,α((1 − λ)−1) when u ∈ Sd−1 and λ ↑ 1, (6)for all α > 0, where depending on whether α < 2, α = 2 or α > 2, A2,α(u) is the limiting term inProposition 1(ii), Theorem 1(ii) or Theorem 2(ii), and B2,α is a regularly varying funtion with index
1/min(2, α). The asymptoti diretion of an extreme quantile an then be expanded as

q(λu)

‖q(λu)‖ = u+A1,α(u)[A2,α(u)]
−min(1,α)/min(2,α)B1,α((1− λ)−1) when u ∈ Sd−1 and λ ↑ 1, (7)for all α > 0, where depending on whether α < 1, α = 1 or α > 1, A1,α(u) is the limiting term inProposition 1(i), Theorem 1(i) or Theorem 2(i), and B1,α is a regularly varying funtion with index

−min(1, α)/min(2, α). These expansions emphasize again the partiular role of the values α = 1 and
α = 2.Besides, it is possible to link the expressions of A1,α(u) obtained in the situations α > 1 and α = 1. Tothis end, we introdue a partiular sublass of (Mα):

(M ′
α) For all x 6= 0, f(x) = Q(x)L((x′Σ−1x)1/2) where Σ is a positive de�nite d×d symmetri matrix,

Q is a homogeneous ontinuous funtion of degree −d− α on R
d \ {0} and L is a slowly varying funtionat in�nity whih is ontinuous in a neighborhood of in�nity and is suh that

t 7→ t−αL(t) is bounded, ∫ ∞

0

L(r)
dr

r1+α
< ∞ and ∫ t

1

L(r)
dr

r
→ ∞ as t → ∞.Noting that, for every positive de�nite d × d symmetri matrix Σ, the ontinuous map w 7→ w′Σ−1w ispositive and bounded on Sd−1, the uniform onvergene theorem for slowly varying funtions (see e.g.Theorem 1.5.2 p.22 in Bingham et al., 1987) entails that the lass of probability density funtions (M ′

α)satis�es the hypotheses of the original model (Mα), with V (t) = t−αL(t). Using (5), it is straightforwardthat in this partiular model, the hypothesis on L entails that E‖X‖β is �nite if and only if β < α.Remark now that, in the lass (M ′
α), α > 1, equation (5) entails:

E(Πu(X)) =

∫ ∞

0

L(r)
dr

rα

∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw).Thus, the limiting terms A1,α(u) of Proposition 1(i) and Theorem 2(i) are similar. To link the expressionsof A2,α(u) obtained in the situations α > 2 and α = 2, we work in the sublass of elliptially ontoureddistributions: 7



Corollary 2. Let u ∈ Sd−1. If (M ′
2) holds and Q is onstant equal to 1 on the ellipsoid Ed−1

Σ , then
‖q(λu)‖2

L(‖q(λu)‖) (1− λ) → ad
2d

(detΣ)
1/2

(tr Σ− u′Σu) as λ ↑ 1where ad := 2πd/2/Γ(d/2) is the surfae area of Sd−1 and Γ is Euler's Gamma funtion.This result shows that, when the distribution is elliptially ontoured, the limiting terms A2,α(u) ofProposition 1(ii) and Theorem 2(ii) are similar. In partiular, the matries Σ and M play the same role:it is indeed well-known that these matries are losely related when the ovariane matrix M is �nite, bythe identity
M =

(∫ ∞

0

L(r)
dr

rα−1

)
(detΣ)

1/2 ad
d
Σ. (8)Finally, (3) and (6) open the door to Weissman type estimators (Weissman, 1978) for extreme geometriquantiles. Indeed, let λ ↑ 1 and λ′ ↑ 1 suh that (1 − λ)/(1 − λ′) → c with 0 < c < 1. Then, (6) entailsthat

‖q(λu)‖
‖q(λ′u)‖ =

(
1− λ′

1− λ

)1/min(2,α)

(1 + o(1))and onsequently, from (3), the following asymptoti expansion holds:
q(λu) =

(
1− λ′

1− λ

)1/min(2,α)

q(λ′u)(1 + o(1)).As in the univariate ase, extreme geometri quantiles of large orders an therefore be dedued fromextreme quantiles of smaller orders using an extrapolation fator. The estimation of an extreme geometriquantile q(λu), for λ arbitrarily lose to 1, ould thus be based on the estimation of an �intermediate�geometri quantile q(λ′u) for whih λ′ ↑ 1 slowly enough, and on the estimation of the index of regularvariation α. This is the priniple of the Weissman estimator. A possible estimate of an intermediatequantile q(λ′
nu), with λ′

n ↑ 1 and u ∈ Sd−1, is obtained by onsidering the sample ounterpart of theminimization problem that de�nes q(λ′
nu),

q(λ′
nu) = argmin

q∈Rd

E(‖X − q‖ − ‖X‖)− λ′
n〈u, q〉,namely

q̂n(λ
′
nu) = argmin

q∈Rd

1

n

(
n∑

i=1

‖Xi − q‖ − ‖Xi‖
)

− λ′
n〈u, q〉,where (X1, . . . , Xn) is a sample of independent and identially distributed random vetors. This is a well-de�ned problem whih almost surely admits a unique solution in our framework, see Chaudhuri (1996).Besides, the objetive (random) funtion is almost surely �nite, onvex and ontinuous. A possible idea tostudy the asymptoti distribution of q̂n(λ′

nu) is to use onvex stohasti optimization tehniques suh asthe results of Geyer (1996) and Knight (1999). Of ourse, we should expet that this estimate of q(λ′
nu)will only be onsistent provided λ′

n ↑ 1 slowly enough. A detailed study of the properties of suh anestimator is beyond the sope of this paper. Similarly, the estimation of α ould be addressed in futureresearh. 8



3 Numerial illustrationsFor the sake of illustration, we fous on the bidimensional ase d = 2: it is assumed that X followsa bivariate elliptially-ontoured Pareto(α,Σ) distribution, with probability density funtion f(x) =

Cα(x
′Σ−1x)(−2−α)/21l[1,∞)(x

′Σ−1x), where Cα > 0 is an appropriate normalizing onstant. It is thenstraightforward to show that f belongs to model (M ′
α), with Q(x) = (x′Σ−1x)(−2−α)/2 and V (t) =

Cαt
−α1l[1,∞)(t).Let u ∈ S1. Following the results of Setion 2, one an obtain asymptoti expansions of the extremequantile q(λu) as λ ↑ 1. In the ase α < 2, Theorem 1 yields

q(λu) =

(
Cα

1− λ

∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy

)1/α

u(1 + o(1)) as λ ↑ 1. (9)When α = 2, let h be the inverse of the funtion t 7→ t2/ log(t) on [
√
e,∞). Corollary 2 then entails

q(λu) = h

(
π (detΣ)1/2 (tr Σ− u′Σu)

2(1− λ)

)
u(1 + o(1)) as λ ↑ 1. (10)In partiular, from Lemma 2, ‖q(λu)‖ is of asymptoti order (1− λ)−1/2(− log(1− λ))1/2. Finally, in thease α > 2, Proposition 1 yields

q(λu) =

(
trM − u′Mu

2(1− λ)

)1/2

u(1 + o(1)) as λ ↑ 1, with M = π
Cα

α− 2
(detΣ)

1/2
Σ. (11)Letting uθ = (cos θ, sin θ) ∈ S1, our goal is to ompare the iso-quantile urves Cλ = {q(λuθ), θ ∈ [0, 2π)}omputed by minimizing (1) numerially to the asymptoti ones, i.e. approximated using equations (9),(10) and (11). Results are displayed on Figures 2�6, for α ∈ {1.3, 1.5, 1.7, 1.9, 2, 2.1, 2.3, 2.5, 3, 4} and

λ = 0.995 in the partiular ase where Σ = diag(σ2
1 , σ

2
2) with σ1 = 2 and σ2 = 1/2. These hoies yield

Cα = α/(2σ1σ2π) = α/2π.One an see that the asymptoti approximation works best when |α − 2| is large, e.g. greater than 0.5.When α < 2, a possible explanation for this phenomenon lies in the proof of Theorem 1. Equations (46)and (49) imply that the error terms in the asymptoti equivalent of V (‖q(λu)‖) are atually of order
[‖q(λu)‖2V (‖q(λu)‖)]−1 when 1 < α < 2. Moreover, from Theorem 1, the norm of the extreme quantile
‖q(λu)‖ behaves roughly like (1−λ)−1/α as λ ↑ 1, so that the error term behaves roughly like (1−λ)−1+2/α,whose onvergene to 0 beomes slower as α approahes 2.Let us also remark that, for α = 2, the overall shape of the iso-quantile urve obtained by (10) is verysimilar to that of the urve obtained with (11) when α > 2. This may be seen as a onsequene ofCorollary 2 and of the link (8) between the matries Σ and M .4 ProofsThis setion is organized as follows. Paragraph 4.1 provides two preliminary analytial lemmas. Para-graph 4.2 establishes some properties of multivariate regularly varying funtions. Paragraphs 4.3, 4.49



and 4.5 are dediated to the proofs of the main results: respetively Theorem 1, Theorem 2 and Corol-lary 2.4.1 Preliminary resultsThe �rst lemma is an analytial result whih will reveal useful in the proof of Theorem 2.Lemma 1. Let h1, h2 : (1,∞) → R be two nonnegative funtions suh that h1(t) → ∞ and h2(t) → ∞as t → ∞. Then, for any β > 0, there exists a real funtion ε : (1,∞) → [0,∞) suh that ε(t) → 0,
tε(t) → ∞,

εβ(t)h1(tε(t)) → ∞ and h2(tε(t))

| log ε(t)| → ∞ as t → ∞.Proof of Lemma 1. Let us de�ne the funtion ε as
ε(t) = max

(
1√
t
,

(
inf

u≥
√
t
h1(u)

)−1/2β

, exp

(
−
[
inf

u≥
√
t
h2(u)

]1/2))
.Then, learly, ε(t) → 0, tε(t) ≥ √

t → ∞ and
εβ(t)h1(tε(t)) ≥

(
inf

u≥
√
t
h1(u)

)−1/2

× inf
u≥tε(t)

h1(u) ≥
(

inf
u≥

√
t
h1(u)

)1/2

→ ∞ as t → ∞.Similarly, sine the logarithm funtion is inreasing, one has for t large enough
1

| log ε(t)| =
1

− log ε(t)
≥
(

inf
u≥

√
t
h2(u)

)−1/2and therefore
h2(tε(t))

| log ε(t)| ≥
(

inf
u≥

√
t
h2(u)

)−1/2

× inf
u≥tε(t)

h2(u) ≥
(

inf
u≥

√
t
h2(u)

)1/2

→ ∞ as t → ∞whih proves the result.Lemma 2 is an analytial result needed to illustrate Theorem 2. It is well-known that the inverse of aregularly varying funtion with index a > 0 is regularly varying with index 1/a (see e.g. Theorem 1.5.12p.28 in Bingham et al., 1987). Lemma 2 provides an asymptoti equivalent of the inverse for a partiularlass of funtions.Lemma 2. Let a > 0, b ∈ R and de�ne ga,b : t 7→ ta(log t)b on (1,∞). Then ga,b has an inverse ha,b ona neighborhood of in�nity whih is suh that
ha,b(t) = ab/a

t1/a

(log t)b/a
(1 + o(1)) as t → ∞.Proof of Lemma 2. Let us remark that ga,b is ontinuously di�erentiable on (1,∞) with derivative

g′a,b(t) = ta−1(log t)b−1[a log t+ b] for all t > 1. Clearly, g′a,b(t) is positive for t > e−b/a and thus ga,b hasan inverse on a neighborhood of in�nity denoted by ha,b. For all t large enough, one has
t = [ha,b(t)]

a[log(ha,b(t))]
b ⇒ ha,b(t) = t1/a[log(ha,b(t))]

−b/a, (12)10



and an iterated use of (12) entails
ha,b(t) = t1/a[log(t1/a[log(ha,b(t))]

−b/a)]−b/a ⇒ ha,b(t) = ab/a
t1/a

(log t)b/a

(
1− b

log log ha,b(t)

log t

)−b/a

. (13)Sine ga,b is inreasing on a neighborhood of in�nity and tends to in�nity at in�nity, so does ha,b. Takinglogarithms in (12) entails log t = a log ha,b(t) + b log log ha,b(t) and onsequently
log ha,b(t) =

1

a
log t(1 + o(1)) as t → ∞.This yields

log log ha,b(t)

log t
→ 0 as t → ∞. (14)Plugging (14) in (13) ompletes the proof.4.2 Auxiliary results on multivariate regular variationLet us start with some useful onsequenes of ondition (Mα).Lemma 3. Assume that (Mα) holds for some α > 0. Then,(i) Q is a homogeneous ontinuous funtion of degree −d− α on R

d \ {0};(ii) One has f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y)) where θ(y) → 0 as ‖y‖ → ∞.Proof of Lemma 3. To prove (i), it is enough to note that Q is ontinuous on Sd−1 as a diretonsequene of (Mα), while the homogeneity follows from the onvergenes
f(t(ay))

t−dV (t)
→ Q(ay) and f(t(ay))

t−dV (t)
= a−dV (at)

V (t)

f((at)y)

(at)−dV (at)
→ a−d−αQ(y) as t → ∞,valid for every a > 0 and y 6= 0. To obtain (ii), observe that

∣∣∣∣
f(y)

‖y‖−dV (‖y‖) −Q

(
y

‖y‖

)∣∣∣∣ ≤ sup
w∈Sd−1

∣∣∣∣
f(‖y‖w)

‖y‖−dV (‖y‖) −Q(w)

∣∣∣∣ .Therefore, ondition (Mα) entails
f(y) = ‖y‖−dV (‖y‖)(Q(y/‖y‖) + θ∗(y)) with θ∗(y) → 0 as ‖y‖ → ∞.Sine Q is positive and ontinuous on the ompat set Sd−1, it is bounded from below by a positiveonstant on Sd−1 and thus

f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y)) with θ(y) :=
θ∗(y)

Q(y/‖y‖) → 0 as ‖y‖ → ∞.The result follows.
11



The seond lemma is a slightly stronger version of some uniform onvergene results proved in Lemma 1of Cai et al. (2011).Lemma 4. Assume that (Mα) holds for some α > 0. Then for every δ, ε > 0, we have that
sup

‖y‖≥ε

‖y‖d+α−δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 and sup
0<‖y‖≤ε

‖y‖d+α+δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 as t → ∞.Proof of Lemma 4. To prove the �rst onvergene, use the triangle inequality and the homogeneity of
Q to obtain for every y 6= 0

‖y‖d+α−δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣ ≤ ‖y‖−δ

∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖) −Q

(
y

‖y‖

)∣∣∣∣

+
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣ . (15)For every y suh that ‖y‖ ≥ ε > 0, we have on the one hand
‖y‖−δ

∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖) −Q

(
y

‖y‖

)∣∣∣∣ ≤ ε−δ sup
T≥tε

sup
w∈Sd−1

∣∣∣∣
f(Tw)

T−dV (T )
−Q(w)

∣∣∣∣→ 0 as t → ∞. (16)On the other hand, for t large enough, using Lemma 3(ii) and the boundedness of the ontinuous funtion
Q on the ompat set Sd−1 entails:

f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣ = O

(
sup
a≥ε

∣∣∣∣
(at)α−δV (at)

tα−δV (t)
− a−δ

∣∣∣∣
)
.Remarking that t 7→ tα−δV (t) is regularly varying at in�nity with index −δ < 0, a uniform onvergeneproperty (see e.g. Theorem 1.5.2 p.22 in Bingham et al., 1987) yields

sup
‖y‖≥ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣→ 0 as t → ∞. (17)Combining (15), (16) and (17) yields the �rst part of the result.We now prove the seond onvergene. Pik an arbitrary η > 0 and let t0 > 0 be suh that
∀t > t0, sup

w∈Sd−1

∣∣∣∣
f(tw)

t−dV (t)
−Q(w)

∣∣∣∣ <
η

2εδ
. (18)De�ne a funtion Ṽ by Ṽ (t) = 1 if 0 ≤ t ≤ t0 and Ṽ (t) = V (t) otherwise. For all t > t0, we have that

‖y‖d+α+δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣ ≤ ‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣

+
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

∣∣∣∣∣
(t‖y‖)α+δṼ (t‖y‖)

tα+δṼ (t)
− ‖y‖δ

∣∣∣∣∣ . (19)Inequality (18) entails
‖y‖δ

∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{t0/t<‖y‖≤ε} ≤ η

2
. (20)Moreover,

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{0<‖y‖≤t0/t} ≤
(
t0
t

)δ
(

sup
‖z‖≤t0

‖z‖df(z)
Ṽ (‖z‖)

+ sup
w∈Sd−1

Q(w)

)
.12



Sine y 7→ ‖y‖df(y) is bounded on any ompat neighborhood of 0 and Ṽ is equal to 1 on [0, t0] and Q isbounded on Sd−1, the right-hand side above is �nite. One thus obtains for t large enough
‖y‖δ

∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{0<‖y‖≤t0/t} ≤ η

2
. (21)Combining (20) and (21), it beomes lear that

sup
0<‖y‖≤ε

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣→ 0 as t → ∞. (22)Finally, let us remark that (18) entails
sup

0<‖y‖≤ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

≤ sup
‖z‖≤t0

‖z‖df(z)
Ṽ (‖z‖)

+ 2 sup
w∈Sd−1

Q(w) +
η

2εδ
< ∞and therefore, sine t 7→ tα+δV (t) is regularly varying at in�nity with index δ > 0 and bounded on anyneighborhood of 0, a uniform onvergene result (see e.g. Theorem 1.5.2 p.22 in Bingham et al., 1987)yields, as t → ∞,

sup
0<‖y‖≤ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

∣∣∣∣∣
(t‖y‖)α+δṼ (t‖y‖)

tα+δṼ (t)
− ‖y‖δ

∣∣∣∣∣ = O

(
sup

0<a≤ε

∣∣∣∣∣
(at)α+δṼ (at)

tα+δṼ (t)
− aδ

∣∣∣∣∣

)
→ 0. (23)Combining (19), (22) and (23) ompletes the proof.4.3 Proof of Theorem 1Lemma 5 is the essential tool to prove Theorem 1(i).Lemma 5. Let u ∈ Sd−1.(i) Assume that (Mα) holds for some α ∈ (0, 1). Let v ∈ R

d and de�ne
I(u, v) =

∫

Rd

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy.Then I(u, v) is well-de�ned, �nite and

1

V (‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ , v
〉

→ −I(u, v) as λ ↑ 1.(ii) Assume that (M1) holds. Then, for any ε > 0,
1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= o(‖q(λu)‖ε) as λ ↑ 1.Proof of Lemma 5. (i) The Cauhy-Shwarz inequality entails, for all y ∈ R
d and w ∈ Sd−1,

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤
∥∥∥∥

y − w

‖y − w‖ + w

∥∥∥∥ ‖v‖.Besides, ∥∥∥∥
y − w

‖y − w‖ + w

∥∥∥∥
2

= 2

(
1 +

〈
y − w

‖y − w‖ , w
〉)

=
2 (‖y − w‖ + 〈y − w, w〉)

‖y − w‖13



so that ∥∥∥∥
y − w

‖y − w‖ + w

∥∥∥∥
2

=
2
(
‖y − w‖2 − 〈y − w, w〉2

)

‖y − w‖(‖y − w‖ − 〈y − w, w〉) .The numerator of the right-hand side an be bounded from above as follows:
‖y − w‖2 − 〈y − w, w〉2 = ‖y‖2 − 〈y, w〉2 ≤ ‖y‖2.If moreover ‖y‖ < ‖w‖ = 1, then the denominator an be ontrolled by applying both the Cauhy-Shwarzand reverse triangle inequalities:

‖y − w‖(‖y − w‖ − 〈y − w, w〉) = ‖y − w‖2
(
1 + ‖y − w‖ − 〈y − w, y〉

‖y − w‖

)
≥ 2(1− ‖y‖)3.As a onsequene, if B is the ball entered at the origin having radius 1/2, then

∀y ∈ B,
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤ 2‖v‖‖y‖, (24)and the homogeneity property of Q yields
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣Q(y)1lB(y) ≤ 2‖v‖‖y‖−(d−1+α)Q

(
y

‖y‖

)
1lB(y). (25)The right-hand side of this inequality de�nes an integrable funtion in a neighborhood of 0 beause

α ∈ (0, 1). Besides, the Cauhy-Shwarz inequality entails for all y ∈ R
d and w ∈ Sd−1

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤ 2‖v‖. (26)Consequently, denoting by Bc the omplement of B, it follows that
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣Q(y)1lBc(y) ≤ 2‖v‖‖y‖−(d+α)Q

(
y

‖y‖

)
1lBc(y) (27)where the right-hand side de�nes an integrable funtion in a neighborhood of in�nity sine α > 0. Combin-ing (25) and (27) with w = u shows that I(u, v) is �nite. The haraterization of the geometri quantile (2)yields

λu +

∫

Rd

x− q(λu)

‖x− q(λu)‖f(x)dx = 0or equivalently
I1(λ) + I2(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉 (28)with I1(λ) =

∫

B

(∥∥∥∥y − q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dyand I2(λ) =

∫

Bc

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dy.Let us also introdue

I ′1(λ) =

∫

B

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dyand I ′2(λ) =

∫

Bc

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy.14



To obtain the asymptoti behavior of I1(λ), we �rst dedue from (24) that:
|I1(λ)− I ′1(λ)| ≤ 2‖v‖

∫

B

{
‖y‖d+α+δ

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d−1+α+δwhere δ = (1−α)/2 > 0 is suh that α+ δ < 1. Let us note that sine y 7→ ‖y‖−(d−1+α+δ) is an integrablefuntion in a neighborhood of 0, Lemma 4 entails that I1(λ) − I ′1(λ) → 0 as λ ↑ 1. Realling (25) with wreplaed by q(λu)/‖q(λu)‖ and applying (3) together with the dominated onvergene theorem, we obtain:
I1(λ) →

∫

B

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy as λ ↑ 1. (29)Let us now fous on I2(λ): from (26), it follows that

|I2(λ)− I ′2(λ)| ≤ 2‖v‖
∫

Bc

{
‖y‖d+α/2

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+α/2
.Sine α > 0, the funtion y 7→ ‖y‖d+α/2 is integrable in a neighborhood of in�nity. Lemma 4 thus entailsthat I2(λ) − I ′2(λ) → 0 as λ ↑ 1. Realling (27) with w replaed by q(λu)/‖q(λu)‖ and applying (3)together with the dominated onvergene theorem, we get

I2(λ) →
∫

Bc

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy as λ ↑ 1. (30)The result follows by ombining (28), (29) and (30).(ii) Sine Bd is a relatively ompat neighborhood of 0, inequality (24) entails for n large enough

∀x ∈ Bd,

∣∣∣∣
〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉∣∣∣∣ ≤ 2

‖v‖‖x‖
‖q(λu)‖ ≤ 2

‖v‖
‖q(λu)‖and therefore ∫

Bd

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx = O
(
‖q(λu)‖−1

)
.Let further A(λ) be the annulus {y ∈ R

d | 1/‖q(λu)‖ < ‖y‖ ≤ 1/2} ⊂ B. Similarly to what was done inthe proof of (i), equation (2) and a hange of variables entail
I2(λ) + I3(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉
+O

(
[‖q(λu)‖V (‖q(λu)‖)]−1

)with I3(λ) =

∫

A(λ)

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dywhere I2(λ) is de�ned in the proof of (i). Sine t 7→ [tV (t)]−1 is slowly varying, Proposition 1.3.6(v) p.16in Bingham et al. (1987) gives [tV (t)]−1 = o(tε) as t → ∞ for any ε > 0. Reall further that (30) wasatually also true for α = 1, so that

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= −I3(λ) + o(‖q(λu)‖ε). (31)Let us now turn to the ontrol of I3(λ) and introdue
I ′3(λ) =

∫

A(λ)

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy.15



From (24), it follows that as λ ↑ 1,
|I3(λ)− I ′3(λ)| ≤ 2‖v‖

∫

A(λ)

{
‖y‖d+1+ε

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+ε

= o

(∫

A(λ)

dy

‖y‖d+ε

)
= o

(∫ 1

1/‖q(λu)‖

dr

r1+ε

)
= o (‖q(λu)‖ε) , (32)in view of Lemma 4 and after swithing to polar oordinates. Finally, I ′3(λ) is ontrolled using (25):

I ′3(λ) ≤ 2‖v‖
∫

A(λ)

‖y‖−dQ

(
y

‖y‖

)
dy.We an thus use the boundedness of Q on Sd−1 and polar oordinates to obtain

I ′3(λ) = O

(∫ 1

1/‖q(λu)‖

dr

r

)
= O(log ‖q(λu)‖) = o(‖q(λu)‖ε) as λ ↑ 1. (33)Combining (31), (32) and (33) ompletes the proof.Lemma 6 below is the key to the proof of Theorem 1(ii).Lemma 6. Assume that (Mα) holds for some α ∈ (0, 2). Let u ∈ Sd−1 and set

J(u) =

∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy.Then J(u) is well-de�ned, positive and �nite, and

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −J(u) as λ ↑ 1.Proof of Lemma 6. The Cauhy-Shwarz inequality yields for every y ∈ R

d

1 +
〈y − u, u〉
‖y − u‖ ≥ 1− ‖u‖ = 0with equality if and only if y and u are linearly dependent. As a onsequene, J(u) > 0. Let ϕ :

R
d × [0,∞)× Sd−1 → R be the nonnegative funtion de�ned by

ϕ(x, r, w) = r2
(
1 +

〈x− rw, w〉
‖x− rw‖

)
,and reall that, from Girard and Stup�er (2014, inequality (16)):

ϕ(x, r, w)1l{‖x‖<r} ≤ ‖x‖21l{‖x‖<r}. (34)Thus, using the homogeneity of Q and applying (34) with r = 1 yield for every y ∈ R
d and w ∈ Sd−1

∣∣∣∣1 +
〈y − w, w〉
‖y − w‖

∣∣∣∣Q(y)1lBd(y) ≤ ‖y‖−(d−2+α)Q

(
y

‖y‖

)
1lBd(y) (35)with the right-hand side of this inequality being an integrable funtion in a neighborhood of 0. Besides,the Cauhy-Shwarz inequality and the homogeneity of Q entail for all y ∈ R
d and w ∈ Sd−1

∣∣∣∣1 +
〈y − w, w〉
‖y − w‖

∣∣∣∣Q(y)1lRd\Bd(y) ≤ 2‖y‖−(d+α)Q

(
y

‖y‖

)
1lRd\Bd(y) (36)16



so that the integrand in J(u) is also integrable in a neighborhood of in�nity. J(u) is thus positive and�nite. The remainder of the proof follows the lines of the proof of Lemma 5: taking aount of (2) andusing a hange of variables, we get
J1(λ) + J2(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉 (37)with J1(λ) =

∫

Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖)dyand J2(λ) =

∫

Rd\Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖)dy.Let us onsider
J ′
1(λ) =

∫

Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
Q(y)dyand J ′

2(λ) =

∫

Rd\Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
Q(y)dy.The asymptoti behavior of J1(λ) is then dedued from (34) with r = 1:

|J1(λ)− J ′
1(λ)| ≤

∫

Bd

{
‖y‖d+α+δ

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d−2+α+δwhere δ = (2 − α)/2 > 0 is suh that α + δ < 2. Remarking that y 7→ ‖y‖−(d−2+α+δ) is an integrablefuntion in a neighborhood of 0, Lemma 4 entails J1(λ) − J ′
1(λ) → 0 as λ ↑ 1. In view of (35), thedominated onvergene theorem leads to

J1(λ) →
∫

Bd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1. (38)Let us now fous on J2(λ). The Cauhy-Shwarz inequality yields

|J2(λ)− J ′
2(λ)| ≤ 2

∫

Rd\Bd

{
‖y‖d+α/2

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+α/2
.Sine y 7→ ‖y‖d+α/2 is an integrable funtion in a neighborhood of in�nity, applying Lemma 4 shows that

J2(λ) − J ′
2(λ) → 0 as λ ↑ 1. Therefore, realling (36) and applying the dominated onvergene theorem,we get

J2(λ) →
∫

Rd\Bd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1. (39)The result follows from (37), (38) and (39).Proof of Theorem 1. (i) Let (u, v1, . . . , vd−1) be an orthonormal basis of Rd. We may then write

q(λu)

‖q(λu)‖ − u = (b(λ)− 1)u+

d−1∑

k=1

βk(λ)vk (40)where b(λ) ∈ R and, for all k ∈ {1, . . . , d− 1},
βk(λ) :=

〈
q(λu)

‖q(λu)‖ , vk
〉

= −
〈
λu− q(λu)

‖q(λu)‖ , vk
〉
. (41)17



Lemma 5 entails that, for all k ∈ {1, . . . , d− 1},
βk(λ)

V (‖q(λu)‖) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , vk
〉

→
∫

Rd

〈y, vk〉
‖y − u‖Q(y)dy (42)as λ ↑ 1. Besides, sine q(λu)/‖q(λu)‖ ∈ Sd−1, it is lear that

b2(λ) +

d−1∑

k=1

β2
k(λ) = 1. (43)In view of (3), b(λ) → 1 as λ ↑ 1: it is thus easily seen from (42) that

1

V (‖q(λu)‖) (b(λ)− 1) = − 1

2V (‖q(λu)‖) (1 − b2(λ))(1 + o(1))

= −V (‖q(λu)‖)
(
1

2

d−1∑

k=1

β2
k(λ)

[V (‖q(λu)‖)]2

)
(1 + o(1)) → 0 (44)as λ ↑ 1. Combining (40), (42), (44) and remarking that

Πu(y) =

d−1∑

k=1

〈y, vk〉vkompletes the �rst part of the proof.(ii) Let us reall that, if α ∈ (1, 2), then E‖X‖ < ∞. In this ase, Lemma 1 in Girard and Stup�er (2014)shows that, for all v ∈ R
d,
‖q(λu)‖

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −E〈Πu(X), v〉 as λ ↑ 1. (45)Thus, Lemma 5 and (45) in the ase α ≤ 1 and α ∈ (1, 2) respetively show that for all k ∈ {1, . . . , d− 1}:
β2
k(λ)

V (‖q(λu)‖) =





O(V (‖q(λu)‖)) if α < 1

o(‖q(λu)‖1/2V (‖q(λu)‖)) if α = 1

O([‖q(λu)‖2V (‖q(λu)‖)]−1) if 1 < α < 2





= o(1), (46)as λ ↑ 1. Now, equation (43) and Lemma 6 yield
1

V (‖q(λu)‖) (λb(λ)− 1) → −J(u) as λ ↑ 1, (47)and ombining (43), (46) and (47) leads to
1

V (‖q(λu)‖)

(
1− λb(λ)− 1

2

(
1− b2(λ)

))
→ J(u) as λ ↑ 1. (48)Finally, use one again either Lemma 5 if α ≤ 1 or equation (45) if α ∈ (1, 2) to get

1

V (‖q(λu)‖)

∣∣∣∣
〈
λu − q(λu)

‖q(λu)‖ , u
〉∣∣∣∣

2

=





O(V (‖q(λu)‖)) if α < 1

o(‖q(λu)‖1/2V (‖q(λu)‖)) if α = 1

o([‖q(λu)‖2V (‖q(λu)‖)]−1) if 1 < α < 2





= o(1) (49)as λ ↑ 1 whih implies
1

V (‖q(λu)‖) (λ− b(λ))
2 → 0 as λ ↑ 1. (50)Using (48) together with (50) and the straightforward identity

1− λb(λ) − 1

2

(
1− b2(λ)

)
=

1

2

(
(1− λ)(1 + λ) + (λ− b(λ))2

)yields the desired result. 18



4.4 Proof of Theorem 2Lemma 7 is the analogue of Lemma 5 when (M1) holds. It is the ornerstone to prove Theorem 2(i).Lemma 7. Let u ∈ Sd−1. If (M1) holds with L(t) → ∞ as t → ∞ then, for all v ∈ R
d and any symmetripositive de�nite d× d matrix Σ,

‖q(λu)‖
L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −
∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) as λ ↑ 1.Proof of Lemma 7. The proof starts as the beginning of the proof of Lemma 5(ii). Let Ed
Σ = {x ∈

R
d |x′Σ−1x ≤ 1}. Sine Ed

Σ is a ompat neighborhood of 0, (24) entails, for n large enough,
∀x ∈ Ed

Σ,

∣∣∣∣
〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉∣∣∣∣ ≤ 2

‖v‖‖x‖
‖q(λu)‖and therefore ∫

Ed
Σ

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx = O
(
‖q(λu)‖−1

)where the boundedness of the funtion y 7→ ‖y‖ on the ompat subset Ed
Σ of Rd was used. It thus followsfrom (2) that

∫

Rd\Ed
Σ

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx +

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= O
(
‖q(λu)‖−1

)
.Let us onsider the Karamata representation (see Theorem 1.3.1 p.12 in Bingham et al., 1987) of theslowly varying funtion L de�ned in (4):

L(t) = c(t) exp

(∫ t

1

∆(z)

z
dz

) (51)where c is a positive Borel measurable funtion onverging to some positive onstant, and ∆ is a Borelmeasurable auxiliary funtion whih onverges to 0 at in�nity. Lemma 1 then shows that there exists afuntion ε1 : (1,∞) → [0,∞) suh that ε1(r) → 0, rε1(r) → ∞,
ε1(r)

L(rε1(r))
L(rε1(r))

→ ∞ and | log ε1(r)| sup
z≥rε1(r)

|∆(z)| → 0 as r → ∞.Let η1(λ) = ε1(‖q(λu)‖) for the sake of simpliity. Write further f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y))where θ(y) → 0 as ‖y‖ → ∞ by Lemma 3. Denote by C1,− (resp. C1,+) the positive and �nite in�mum(resp. supremum) of the positive and ontinuous map y 7→ ‖y‖ on the ompat subset Ed−1
Σ of R

d.Sine V an be taken ontinuous on (C1,−/2,∞), we may assume that θ is bounded on any annulus
{y ∈ R

d|C1,− ≤ ‖y‖ ≤ C}, C > C1,−. In view of L(η1(λ)‖q(λu)‖) → ∞ and (5), one has the expansion:
‖q(λu)‖

L(η1(λ)‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ , v
〉

= − ‖q(λu)‖
L(η1(λ)‖q(λu)‖)

(I1(λ) + I2(λ)) + o(1) (52)with
I1(λ) =

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

r−2L(r)Q(w)(1 + θ(rw))dr µΣ(dw),

I2(λ) =

∫ ∞

η1(λ)‖q(λu)‖

∫

Ed−1

Σ

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

r−2L(r)Q(w)(1 + θ(rw)) dr µΣ(dw).19



Let us start by ontrolling I1(λ). To this end, a Taylor expansion yields
sup

w∈Ed−1

Σ

sup
z∈Sd−1

∣∣∣∣
1

ρ

( 〈ρw − z, v〉
‖ρw − z‖ + 〈z, v〉

)
− 〈Πz(w), v〉

∣∣∣∣→ 0 as ρ → 0,and therefore, in view of (3), we obtain
sup

1≤r≤η1(λ)‖q(λu)‖
sup

w∈Ed−1

Σ

∣∣∣∣
‖q(λu)‖

r

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

− 〈Πu(w), v〉
∣∣∣∣→ 0 as λ ↑ 1leading to

I1(λ) =
1

‖q(λu)‖

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), v〉r−1L(r)Q(w)(1 + θ(rw)) dr µΣ(dw)

+ o

(
1

‖q(λu)‖

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), v〉r−1L(r)Q(w)(1 + |θ(rw)|) dr µΣ(dw)

)
.Besides,

1

L(η1(λ)‖q(λu)‖)
sup

w∈Ed−1

Σ

(∫ η1(λ)‖q(λu)‖

1

L(r)

r
|θ(rw)|dr

)
→ 0 (53)as λ ↑ 1. Indeed, for any C2 > 1, by separating the ases r ∈ [1, C2) and r ≥ C2, it appears that theleft-hand side is less than

L(C2)

L(η1(λ)‖q(λu)‖)
sup

C1,−≤‖y‖≤C1,+C2

|θ(y)|+ sup
‖y‖>C1,+C2

|θ(y)|whih an be made arbitrarily small as λ ↑ 1 by a suitable hoie of the onstant C2 > 1. Hene theequality
I1(λ) =

L(η1(λ)‖q(λu)‖)
‖q(λu)‖

(∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) + o(1)

)
. (54)Let us turn to the term I2(λ), whih, realling (26), an be bounded as follows:

|I2(λ)| ≤ 2‖v‖
∫ ∞

η1(λ)‖q(λu)‖
r−2L(r)dr

∫

Ed−1

Σ

Q(w)µΣ(dw).The hange of variables r = η1(λ)‖q(λu)‖ρ yields
|I2(λ)| ≤ 2‖v‖(η1(λ)‖q(λu)‖)−1L(η1(λ)‖q(λu)‖)

∫ ∞

1

ρ−2L(η1(λ)‖q(λu)‖ρ)
L(η1(λ)‖q(λu)‖)

dρ

∫

Ed−1

Σ

Q(w)µΣ(dw).Let us introdue the funtion h1 de�ned on (0,∞) by h1(ρ) = ρ−1/2L(ρ). Clearly, h1 is regularly varyingwith index −1/2 and therefore by a uniform onvergene result (see e.g. Theorem 1.5.2 p.22 in Binghamet al., 1987):
sup
ρ≥1

∣∣∣∣
h1(η1(λ)‖q(λu)‖ρ)
h1(η1(λ)‖q(λu)‖)

− ρ−1/2

∣∣∣∣→ 0 as λ ↑ 1.Sine the funtion ρ 7→ ρ−3/2 is integrable over [1,∞), it follows that
|I2(λ)| = O

(
(η1(λ)‖q(λu)‖)−1L(η1(λ)‖q(λu)‖)

)
= o(‖q(λu)‖−1L(η1(λ)‖q(λu)‖)), (55)in view of the properties of η1(λ). Combining (52), (54) and (55) then implies that

‖q(λu)‖
L(η1(λ)‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ , v
〉

→ −
∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) as λ ↑ 1.20



Finally, ∣∣∣∣∣

∫ ‖q(λu)‖

η1(λ)‖q(λu)‖

∆(z)

z
dz

∣∣∣∣∣ ≤ | log η1(λ)| sup
z≥η1(λ)‖q(λu)‖

|∆(z)| → 0 as λ ↑ 1and therefore
L(‖q(λu)‖)

L(η1(λ)‖q(λu)‖)
=

c(‖q(λu)‖)
c(η1(λ)‖q(λu)‖)

exp

(∫ ‖q(λu)‖

η1(λ)‖q(λu)‖

∆(z)

z
dz

)
→ 1 as λ ↑ 1whih ompletes the proof.Lemma 8 is the analogue of Lemma 6 when (M2) holds. It will reveal useful to prove Theorem 2(ii).Lemma 8. Let u ∈ Sd−1. If (M2) holds with L(t) → ∞ as t → ∞ then, for any symmetri positivede�nite d× d matrix Σ,

‖q(λu)‖2
L(‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.Proof of Lemma 8. Let us start as in the proof of Lemma 7, whose notation we retain. From (34), onehas ∣∣∣∣1 +
〈

x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉∣∣∣∣ ≤
‖x‖2

‖q(λu)‖2 ,for n large enough and uniformly in x ∈ Ed
Σ, leading to

∫

Ed
Σ

(
1 +

〈
x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(x) dx = O

(
‖q(λu)‖−2

)
.In view of (2), it follows that

∫

Rd\Ed
Σ

(
1 +

〈
x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(x)dx +

〈
λu − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
= O

(
‖q(λu)‖−2

)
.Besides, Lemma 1 shows that there exists a funtion ε2 : (1,∞) → [0,∞) suh that ε2(r) → 0, rε2(r) → ∞,

ε22(r)
L(rε2(r))
L(rε2(r))

→ ∞ and | log ε2(r)| sup
z≥rε2(r)

|∆(z)| → 0 as r → ∞.Let us introdue η2(λ) = ε2(‖q(λu)‖). From (5), and sine L(η2(λ)‖q(λu)‖) → ∞, it follows that
‖q(λu)‖2

L(η2(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
= − ‖q(λu)‖2

L(η2(λ)‖q(λu)‖)
[J1(λ) + J2(λ)] + o(1) (56)with

J1(λ) =

∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
r−3L(r)Q(w)(1 + θ(rw)) dr µΣ(dw),

J2(λ) =

∫ ∞

η2(λ)‖q(λu)‖

∫

Ed−1

Σ

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
r−3L(r)Q(w)(1 + θ(rw)) dr µΣ(dw).Let us start by ontrolling J1(λ). A Taylor expansion leads to

sup
w∈Ed−1

Σ

sup
z∈Sd−1

∣∣∣∣
1

ρ2

(
1 +

〈ρw − z, z〉
‖ρw − z‖

)
− 1

2
〈Πz(w), w〉

∣∣∣∣→ 0 as ρ → 0,21



and thus, in view of (3):
sup

1≤r≤η2(λ)‖q(λu)‖
sup

w∈Ed−1

Σ

∣∣∣∣
‖q(λu)‖2

r2

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
− 1

2
〈Πu(w), w〉

∣∣∣∣→ 0as λ ↑ 1. This entails
J1(λ) =

1

‖q(λu)‖2
∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

1

2
〈Πu(w), w〉r−1L(r)Q(w)(1 + θ(rw)) dr µΣ(dw)

+ o

(
1

‖q(λu)‖2
∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), w〉r−1L(r)Q(w)(1 + |θ(rw)|) dr µΣ(dw)

)
.Using (53) yields, as a preliminary onlusion:

J1(λ) =
L(η2(λ)‖q(λu)‖)

‖q(λu)‖2

(
1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) + o(1)

)
. (57)Let us turn to the term J2(λ), whih an be bounded using the Cauhy-Shwarz inequality:

|J2(λ)| ≤ 2

∫ ∞

η2(λ)‖q(λu)‖
r−3L(r)dr

∫

Ed−1

Σ

Q(w)µΣ(dw).The hange of variables r = η2(λ)‖q(λu)‖ρ yields
|J2(λ)| ≤ 2(η2(λ)‖q(λu)‖)−2L(η2(λ)‖q(λu)‖)

∫ ∞

1

ρ−3L(η2(λ)‖q(λu)‖ρ)
L(η2(λ)‖q(λu)‖)

dρ

∫

Ed−1

Σ

Q(w)µΣ(dw).Let us onsider the funtion h2 de�ned on (0,∞) by h2(ρ) = ρ−1L(ρ). Clearly, h2 is regularly varyingwith index −1 and therefore by a uniform onvergene result (see e.g. Theorem 1.5.2 p.22 in Bingham etal., 1987):
sup
ρ≥1

∣∣∣∣
h2(η2(λ)‖q(λu)‖ρ)
h2(η2(λ)‖q(λu)‖)

− ρ−1

∣∣∣∣→ 0 as λ ↑ 1.Sine the funtion ρ 7→ ρ−2 is integrable over [1,∞), it follows that
|J2(λ)| = O

(
(η2(λ)‖q(λu)‖)−2L(η2(λ)‖q(λu)‖)

)
= o

(
‖q(λu)‖−2L(η2(λ)‖q(λu)‖)

) (58)in view of the properties of η2(λ). Combining (56), (57) and (58) entails
‖q(λu)‖2

L(η2(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw).Finally, sine
∣∣∣∣∣

∫ ‖q(λu)‖

η2(λ)‖q(λu)‖

∆(z)

z
dz

∣∣∣∣∣ ≤ | log η2(λ)| sup
z≥η2(λ)‖q(λu)‖

|∆(z)| → 0 as λ ↑ 1it is thus lear that
L(‖q(λu)‖)

L(η2(λ)‖q(λu)‖)
=

c(‖q(λu)‖)
c(η2(λ)‖q(λu)‖)

exp

(∫ ‖q(λu)‖

η2(λ)‖q(λu)‖

∆(z)

z
dz

)
→ 1 as λ ↑ 1and the onlusion follows. 22



Proof of Theorem 2. (i) We follow the lines of the proof of Theorem 1. Realling the notation introduedin (40), Lemma 7 yields for all k ∈ {1, . . . , d− 1}:
‖q(λu)‖

L(‖q(λu)‖)βk(λ) = − ‖q(λu)‖
L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , vk
〉

→
∫

Ed−1

Σ

〈w, vk〉Q(w)µΣ(dw)as λ ↑ 1. The �rst statement is then proven by mimiking the proof of Theorem 1(i).(ii) From Lemma 7, and in view of equations (41), (45), it follows that
β2
k(λ) = o(‖q(λu)‖−2L(‖q(λu)‖)) (59)as λ ↑ 1 and for all k ∈ {1, . . . , d− 1}. Lemma 8 and equation (43) then yield

‖q(λu)‖2
L(‖q(λu)‖) (λb(λ)− 1) → −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) (60)as λ ↑ 1. Using one more equation (43), together with (59) and (60) entails
‖q(λu)‖2

L(‖q(λu)‖)

(
1− λb(λ) − 1

2

(
1− b2(λ)

))
→ 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) (61)as λ ↑ 1. One an thus use (61) to argue along the same lines as in the proof of Theorem 1(ii).4.5 Proof of Corollary 2Corollary 2 is a diret onsequene of Theorem 2(ii) and of the following result:Lemma 9. For all u ∈ Sd−1, one has
∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) =
ad
d

(detΣ)
1/2

(tr Σ− u′Σu).Proof of Lemma 9. The de�nition of µΣ entails
∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) = (detΣ)1/2
∫

Sd−1

〈Πu(Σ
1/2w), Σ1/2w〉σ(dw).Realling that Πu(y) = y − 〈y, u〉u for any y ∈ R

d, this yields
∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) = (detΣ)
1/2
∫

Sd−1

(
‖Σ1/2w‖2 − 〈Σ1/2w, u〉2

)
σ(dw).Let us denote by mij the entry in the i−th row and j−th olumn of Σ1/2. If w = (w1, . . . , wd)

′ and
u = (u1, . . . , ud)

′, one has
‖Σ1/2w‖2 =

d∑

i,j=1

d∑

k=1

mkimkjwiwj and 〈Σ1/2w, u〉2 =
d∑

i,j=1

d∑

k,l=1

mkimljwiwjukul. (62)Isotropy and symmetry arguments entail, for all i, j ∈ {1, . . . , d} with i 6= j:
∫

Sd−1

w2
i σ(dw) =

∫

Sd−1

w2
jσ(dw) and ∫

Sd−1

wiwjσ(dw) = 0. (63)23



Espeially, sine w2
1 + · · ·+ w2

d = 1 for all w ∈ Sd−1, it follows that, for all i ∈ {1, . . . , d}:
∫

Sd−1

w2
i σ(dw) =

ad
d
. (64)Combining (62), (63) and (64) yields

∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) =
ad
d

(det Σ)
1/2




d∑

i,k=1

m2
ki −

d∑

i=1

[
d∑

k=1

mkiuk

]2
 . (65)Let us �nally remark that, sine Σ1/2 is a symmetri matrix, it holds that

tr Σ =

d∑

i,k=1

m2
ki and u′Σu =

d∑

i=1

(
d∑

k=1

mkiuk

)2
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Figure 1: Three geometri iso-quantile urves {q(v), ‖v‖ ∈ {0.5, 0.65, 0.8}} omputed on a two-dimensionaldataset extrated from the Pima Indians Diabetes Database. The data set onsists of n = 392 pairs
(Xi, Yi), where Xi is the body mass index of the ith individual and Yi is its diastoli blood pressure. Bothvariables are entered and standardized.
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Figure 2: Extreme geometri quantiles from the Pareto model, top: α = 1.3, bottom: α = 1.5, dashedline: asymptoti equivalent, ×: numerial omputation.27



−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Figure 3: Extreme geometri quantiles from the Pareto model, top: α = 1.7, bottom: α = 1.9, dashedline: asymptoti equivalent, ×: numerial omputation.28
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Figure 4: Extreme geometri quantiles from the Pareto model, top: α = 2, bottom: α = 2.1, dashed line:asymptoti equivalent, ×: numerial omputation. 29
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Figure 5: Extreme geometri quantiles from the Pareto model, top: α = 2.3, bottom: α = 2.5, dashedline: asymptoti equivalent, ×: numerial omputation.30
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