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Extreme geometri
 quantiles in a multivariate regular variationframeworkStéphane Girard(1) & Gilles Stup�er(2)
(1) Team Mistis, Inria Grenoble Rh�ne-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier 
edex, Fran
e

(2) Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,13002 Marseille, Fran
eAbstra
t. Considering extreme quantiles is a popular way to understand the tail of a distribution.While they have been extensively studied for univariate distributions, mu
h less has been done for multi-variate ones, primarily be
ause there is no universally a

epted de�nition of what a multivariate quantileor a multivariate distribution tail should be. In this paper, we fo
us on extreme geometri
 quantiles.In Girard and Stup�er (2014) Intriguing properties of extreme geometri
 quantiles, their asymptoti
s areestablished, both in dire
tion and magnitude, under suitable integrability 
onditions, when the norm ofthe asso
iated index ve
tor tends to one. In this paper, we study extreme geometri
 quantiles when theintegrability 
onditions are not ful�lled, in a framework of regular variation.AMS Subje
t Classi�
ations: 62H05, 62G32.Keywords: Extreme quantile, geometri
 quantile, asymptoti
 behavior, multivariate regular variation.1 Introdu
tionLet X be a random ve
tor in R
d. Up to now, several de�nitions of multivariate quantiles of X havebeen introdu
ed in the statisti
al literature, see Ser�ing (2002) for a review of various possibilities for thisnotion. Here, we fo
us on the notion of �spatial� or �geometri
� quantiles, introdu
ed by Chaudhuri (1996),whi
h generalizes the 
hara
terization of a univariate quantile shown in Koenker and Bassett (1978). Fora given ve
tor v in the unit open ball Bd of Rd, where d ≥ 2, a geometri
 quantile related to v is a solutionof the optimization problem de�ned by
argmin
q∈Rd

E(‖X − q‖ − ‖X‖)− 〈v, q〉, (1)1



where 〈·, ·〉 is the usual s
alar produ
t on R
d and ‖ · ‖ is the asso
iated Eu
lidean norm. Any solution q(v)of the problem (1) is 
alled a v−th quantile. A v−th quantile q(v) ∈ R

d thus possesses both a dire
tion andmagnitude. It 
an be seen that geometri
 quantiles are a
tually spe
ial 
ases of M−quantiles introdu
edby Bre
kling and Chambers (1988) whi
h were further analyzed by Kolt
hinskii (1997). Su
h quantileshave various appealing properties: for any v ∈ Bd, the v−th quantile is unique whenever the distributionof X is not 
on
entrated on a single straight line in R
d (see Chaudhuri, 1996), geometri
 quantiles areequivariant under any orthogonal transformation (Chaudhuri, 1996) and they 
hara
terize the asso
iateddistribution, namely, if two random ve
tors X and Y yield the same quantile fun
tion q, then they havethe same distribution (Kolt
hinskii, 1997). Remark that on the one hand, for v = 0, the well-knowngeometri
 median is obtained, whi
h is the simplest example of a �
entral� quantile (see Small, 1990) and
an be 
omputed in an e�
ient way, see Cardot et al. (2013). On the other hand, for v 6= 0, the norm

‖v‖ measures the deviation of the quantile q(v) from the geometri
 median of the distribution. Sin
e vhas a dire
tion in addition to its magnitude, this immediately leads to a notion of dire
tional outlyingnessof a point (Chaou
h and Goga, 2010). Figure 1 provides an illustration on a real data set from the PimaIndians Diabetes Database1 already 
onsidered by Cheng and De Gooijer (2007) and Chaou
h and Goga(2010), among others. It appears that geometri
 iso-quantile 
urves tend to give a fair idea of the shapeof the data 
loud for moderate values of ‖v‖.These properties make geometri
 quantiles reasonable 
andidates when trying to de�ne multivariate quan-tiles, whi
h is why their estimation has been studied in several papers. We refer for instan
e to Chakraborty(2001) for the introdu
tion of a transformation-retransformation pro
edure to obtain a�ne equivariantestimates of multivariate quantiles. It is stressed that the shape of the transformed quantile 
ontours
orresponds to that of the level sets of the probability distribution fun
tion when the underlying distribu-tion is ellipti
ally 
ontoured, see also Cambanis et al. (1981). Chakraborty (2003) generalizes geometri
quantiles to a multiresponse linear model while Dhar et al. (2013) de�nes a multivariate quantile-quantileplot using geometri
 quantiles. Conditional geometri
 quantiles 
an also be de�ned by substituting a
onditional expe
tation to the expe
tation in (1): we refer to Cadre and Gannoun (2000) for the esti-mation of the 
onditional geometri
 median and to Cheng and de Gooijer (2007) for the estimation ofan arbitrary 
onditional geometri
 quantile. The estimation of a 
onditional median when there is anin�nite-dimensional 
ovariate is 
onsidered in Chaou
h and Laïb (2013).Our fo
us in this paper is on extreme geometri
 quantiles, that is, when ‖v‖ → 1. The estimation ofunivariate extreme quantiles, whi
h requires the estimation of the so-
alled extreme value index, has beenextensively studied, see for instan
e the monograph by de Haan and Ferreira (2006). In this 
ase, thereis also a growing interest about linking the random variable of interest to a 
ovariate in order to analyzemultidimensional datasets, see Gardes and Girard (2012), Daouia et al. (2013) or Stup�er (2013), amongothers. Only a few papers however 
onsider multivariate extreme quantiles. Most of them rely on the1ftp.i
s.u
i.edu/pub/ma
hine-learning-databases/pima-indians-diabetes2



study of extreme level sets of the probability density fun
tion of X when it is absolutely 
ontinuous withrespe
t to the Lebesgue measure. See for instan
e Cai et al. (2011) for an appli
ation to the estimation ofextreme risk regions for �nan
ial data and Einmahl et al. (2013) who fo
us on bivariate distributions withan appli
ation to insuran
e data. We also refer to Chernozhukov (2005) for extreme quantile estimationin a linear quantile regression model.Girard and Stup�er (2014) obtained the asymptoti
s, in dire
tion and magnitude, of the geometri
 quantile
q(λu) in the limit λ ↑ 1, for any u on the unit hypersphere Sd−1 of Rd. They proved that, if E‖X‖2 < ∞,then the magnitude of this quantile always behaves asymptoti
ally like (1 − λ)−1/2, and so does themagnitude of the di�eren
e between u and the dire
tion of q(λu). In parti
ular, extreme geometri
quantiles from a ve
tor of independent uniform random variables and from a multivariate Gaussian randomve
tor have asymptoti
ally the same magnitude, although their probability density fun
tions 
learly donot have the same behavior at in�nity. Compared to the univariate theory of extreme quantiles, this issomewhat surprising sin
e one 
ould expe
t the quantile to feature the asymptoti
 de
ay of the probabilitydensity fun
tion of X .In this study, we provide an equivalent of the dire
tion and magnitude of an extreme geometri
 quantilewhen the integrability 
ondition is violated. To this end, it is assumed that X has a probability densityfun
tion f satisfying an hypothesis of multivariate regular variation. As a 
orollary of our results, itappears that, in this 
ontext, the magnitude of an extreme geometri
 quantile depends on the index ofmultivariate regular variation of f . In other words, when E‖X‖2 = ∞, the magnitude of an extremegeometri
 quantile does indeed feature the asymptoti
 behavior of the probability density fun
tion of X ,similarly to the univariate 
ase. Some statisti
al impli
ations of this result are highlighted: in parti
ular,it is shown how to derive Weissman type estimators (Weissman, 1978) for extreme geometri
 quantiles.The main results of our paper are stated in Se
tion 2 and some numeri
al illustrations are given inSe
tion 3. Proofs are deferred to Se
tion 4.2 Main resultsWhen X has a probability density fun
tion f on R

d, d ≥ 2, problem (1) 
an be rewritten as
argmin
q∈Rd

∫

Rd

(‖x− q‖ − ‖x‖)f(x)dx− 〈v, q〉.Note that, as Chaudhuri (1996) points out, the integral above is always �nite even though ‖X‖ maynot have a �nite expe
tation. In this 
ontext, sin
e the distribution of X is not 
on
entrated on a singlestraight line, there is a unique solution q(v) of (1) for every v ∈ Bd (see Chaudhuri, 1996 and Theorem 2.17in Kemperman, 1987): the ve
tor q(v) is 
alled the geometri
 quantile of X asso
iated with v. Besides,
3



in this 
ase, q(v) is the unique solution of the equation
v +

∫

Rd

x− q

‖x− q‖f(x)dx = 0 (2)with unknown q (here, t/‖t‖ = 0 when t = 0). Moreover, Girard and Stup�er (2014, Proposition 1) provedthat problem (1) has a solution if and only if v ∈ Bd. A dire
t 
onsequen
e of this result is that, if v → uwith v ∈ Bd and u ∈ Sd−1, then
‖q(v)‖ → ∞ and q(v)

‖q(v)‖ → u, (3)see Theorem 1 in Girard and Stup�er (2014), where the 
onvergen
e of ve
tor fun
tions is to be understoodelementwise. Their main result (Theorem 2 in Girard and Stup�er, 2014) is reported here for the sake ofself-
ontainedness.Proposition 1. Let u ∈ Sd−1 and let Πu : y 7→ y − 〈y, u〉u denote the orthogonal proje
tion onto thehyperplane of Rd having normal ve
tor u.(i) If E‖X‖ < ∞, then
‖q(λu)‖

(
q(λu)

‖q(λu)‖ − u

)
→ E(Πu(X)) as λ ↑ 1.(ii) If E‖X‖2 < ∞ and M denotes the 
ovarian
e matrix of X, then

‖q(λu)‖2(1− λ) → 1

2
(trM − u′Mu) as λ ↑ 1,where u′ denotes the transpose of the ve
tor u.The goal of this paper is to obtain results analogue to those of Proposition 1 in the more general settingwhere the integrability assumptions are not ful�lled. To this end, we work in a framework of multivariateregular variation introdu
ed in Cai et al. (2011). Surveys on multivariate regular variation in
lude Jessenand Mikos
h (2006) and the monograph by Resni
k (2006). More pre
isely, the following 
ondition is
onsidered:

(Mα) The probability density fun
tion f of X is a 
ontinuous fun
tion on a neighborhood of in�nity,su
h that the fun
tion y 7→ ‖y‖df(y) is bounded in any 
ompa
t neighborhood of 0 and there exist apositive fun
tion Q on R
d and a fun
tion V whi
h is regularly varying at in�nity with index −α < 0, su
hthat

∀y 6= 0,

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 and sup
w∈Sd−1

∣∣∣∣
f(tw)

t−dV (t)
−Q(w)

∣∣∣∣→ 0 as t → ∞.Remark �rst that in 
ondition (Mα), the fun
tion V is determined only up to asymptoti
 equivalen
e.Sin
e V 
onverges to 0 at in�nity, we may and will assume in what follows that V is bounded on [0,∞)and, by Theorem 1.3.3 p.14 in Bingham et al. (1987), 
ontinuous on a neighborhood of in�nity. Moreover,if 
ondition (Mα) holds, then Q is a homogeneous 
ontinuous fun
tion of degree −d− α on R
d \ {0} and

f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + o(1)) as ‖y‖ → ∞, see Lemma 3 in Se
tion 4. Sin
e V is regularlyvarying with index −α, the fun
tion f is then roughly of order ‖y‖−d−α as ‖y‖ → ∞ and therefore the4



parameter α 
ontrols the asymptoti
 de
ay of f at in�nity. In parti
ular, swit
hing to polar 
oordinates,it is easily seen that E‖X‖β is then �nite if β < α.We are now in position to 
ompute the asymptoti
 dire
tion and magnitude of q(λu) as λ ↑ 1 under theassumption (Mα). Let us highlight that, when α > 1, E‖X‖ is �nite and the asymptoti
 dire
tion isprovided by Proposition 1(i). Similarly, when α > 2, E‖X‖2 is �nite and the asymptoti
 magnitude isprovided by Proposition 1(ii).Theorem 1. Let u ∈ Sd−1.(i) If (Mα) holds with α ∈ (0, 1), then
1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→
∫

Rd

Πu(y)

‖y − u‖Q(y)dy as λ ↑ 1.(ii) If (Mα) holds with α ∈ (0, 2), then
1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.Sin
e V is regularly varying with index −α, it follows from Theorem 1(ii) that, in model (Mα), when

α ∈ (0, 2), the norm ‖q(λu)‖ of the extreme quantile behaves roughly like (1 − λ)−1/α as λ ↑ 1. In this
ase, we thus see that the magnitude of an extreme geometri
 quantile does indeed feature the behaviorof X far from the origin.However, this result ex
ludes the limit 
ases α = 1 for the asymptoti
 dire
tion and α = 2 for theasymptoti
 magnitude. The method we use to handle these 
ases is somewhat di�erent; in parti
ular, weshall work with the fun
tions L : t 7→ tαV (t) and
L : t 7→

∫ t

1

L(r)
dr

r
(4)(this notation will be retained throughout the paper). Sin
e L is slowly varying as in�nity, so is L and

L(r)/L(r) → ∞ as r → ∞, see Proposition 1.5.9a p.26 in Bingham et al. (1987). Furthermore, we de�ne,if Σ is a positive de�nite d × d symmetri
 matrix, the ellipsoid Ed−1
Σ = {x ∈ R

d |x′Σ−1x = 1} and itsrelated surfa
e measure µΣ given by µΣ(C) = (detΣ)
1/2

σ
(
Σ−1/2C

) for every Borel measurable subset Cof Ed−1
Σ , where σ is the standard surfa
e measure on Sd−1. Then, for every integrable fun
tion h on R

dand every a < b ∈ [0,∞], we have
∫

Rd

h(x)1l[a,b]

((
x′Σ−1x

)1/2)
dx =

∫ b

a

∫

Ed−1

Σ

h(rw)rd−1dr µΣ(dw). (5)Our se
ond main result is the following:Theorem 2. Let u ∈ Sd−1 and Σ be an arbitrary positive de�nite d× d symmetri
 matrix.(i) If (M1) holds and L(t) → ∞ as t → ∞ then
‖q(λu)‖

L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→
∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw) as λ ↑ 1.5



(ii) If (M2) holds and L(t) → ∞ as t → ∞ then
‖q(λu)‖2

L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.Let us remark that both limits are independent of the arbitrary matrix Σ. A 
onvenient 
hoi
e is to take
Σ as the identity matrix and thus to integrate on the unit sphere, but it may be interesting to 
onsiderother, nontrivial 
ases, see the dis
ussion about ellipti
ally 
ontoured distributions in Corollary 2.It may be seen from this result that, in the parti
ular 
lass (M2) and when L(t) → ∞ as t → ∞ (whi
hensures that E‖X‖2 = ∞), the magnitude of an extreme geometri
 quantile does again feature the behaviorof X far from the origin, through the fun
tion L. The in�uen
e of L is illustrated in the following example:Example If L(t) = cβ(log t)

β1l(1,∞)(t), where β > −1 and cβ > 0, then
‖q(λu)‖2(log ‖q(λu)‖)−β−1(1− λ) → c′β

∫

Sd−1

〈Πu(w), w〉Q(w)σ(dw) as λ ↑ 1where c′β > 0. Lemma 2 (see Se
tion 4) entails
‖q(λu)‖ = Cβ(u)(1 − λ)−1/2

[
log

(
1

1− λ

)](β+1)/2

(1 + o(1)) as λ ↑ 1where Cβ(u) > 0. Consequently, in this 
ase, the larger is β (and thus, the slower f 
onverges to 0 atin�nity), the larger is the order of the extreme geometri
 quantile.Colle
ting the results from Proposition 1, Theorem 1 and Theorem 2, we obtain the following, somehowuni�ed result:Corollary 1. Let u ∈ Sd−1.(i) If (Mα) holds with α ∈ (0, 1), then
1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)

‖y − u‖Q(y)dyand 1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.(ii) If (M1) holds and L(t) → ∞ as t → ∞, then for any arbitrary positive de�nite d × d symmetri
matrix Σ,

‖q(λu)‖
L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw)and 1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.(iii) If (Mα) holds with α ∈ (1, 2), then

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)f(y)dyand 1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.6



(iv) If (M2) holds and L(t) → ∞ as t → ∞, then for any arbitrary positive de�nite d × d symmetri
matrix Σ,
‖q(λu)‖

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)f(y)dyand ‖q(λu)‖2
L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.It therefore appears that the norm of an extreme quantile 
an be asymptoti
ally expanded as
‖q(λu)‖ = [A2,α(u)]

1/min(2,α)B2,α((1 − λ)−1) when u ∈ Sd−1 and λ ↑ 1, (6)for all α > 0, where depending on whether α < 2, α = 2 or α > 2, A2,α(u) is the limiting term inProposition 1(ii), Theorem 1(ii) or Theorem 2(ii), and B2,α is a regularly varying fun
tion with index
1/min(2, α). The asymptoti
 dire
tion of an extreme quantile 
an then be expanded as

q(λu)

‖q(λu)‖ = u+A1,α(u)[A2,α(u)]
−min(1,α)/min(2,α)B1,α((1− λ)−1) when u ∈ Sd−1 and λ ↑ 1, (7)for all α > 0, where depending on whether α < 1, α = 1 or α > 1, A1,α(u) is the limiting term inProposition 1(i), Theorem 1(i) or Theorem 2(i), and B1,α is a regularly varying fun
tion with index

−min(1, α)/min(2, α). These expansions emphasize again the parti
ular role of the values α = 1 and
α = 2.Besides, it is possible to link the expressions of A1,α(u) obtained in the situations α > 1 and α = 1. Tothis end, we introdu
e a parti
ular sub
lass of (Mα):

(M ′
α) For all x 6= 0, f(x) = Q(x)L((x′Σ−1x)1/2) where Σ is a positive de�nite d×d symmetri
 matrix,

Q is a homogeneous 
ontinuous fun
tion of degree −d− α on R
d \ {0} and L is a slowly varying fun
tionat in�nity whi
h is 
ontinuous in a neighborhood of in�nity and is su
h that

t 7→ t−αL(t) is bounded, ∫ ∞

0

L(r)
dr

r1+α
< ∞ and ∫ t

1

L(r)
dr

r
→ ∞ as t → ∞.Noting that, for every positive de�nite d × d symmetri
 matrix Σ, the 
ontinuous map w 7→ w′Σ−1w ispositive and bounded on Sd−1, the uniform 
onvergen
e theorem for slowly varying fun
tions (see e.g.Theorem 1.5.2 p.22 in Bingham et al., 1987) entails that the 
lass of probability density fun
tions (M ′

α)satis�es the hypotheses of the original model (Mα), with V (t) = t−αL(t). Using (5), it is straightforwardthat in this parti
ular model, the hypothesis on L entails that E‖X‖β is �nite if and only if β < α.Remark now that, in the 
lass (M ′
α), α > 1, equation (5) entails:

E(Πu(X)) =

∫ ∞

0

L(r)
dr

rα

∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw).Thus, the limiting terms A1,α(u) of Proposition 1(i) and Theorem 2(i) are similar. To link the expressionsof A2,α(u) obtained in the situations α > 2 and α = 2, we work in the sub
lass of ellipti
ally 
ontoureddistributions: 7



Corollary 2. Let u ∈ Sd−1. If (M ′
2) holds and Q is 
onstant equal to 1 on the ellipsoid Ed−1

Σ , then
‖q(λu)‖2

L(‖q(λu)‖) (1− λ) → ad
2d

(detΣ)
1/2

(tr Σ− u′Σu) as λ ↑ 1where ad := 2πd/2/Γ(d/2) is the surfa
e area of Sd−1 and Γ is Euler's Gamma fun
tion.This result shows that, when the distribution is ellipti
ally 
ontoured, the limiting terms A2,α(u) ofProposition 1(ii) and Theorem 2(ii) are similar. In parti
ular, the matri
es Σ and M play the same role:it is indeed well-known that these matri
es are 
losely related when the 
ovarian
e matrix M is �nite, bythe identity
M =

(∫ ∞

0

L(r)
dr

rα−1

)
(detΣ)

1/2 ad
d
Σ. (8)Finally, (3) and (6) open the door to Weissman type estimators (Weissman, 1978) for extreme geometri
quantiles. Indeed, let λ ↑ 1 and λ′ ↑ 1 su
h that (1 − λ)/(1 − λ′) → c with 0 < c < 1. Then, (6) entailsthat

‖q(λu)‖
‖q(λ′u)‖ =

(
1− λ′

1− λ

)1/min(2,α)

(1 + o(1))and 
onsequently, from (3), the following asymptoti
 expansion holds:
q(λu) =

(
1− λ′

1− λ

)1/min(2,α)

q(λ′u)(1 + o(1)).As in the univariate 
ase, extreme geometri
 quantiles of large orders 
an therefore be dedu
ed fromextreme quantiles of smaller orders using an extrapolation fa
tor. The estimation of an extreme geometri
quantile q(λu), for λ arbitrarily 
lose to 1, 
ould thus be based on the estimation of an �intermediate�geometri
 quantile q(λ′u) for whi
h λ′ ↑ 1 slowly enough, and on the estimation of the index of regularvariation α. This is the prin
iple of the Weissman estimator. A possible estimate of an intermediatequantile q(λ′
nu), with λ′

n ↑ 1 and u ∈ Sd−1, is obtained by 
onsidering the sample 
ounterpart of theminimization problem that de�nes q(λ′
nu),

q(λ′
nu) = argmin

q∈Rd

E(‖X − q‖ − ‖X‖)− λ′
n〈u, q〉,namely

q̂n(λ
′
nu) = argmin

q∈Rd

1

n

(
n∑

i=1

‖Xi − q‖ − ‖Xi‖
)

− λ′
n〈u, q〉,where (X1, . . . , Xn) is a sample of independent and identi
ally distributed random ve
tors. This is a well-de�ned problem whi
h almost surely admits a unique solution in our framework, see Chaudhuri (1996).Besides, the obje
tive (random) fun
tion is almost surely �nite, 
onvex and 
ontinuous. A possible idea tostudy the asymptoti
 distribution of q̂n(λ′

nu) is to use 
onvex sto
hasti
 optimization te
hniques su
h asthe results of Geyer (1996) and Knight (1999). Of 
ourse, we should expe
t that this estimate of q(λ′
nu)will only be 
onsistent provided λ′

n ↑ 1 slowly enough. A detailed study of the properties of su
h anestimator is beyond the s
ope of this paper. Similarly, the estimation of α 
ould be addressed in futureresear
h. 8



3 Numeri
al illustrationsFor the sake of illustration, we fo
us on the bidimensional 
ase d = 2: it is assumed that X followsa bivariate ellipti
ally-
ontoured Pareto(α,Σ) distribution, with probability density fun
tion f(x) =

Cα(x
′Σ−1x)(−2−α)/21l[1,∞)(x

′Σ−1x), where Cα > 0 is an appropriate normalizing 
onstant. It is thenstraightforward to show that f belongs to model (M ′
α), with Q(x) = (x′Σ−1x)(−2−α)/2 and V (t) =

Cαt
−α1l[1,∞)(t).Let u ∈ S1. Following the results of Se
tion 2, one 
an obtain asymptoti
 expansions of the extremequantile q(λu) as λ ↑ 1. In the 
ase α < 2, Theorem 1 yields

q(λu) =

(
Cα

1− λ

∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy

)1/α

u(1 + o(1)) as λ ↑ 1. (9)When α = 2, let h be the inverse of the fun
tion t 7→ t2/ log(t) on [
√
e,∞). Corollary 2 then entails

q(λu) = h

(
π (detΣ)1/2 (tr Σ− u′Σu)

2(1− λ)

)
u(1 + o(1)) as λ ↑ 1. (10)In parti
ular, from Lemma 2, ‖q(λu)‖ is of asymptoti
 order (1− λ)−1/2(− log(1− λ))1/2. Finally, in the
ase α > 2, Proposition 1 yields

q(λu) =

(
trM − u′Mu

2(1− λ)

)1/2

u(1 + o(1)) as λ ↑ 1, with M = π
Cα

α− 2
(detΣ)

1/2
Σ. (11)Letting uθ = (cos θ, sin θ) ∈ S1, our goal is to 
ompare the iso-quantile 
urves Cλ = {q(λuθ), θ ∈ [0, 2π)}
omputed by minimizing (1) numeri
ally to the asymptoti
 ones, i.e. approximated using equations (9),(10) and (11). Results are displayed on Figures 2�6, for α ∈ {1.3, 1.5, 1.7, 1.9, 2, 2.1, 2.3, 2.5, 3, 4} and

λ = 0.995 in the parti
ular 
ase where Σ = diag(σ2
1 , σ

2
2) with σ1 = 2 and σ2 = 1/2. These 
hoi
es yield

Cα = α/(2σ1σ2π) = α/2π.One 
an see that the asymptoti
 approximation works best when |α − 2| is large, e.g. greater than 0.5.When α < 2, a possible explanation for this phenomenon lies in the proof of Theorem 1. Equations (46)and (49) imply that the error terms in the asymptoti
 equivalent of V (‖q(λu)‖) are a
tually of order
[‖q(λu)‖2V (‖q(λu)‖)]−1 when 1 < α < 2. Moreover, from Theorem 1, the norm of the extreme quantile
‖q(λu)‖ behaves roughly like (1−λ)−1/α as λ ↑ 1, so that the error term behaves roughly like (1−λ)−1+2/α,whose 
onvergen
e to 0 be
omes slower as α approa
hes 2.Let us also remark that, for α = 2, the overall shape of the iso-quantile 
urve obtained by (10) is verysimilar to that of the 
urve obtained with (11) when α > 2. This may be seen as a 
onsequen
e ofCorollary 2 and of the link (8) between the matri
es Σ and M .4 ProofsThis se
tion is organized as follows. Paragraph 4.1 provides two preliminary analyti
al lemmas. Para-graph 4.2 establishes some properties of multivariate regularly varying fun
tions. Paragraphs 4.3, 4.49



and 4.5 are dedi
ated to the proofs of the main results: respe
tively Theorem 1, Theorem 2 and Corol-lary 2.4.1 Preliminary resultsThe �rst lemma is an analyti
al result whi
h will reveal useful in the proof of Theorem 2.Lemma 1. Let h1, h2 : (1,∞) → R be two nonnegative fun
tions su
h that h1(t) → ∞ and h2(t) → ∞as t → ∞. Then, for any β > 0, there exists a real fun
tion ε : (1,∞) → [0,∞) su
h that ε(t) → 0,
tε(t) → ∞,

εβ(t)h1(tε(t)) → ∞ and h2(tε(t))

| log ε(t)| → ∞ as t → ∞.Proof of Lemma 1. Let us de�ne the fun
tion ε as
ε(t) = max

(
1√
t
,

(
inf

u≥
√
t
h1(u)

)−1/2β

, exp

(
−
[
inf

u≥
√
t
h2(u)

]1/2))
.Then, 
learly, ε(t) → 0, tε(t) ≥ √

t → ∞ and
εβ(t)h1(tε(t)) ≥

(
inf

u≥
√
t
h1(u)

)−1/2

× inf
u≥tε(t)

h1(u) ≥
(

inf
u≥

√
t
h1(u)

)1/2

→ ∞ as t → ∞.Similarly, sin
e the logarithm fun
tion is in
reasing, one has for t large enough
1

| log ε(t)| =
1

− log ε(t)
≥
(

inf
u≥

√
t
h2(u)

)−1/2and therefore
h2(tε(t))

| log ε(t)| ≥
(

inf
u≥

√
t
h2(u)

)−1/2

× inf
u≥tε(t)

h2(u) ≥
(

inf
u≥

√
t
h2(u)

)1/2

→ ∞ as t → ∞whi
h proves the result.Lemma 2 is an analyti
al result needed to illustrate Theorem 2. It is well-known that the inverse of aregularly varying fun
tion with index a > 0 is regularly varying with index 1/a (see e.g. Theorem 1.5.12p.28 in Bingham et al., 1987). Lemma 2 provides an asymptoti
 equivalent of the inverse for a parti
ular
lass of fun
tions.Lemma 2. Let a > 0, b ∈ R and de�ne ga,b : t 7→ ta(log t)b on (1,∞). Then ga,b has an inverse ha,b ona neighborhood of in�nity whi
h is su
h that
ha,b(t) = ab/a

t1/a

(log t)b/a
(1 + o(1)) as t → ∞.Proof of Lemma 2. Let us remark that ga,b is 
ontinuously di�erentiable on (1,∞) with derivative

g′a,b(t) = ta−1(log t)b−1[a log t+ b] for all t > 1. Clearly, g′a,b(t) is positive for t > e−b/a and thus ga,b hasan inverse on a neighborhood of in�nity denoted by ha,b. For all t large enough, one has
t = [ha,b(t)]

a[log(ha,b(t))]
b ⇒ ha,b(t) = t1/a[log(ha,b(t))]

−b/a, (12)10



and an iterated use of (12) entails
ha,b(t) = t1/a[log(t1/a[log(ha,b(t))]

−b/a)]−b/a ⇒ ha,b(t) = ab/a
t1/a

(log t)b/a

(
1− b

log log ha,b(t)

log t

)−b/a

. (13)Sin
e ga,b is in
reasing on a neighborhood of in�nity and tends to in�nity at in�nity, so does ha,b. Takinglogarithms in (12) entails log t = a log ha,b(t) + b log log ha,b(t) and 
onsequently
log ha,b(t) =

1

a
log t(1 + o(1)) as t → ∞.This yields

log log ha,b(t)

log t
→ 0 as t → ∞. (14)Plugging (14) in (13) 
ompletes the proof.4.2 Auxiliary results on multivariate regular variationLet us start with some useful 
onsequen
es of 
ondition (Mα).Lemma 3. Assume that (Mα) holds for some α > 0. Then,(i) Q is a homogeneous 
ontinuous fun
tion of degree −d− α on R

d \ {0};(ii) One has f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y)) where θ(y) → 0 as ‖y‖ → ∞.Proof of Lemma 3. To prove (i), it is enough to note that Q is 
ontinuous on Sd−1 as a dire
t
onsequen
e of (Mα), while the homogeneity follows from the 
onvergen
es
f(t(ay))

t−dV (t)
→ Q(ay) and f(t(ay))

t−dV (t)
= a−dV (at)

V (t)

f((at)y)

(at)−dV (at)
→ a−d−αQ(y) as t → ∞,valid for every a > 0 and y 6= 0. To obtain (ii), observe that

∣∣∣∣
f(y)

‖y‖−dV (‖y‖) −Q

(
y

‖y‖

)∣∣∣∣ ≤ sup
w∈Sd−1

∣∣∣∣
f(‖y‖w)

‖y‖−dV (‖y‖) −Q(w)

∣∣∣∣ .Therefore, 
ondition (Mα) entails
f(y) = ‖y‖−dV (‖y‖)(Q(y/‖y‖) + θ∗(y)) with θ∗(y) → 0 as ‖y‖ → ∞.Sin
e Q is positive and 
ontinuous on the 
ompa
t set Sd−1, it is bounded from below by a positive
onstant on Sd−1 and thus

f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y)) with θ(y) :=
θ∗(y)

Q(y/‖y‖) → 0 as ‖y‖ → ∞.The result follows.
11



The se
ond lemma is a slightly stronger version of some uniform 
onvergen
e results proved in Lemma 1of Cai et al. (2011).Lemma 4. Assume that (Mα) holds for some α > 0. Then for every δ, ε > 0, we have that
sup

‖y‖≥ε

‖y‖d+α−δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 and sup
0<‖y‖≤ε

‖y‖d+α+δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 as t → ∞.Proof of Lemma 4. To prove the �rst 
onvergen
e, use the triangle inequality and the homogeneity of
Q to obtain for every y 6= 0

‖y‖d+α−δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣ ≤ ‖y‖−δ

∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖) −Q

(
y

‖y‖

)∣∣∣∣

+
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣ . (15)For every y su
h that ‖y‖ ≥ ε > 0, we have on the one hand
‖y‖−δ

∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖) −Q

(
y

‖y‖

)∣∣∣∣ ≤ ε−δ sup
T≥tε

sup
w∈Sd−1

∣∣∣∣
f(Tw)

T−dV (T )
−Q(w)

∣∣∣∣→ 0 as t → ∞. (16)On the other hand, for t large enough, using Lemma 3(ii) and the boundedness of the 
ontinuous fun
tion
Q on the 
ompa
t set Sd−1 entails:

f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣ = O

(
sup
a≥ε

∣∣∣∣
(at)α−δV (at)

tα−δV (t)
− a−δ

∣∣∣∣
)
.Remarking that t 7→ tα−δV (t) is regularly varying at in�nity with index −δ < 0, a uniform 
onvergen
eproperty (see e.g. Theorem 1.5.2 p.22 in Bingham et al., 1987) yields

sup
‖y‖≥ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣→ 0 as t → ∞. (17)Combining (15), (16) and (17) yields the �rst part of the result.We now prove the se
ond 
onvergen
e. Pi
k an arbitrary η > 0 and let t0 > 0 be su
h that
∀t > t0, sup

w∈Sd−1

∣∣∣∣
f(tw)

t−dV (t)
−Q(w)

∣∣∣∣ <
η

2εδ
. (18)De�ne a fun
tion Ṽ by Ṽ (t) = 1 if 0 ≤ t ≤ t0 and Ṽ (t) = V (t) otherwise. For all t > t0, we have that

‖y‖d+α+δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣ ≤ ‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣

+
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

∣∣∣∣∣
(t‖y‖)α+δṼ (t‖y‖)

tα+δṼ (t)
− ‖y‖δ

∣∣∣∣∣ . (19)Inequality (18) entails
‖y‖δ

∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{t0/t<‖y‖≤ε} ≤ η

2
. (20)Moreover,

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{0<‖y‖≤t0/t} ≤
(
t0
t

)δ
(

sup
‖z‖≤t0

‖z‖df(z)
Ṽ (‖z‖)

+ sup
w∈Sd−1

Q(w)

)
.12



Sin
e y 7→ ‖y‖df(y) is bounded on any 
ompa
t neighborhood of 0 and Ṽ is equal to 1 on [0, t0] and Q isbounded on Sd−1, the right-hand side above is �nite. One thus obtains for t large enough
‖y‖δ

∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{0<‖y‖≤t0/t} ≤ η

2
. (21)Combining (20) and (21), it be
omes 
lear that

sup
0<‖y‖≤ε

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣→ 0 as t → ∞. (22)Finally, let us remark that (18) entails
sup

0<‖y‖≤ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

≤ sup
‖z‖≤t0

‖z‖df(z)
Ṽ (‖z‖)

+ 2 sup
w∈Sd−1

Q(w) +
η

2εδ
< ∞and therefore, sin
e t 7→ tα+δV (t) is regularly varying at in�nity with index δ > 0 and bounded on anyneighborhood of 0, a uniform 
onvergen
e result (see e.g. Theorem 1.5.2 p.22 in Bingham et al., 1987)yields, as t → ∞,

sup
0<‖y‖≤ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

∣∣∣∣∣
(t‖y‖)α+δṼ (t‖y‖)

tα+δṼ (t)
− ‖y‖δ

∣∣∣∣∣ = O

(
sup

0<a≤ε

∣∣∣∣∣
(at)α+δṼ (at)

tα+δṼ (t)
− aδ

∣∣∣∣∣

)
→ 0. (23)Combining (19), (22) and (23) 
ompletes the proof.4.3 Proof of Theorem 1Lemma 5 is the essential tool to prove Theorem 1(i).Lemma 5. Let u ∈ Sd−1.(i) Assume that (Mα) holds for some α ∈ (0, 1). Let v ∈ R

d and de�ne
I(u, v) =

∫

Rd

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy.Then I(u, v) is well-de�ned, �nite and

1

V (‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ , v
〉

→ −I(u, v) as λ ↑ 1.(ii) Assume that (M1) holds. Then, for any ε > 0,
1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= o(‖q(λu)‖ε) as λ ↑ 1.Proof of Lemma 5. (i) The Cau
hy-S
hwarz inequality entails, for all y ∈ R
d and w ∈ Sd−1,

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤
∥∥∥∥

y − w

‖y − w‖ + w

∥∥∥∥ ‖v‖.Besides, ∥∥∥∥
y − w

‖y − w‖ + w

∥∥∥∥
2

= 2

(
1 +

〈
y − w

‖y − w‖ , w
〉)

=
2 (‖y − w‖ + 〈y − w, w〉)

‖y − w‖13



so that ∥∥∥∥
y − w

‖y − w‖ + w

∥∥∥∥
2

=
2
(
‖y − w‖2 − 〈y − w, w〉2

)

‖y − w‖(‖y − w‖ − 〈y − w, w〉) .The numerator of the right-hand side 
an be bounded from above as follows:
‖y − w‖2 − 〈y − w, w〉2 = ‖y‖2 − 〈y, w〉2 ≤ ‖y‖2.If moreover ‖y‖ < ‖w‖ = 1, then the denominator 
an be 
ontrolled by applying both the Cau
hy-S
hwarzand reverse triangle inequalities:

‖y − w‖(‖y − w‖ − 〈y − w, w〉) = ‖y − w‖2
(
1 + ‖y − w‖ − 〈y − w, y〉

‖y − w‖

)
≥ 2(1− ‖y‖)3.As a 
onsequen
e, if B is the ball 
entered at the origin having radius 1/2, then

∀y ∈ B,
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤ 2‖v‖‖y‖, (24)and the homogeneity property of Q yields
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣Q(y)1lB(y) ≤ 2‖v‖‖y‖−(d−1+α)Q

(
y

‖y‖

)
1lB(y). (25)The right-hand side of this inequality de�nes an integrable fun
tion in a neighborhood of 0 be
ause

α ∈ (0, 1). Besides, the Cau
hy-S
hwarz inequality entails for all y ∈ R
d and w ∈ Sd−1

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤ 2‖v‖. (26)Consequently, denoting by Bc the 
omplement of B, it follows that
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣Q(y)1lBc(y) ≤ 2‖v‖‖y‖−(d+α)Q

(
y

‖y‖

)
1lBc(y) (27)where the right-hand side de�nes an integrable fun
tion in a neighborhood of in�nity sin
e α > 0. Combin-ing (25) and (27) with w = u shows that I(u, v) is �nite. The 
hara
terization of the geometri
 quantile (2)yields

λu +

∫

Rd

x− q(λu)

‖x− q(λu)‖f(x)dx = 0or equivalently
I1(λ) + I2(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉 (28)with I1(λ) =

∫

B

(∥∥∥∥y − q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dyand I2(λ) =

∫

Bc

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dy.Let us also introdu
e

I ′1(λ) =

∫

B

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dyand I ′2(λ) =

∫

Bc

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy.14



To obtain the asymptoti
 behavior of I1(λ), we �rst dedu
e from (24) that:
|I1(λ)− I ′1(λ)| ≤ 2‖v‖

∫

B

{
‖y‖d+α+δ

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d−1+α+δwhere δ = (1−α)/2 > 0 is su
h that α+ δ < 1. Let us note that sin
e y 7→ ‖y‖−(d−1+α+δ) is an integrablefun
tion in a neighborhood of 0, Lemma 4 entails that I1(λ) − I ′1(λ) → 0 as λ ↑ 1. Re
alling (25) with wrepla
ed by q(λu)/‖q(λu)‖ and applying (3) together with the dominated 
onvergen
e theorem, we obtain:
I1(λ) →

∫

B

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy as λ ↑ 1. (29)Let us now fo
us on I2(λ): from (26), it follows that

|I2(λ)− I ′2(λ)| ≤ 2‖v‖
∫

Bc

{
‖y‖d+α/2

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+α/2
.Sin
e α > 0, the fun
tion y 7→ ‖y‖d+α/2 is integrable in a neighborhood of in�nity. Lemma 4 thus entailsthat I2(λ) − I ′2(λ) → 0 as λ ↑ 1. Re
alling (27) with w repla
ed by q(λu)/‖q(λu)‖ and applying (3)together with the dominated 
onvergen
e theorem, we get

I2(λ) →
∫

Bc

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy as λ ↑ 1. (30)The result follows by 
ombining (28), (29) and (30).(ii) Sin
e Bd is a relatively 
ompa
t neighborhood of 0, inequality (24) entails for n large enough

∀x ∈ Bd,

∣∣∣∣
〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉∣∣∣∣ ≤ 2

‖v‖‖x‖
‖q(λu)‖ ≤ 2

‖v‖
‖q(λu)‖and therefore ∫

Bd

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx = O
(
‖q(λu)‖−1

)
.Let further A(λ) be the annulus {y ∈ R

d | 1/‖q(λu)‖ < ‖y‖ ≤ 1/2} ⊂ B. Similarly to what was done inthe proof of (i), equation (2) and a 
hange of variables entail
I2(λ) + I3(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉
+O

(
[‖q(λu)‖V (‖q(λu)‖)]−1

)with I3(λ) =

∫

A(λ)

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dywhere I2(λ) is de�ned in the proof of (i). Sin
e t 7→ [tV (t)]−1 is slowly varying, Proposition 1.3.6(v) p.16in Bingham et al. (1987) gives [tV (t)]−1 = o(tε) as t → ∞ for any ε > 0. Re
all further that (30) wasa
tually also true for α = 1, so that

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= −I3(λ) + o(‖q(λu)‖ε). (31)Let us now turn to the 
ontrol of I3(λ) and introdu
e
I ′3(λ) =

∫

A(λ)

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy.15



From (24), it follows that as λ ↑ 1,
|I3(λ)− I ′3(λ)| ≤ 2‖v‖

∫

A(λ)

{
‖y‖d+1+ε

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+ε

= o

(∫

A(λ)

dy

‖y‖d+ε

)
= o

(∫ 1

1/‖q(λu)‖

dr

r1+ε

)
= o (‖q(λu)‖ε) , (32)in view of Lemma 4 and after swit
hing to polar 
oordinates. Finally, I ′3(λ) is 
ontrolled using (25):

I ′3(λ) ≤ 2‖v‖
∫

A(λ)

‖y‖−dQ

(
y

‖y‖

)
dy.We 
an thus use the boundedness of Q on Sd−1 and polar 
oordinates to obtain

I ′3(λ) = O

(∫ 1

1/‖q(λu)‖

dr

r

)
= O(log ‖q(λu)‖) = o(‖q(λu)‖ε) as λ ↑ 1. (33)Combining (31), (32) and (33) 
ompletes the proof.Lemma 6 below is the key to the proof of Theorem 1(ii).Lemma 6. Assume that (Mα) holds for some α ∈ (0, 2). Let u ∈ Sd−1 and set

J(u) =

∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy.Then J(u) is well-de�ned, positive and �nite, and

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −J(u) as λ ↑ 1.Proof of Lemma 6. The Cau
hy-S
hwarz inequality yields for every y ∈ R

d

1 +
〈y − u, u〉
‖y − u‖ ≥ 1− ‖u‖ = 0with equality if and only if y and u are linearly dependent. As a 
onsequen
e, J(u) > 0. Let ϕ :

R
d × [0,∞)× Sd−1 → R be the nonnegative fun
tion de�ned by

ϕ(x, r, w) = r2
(
1 +

〈x− rw, w〉
‖x− rw‖

)
,and re
all that, from Girard and Stup�er (2014, inequality (16)):

ϕ(x, r, w)1l{‖x‖<r} ≤ ‖x‖21l{‖x‖<r}. (34)Thus, using the homogeneity of Q and applying (34) with r = 1 yield for every y ∈ R
d and w ∈ Sd−1

∣∣∣∣1 +
〈y − w, w〉
‖y − w‖

∣∣∣∣Q(y)1lBd(y) ≤ ‖y‖−(d−2+α)Q

(
y

‖y‖

)
1lBd(y) (35)with the right-hand side of this inequality being an integrable fun
tion in a neighborhood of 0. Besides,the Cau
hy-S
hwarz inequality and the homogeneity of Q entail for all y ∈ R
d and w ∈ Sd−1

∣∣∣∣1 +
〈y − w, w〉
‖y − w‖

∣∣∣∣Q(y)1lRd\Bd(y) ≤ 2‖y‖−(d+α)Q

(
y

‖y‖

)
1lRd\Bd(y) (36)16



so that the integrand in J(u) is also integrable in a neighborhood of in�nity. J(u) is thus positive and�nite. The remainder of the proof follows the lines of the proof of Lemma 5: taking a

ount of (2) andusing a 
hange of variables, we get
J1(λ) + J2(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉 (37)with J1(λ) =

∫

Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖)dyand J2(λ) =

∫

Rd\Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖)dy.Let us 
onsider
J ′
1(λ) =

∫

Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
Q(y)dyand J ′

2(λ) =

∫

Rd\Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
Q(y)dy.The asymptoti
 behavior of J1(λ) is then dedu
ed from (34) with r = 1:

|J1(λ)− J ′
1(λ)| ≤

∫

Bd

{
‖y‖d+α+δ

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d−2+α+δwhere δ = (2 − α)/2 > 0 is su
h that α + δ < 2. Remarking that y 7→ ‖y‖−(d−2+α+δ) is an integrablefun
tion in a neighborhood of 0, Lemma 4 entails J1(λ) − J ′
1(λ) → 0 as λ ↑ 1. In view of (35), thedominated 
onvergen
e theorem leads to

J1(λ) →
∫

Bd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1. (38)Let us now fo
us on J2(λ). The Cau
hy-S
hwarz inequality yields

|J2(λ)− J ′
2(λ)| ≤ 2

∫

Rd\Bd

{
‖y‖d+α/2

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+α/2
.Sin
e y 7→ ‖y‖d+α/2 is an integrable fun
tion in a neighborhood of in�nity, applying Lemma 4 shows that

J2(λ) − J ′
2(λ) → 0 as λ ↑ 1. Therefore, re
alling (36) and applying the dominated 
onvergen
e theorem,we get

J2(λ) →
∫

Rd\Bd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1. (39)The result follows from (37), (38) and (39).Proof of Theorem 1. (i) Let (u, v1, . . . , vd−1) be an orthonormal basis of Rd. We may then write

q(λu)

‖q(λu)‖ − u = (b(λ)− 1)u+

d−1∑

k=1

βk(λ)vk (40)where b(λ) ∈ R and, for all k ∈ {1, . . . , d− 1},
βk(λ) :=

〈
q(λu)

‖q(λu)‖ , vk
〉

= −
〈
λu− q(λu)

‖q(λu)‖ , vk
〉
. (41)17



Lemma 5 entails that, for all k ∈ {1, . . . , d− 1},
βk(λ)

V (‖q(λu)‖) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , vk
〉

→
∫

Rd

〈y, vk〉
‖y − u‖Q(y)dy (42)as λ ↑ 1. Besides, sin
e q(λu)/‖q(λu)‖ ∈ Sd−1, it is 
lear that

b2(λ) +

d−1∑

k=1

β2
k(λ) = 1. (43)In view of (3), b(λ) → 1 as λ ↑ 1: it is thus easily seen from (42) that

1

V (‖q(λu)‖) (b(λ)− 1) = − 1

2V (‖q(λu)‖) (1 − b2(λ))(1 + o(1))

= −V (‖q(λu)‖)
(
1

2

d−1∑

k=1

β2
k(λ)

[V (‖q(λu)‖)]2

)
(1 + o(1)) → 0 (44)as λ ↑ 1. Combining (40), (42), (44) and remarking that

Πu(y) =

d−1∑

k=1

〈y, vk〉vk
ompletes the �rst part of the proof.(ii) Let us re
all that, if α ∈ (1, 2), then E‖X‖ < ∞. In this 
ase, Lemma 1 in Girard and Stup�er (2014)shows that, for all v ∈ R
d,
‖q(λu)‖

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −E〈Πu(X), v〉 as λ ↑ 1. (45)Thus, Lemma 5 and (45) in the 
ase α ≤ 1 and α ∈ (1, 2) respe
tively show that for all k ∈ {1, . . . , d− 1}:
β2
k(λ)

V (‖q(λu)‖) =





O(V (‖q(λu)‖)) if α < 1

o(‖q(λu)‖1/2V (‖q(λu)‖)) if α = 1

O([‖q(λu)‖2V (‖q(λu)‖)]−1) if 1 < α < 2





= o(1), (46)as λ ↑ 1. Now, equation (43) and Lemma 6 yield
1

V (‖q(λu)‖) (λb(λ)− 1) → −J(u) as λ ↑ 1, (47)and 
ombining (43), (46) and (47) leads to
1

V (‖q(λu)‖)

(
1− λb(λ)− 1

2

(
1− b2(λ)

))
→ J(u) as λ ↑ 1. (48)Finally, use on
e again either Lemma 5 if α ≤ 1 or equation (45) if α ∈ (1, 2) to get

1

V (‖q(λu)‖)

∣∣∣∣
〈
λu − q(λu)

‖q(λu)‖ , u
〉∣∣∣∣

2

=





O(V (‖q(λu)‖)) if α < 1

o(‖q(λu)‖1/2V (‖q(λu)‖)) if α = 1

o([‖q(λu)‖2V (‖q(λu)‖)]−1) if 1 < α < 2





= o(1) (49)as λ ↑ 1 whi
h implies
1

V (‖q(λu)‖) (λ− b(λ))
2 → 0 as λ ↑ 1. (50)Using (48) together with (50) and the straightforward identity

1− λb(λ) − 1

2

(
1− b2(λ)

)
=

1

2

(
(1− λ)(1 + λ) + (λ− b(λ))2

)yields the desired result. 18



4.4 Proof of Theorem 2Lemma 7 is the analogue of Lemma 5 when (M1) holds. It is the 
ornerstone to prove Theorem 2(i).Lemma 7. Let u ∈ Sd−1. If (M1) holds with L(t) → ∞ as t → ∞ then, for all v ∈ R
d and any symmetri
positive de�nite d× d matrix Σ,

‖q(λu)‖
L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −
∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) as λ ↑ 1.Proof of Lemma 7. The proof starts as the beginning of the proof of Lemma 5(ii). Let Ed
Σ = {x ∈

R
d |x′Σ−1x ≤ 1}. Sin
e Ed

Σ is a 
ompa
t neighborhood of 0, (24) entails, for n large enough,
∀x ∈ Ed

Σ,

∣∣∣∣
〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉∣∣∣∣ ≤ 2

‖v‖‖x‖
‖q(λu)‖and therefore ∫

Ed
Σ

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx = O
(
‖q(λu)‖−1

)where the boundedness of the fun
tion y 7→ ‖y‖ on the 
ompa
t subset Ed
Σ of Rd was used. It thus followsfrom (2) that

∫

Rd\Ed
Σ

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx +

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= O
(
‖q(λu)‖−1

)
.Let us 
onsider the Karamata representation (see Theorem 1.3.1 p.12 in Bingham et al., 1987) of theslowly varying fun
tion L de�ned in (4):

L(t) = c(t) exp

(∫ t

1

∆(z)

z
dz

) (51)where c is a positive Borel measurable fun
tion 
onverging to some positive 
onstant, and ∆ is a Borelmeasurable auxiliary fun
tion whi
h 
onverges to 0 at in�nity. Lemma 1 then shows that there exists afun
tion ε1 : (1,∞) → [0,∞) su
h that ε1(r) → 0, rε1(r) → ∞,
ε1(r)

L(rε1(r))
L(rε1(r))

→ ∞ and | log ε1(r)| sup
z≥rε1(r)

|∆(z)| → 0 as r → ∞.Let η1(λ) = ε1(‖q(λu)‖) for the sake of simpli
ity. Write further f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y))where θ(y) → 0 as ‖y‖ → ∞ by Lemma 3. Denote by C1,− (resp. C1,+) the positive and �nite in�mum(resp. supremum) of the positive and 
ontinuous map y 7→ ‖y‖ on the 
ompa
t subset Ed−1
Σ of R

d.Sin
e V 
an be taken 
ontinuous on (C1,−/2,∞), we may assume that θ is bounded on any annulus
{y ∈ R

d|C1,− ≤ ‖y‖ ≤ C}, C > C1,−. In view of L(η1(λ)‖q(λu)‖) → ∞ and (5), one has the expansion:
‖q(λu)‖

L(η1(λ)‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ , v
〉

= − ‖q(λu)‖
L(η1(λ)‖q(λu)‖)

(I1(λ) + I2(λ)) + o(1) (52)with
I1(λ) =

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

r−2L(r)Q(w)(1 + θ(rw))dr µΣ(dw),

I2(λ) =

∫ ∞

η1(λ)‖q(λu)‖

∫

Ed−1

Σ

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

r−2L(r)Q(w)(1 + θ(rw)) dr µΣ(dw).19



Let us start by 
ontrolling I1(λ). To this end, a Taylor expansion yields
sup

w∈Ed−1

Σ

sup
z∈Sd−1

∣∣∣∣
1

ρ

( 〈ρw − z, v〉
‖ρw − z‖ + 〈z, v〉

)
− 〈Πz(w), v〉

∣∣∣∣→ 0 as ρ → 0,and therefore, in view of (3), we obtain
sup

1≤r≤η1(λ)‖q(λu)‖
sup

w∈Ed−1

Σ

∣∣∣∣
‖q(λu)‖

r

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

− 〈Πu(w), v〉
∣∣∣∣→ 0 as λ ↑ 1leading to

I1(λ) =
1

‖q(λu)‖

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), v〉r−1L(r)Q(w)(1 + θ(rw)) dr µΣ(dw)

+ o

(
1

‖q(λu)‖

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), v〉r−1L(r)Q(w)(1 + |θ(rw)|) dr µΣ(dw)

)
.Besides,

1

L(η1(λ)‖q(λu)‖)
sup

w∈Ed−1

Σ

(∫ η1(λ)‖q(λu)‖

1

L(r)

r
|θ(rw)|dr

)
→ 0 (53)as λ ↑ 1. Indeed, for any C2 > 1, by separating the 
ases r ∈ [1, C2) and r ≥ C2, it appears that theleft-hand side is less than

L(C2)

L(η1(λ)‖q(λu)‖)
sup

C1,−≤‖y‖≤C1,+C2

|θ(y)|+ sup
‖y‖>C1,+C2

|θ(y)|whi
h 
an be made arbitrarily small as λ ↑ 1 by a suitable 
hoi
e of the 
onstant C2 > 1. Hen
e theequality
I1(λ) =

L(η1(λ)‖q(λu)‖)
‖q(λu)‖

(∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) + o(1)

)
. (54)Let us turn to the term I2(λ), whi
h, re
alling (26), 
an be bounded as follows:

|I2(λ)| ≤ 2‖v‖
∫ ∞

η1(λ)‖q(λu)‖
r−2L(r)dr

∫

Ed−1

Σ

Q(w)µΣ(dw).The 
hange of variables r = η1(λ)‖q(λu)‖ρ yields
|I2(λ)| ≤ 2‖v‖(η1(λ)‖q(λu)‖)−1L(η1(λ)‖q(λu)‖)

∫ ∞

1

ρ−2L(η1(λ)‖q(λu)‖ρ)
L(η1(λ)‖q(λu)‖)

dρ

∫

Ed−1

Σ

Q(w)µΣ(dw).Let us introdu
e the fun
tion h1 de�ned on (0,∞) by h1(ρ) = ρ−1/2L(ρ). Clearly, h1 is regularly varyingwith index −1/2 and therefore by a uniform 
onvergen
e result (see e.g. Theorem 1.5.2 p.22 in Binghamet al., 1987):
sup
ρ≥1

∣∣∣∣
h1(η1(λ)‖q(λu)‖ρ)
h1(η1(λ)‖q(λu)‖)

− ρ−1/2

∣∣∣∣→ 0 as λ ↑ 1.Sin
e the fun
tion ρ 7→ ρ−3/2 is integrable over [1,∞), it follows that
|I2(λ)| = O

(
(η1(λ)‖q(λu)‖)−1L(η1(λ)‖q(λu)‖)

)
= o(‖q(λu)‖−1L(η1(λ)‖q(λu)‖)), (55)in view of the properties of η1(λ). Combining (52), (54) and (55) then implies that

‖q(λu)‖
L(η1(λ)‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ , v
〉

→ −
∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) as λ ↑ 1.20



Finally, ∣∣∣∣∣

∫ ‖q(λu)‖

η1(λ)‖q(λu)‖

∆(z)

z
dz

∣∣∣∣∣ ≤ | log η1(λ)| sup
z≥η1(λ)‖q(λu)‖

|∆(z)| → 0 as λ ↑ 1and therefore
L(‖q(λu)‖)

L(η1(λ)‖q(λu)‖)
=

c(‖q(λu)‖)
c(η1(λ)‖q(λu)‖)

exp

(∫ ‖q(λu)‖

η1(λ)‖q(λu)‖

∆(z)

z
dz

)
→ 1 as λ ↑ 1whi
h 
ompletes the proof.Lemma 8 is the analogue of Lemma 6 when (M2) holds. It will reveal useful to prove Theorem 2(ii).Lemma 8. Let u ∈ Sd−1. If (M2) holds with L(t) → ∞ as t → ∞ then, for any symmetri
 positivede�nite d× d matrix Σ,

‖q(λu)‖2
L(‖q(λu)‖)

〈
λu − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.Proof of Lemma 8. Let us start as in the proof of Lemma 7, whose notation we retain. From (34), onehas ∣∣∣∣1 +
〈

x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉∣∣∣∣ ≤
‖x‖2

‖q(λu)‖2 ,for n large enough and uniformly in x ∈ Ed
Σ, leading to

∫

Ed
Σ

(
1 +

〈
x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(x) dx = O

(
‖q(λu)‖−2

)
.In view of (2), it follows that

∫

Rd\Ed
Σ

(
1 +

〈
x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(x)dx +

〈
λu − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
= O

(
‖q(λu)‖−2

)
.Besides, Lemma 1 shows that there exists a fun
tion ε2 : (1,∞) → [0,∞) su
h that ε2(r) → 0, rε2(r) → ∞,

ε22(r)
L(rε2(r))
L(rε2(r))

→ ∞ and | log ε2(r)| sup
z≥rε2(r)

|∆(z)| → 0 as r → ∞.Let us introdu
e η2(λ) = ε2(‖q(λu)‖). From (5), and sin
e L(η2(λ)‖q(λu)‖) → ∞, it follows that
‖q(λu)‖2

L(η2(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
= − ‖q(λu)‖2

L(η2(λ)‖q(λu)‖)
[J1(λ) + J2(λ)] + o(1) (56)with

J1(λ) =

∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
r−3L(r)Q(w)(1 + θ(rw)) dr µΣ(dw),

J2(λ) =

∫ ∞

η2(λ)‖q(λu)‖

∫

Ed−1

Σ

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
r−3L(r)Q(w)(1 + θ(rw)) dr µΣ(dw).Let us start by 
ontrolling J1(λ). A Taylor expansion leads to

sup
w∈Ed−1

Σ

sup
z∈Sd−1

∣∣∣∣
1

ρ2

(
1 +

〈ρw − z, z〉
‖ρw − z‖

)
− 1

2
〈Πz(w), w〉

∣∣∣∣→ 0 as ρ → 0,21



and thus, in view of (3):
sup

1≤r≤η2(λ)‖q(λu)‖
sup

w∈Ed−1

Σ

∣∣∣∣
‖q(λu)‖2

r2

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
− 1

2
〈Πu(w), w〉

∣∣∣∣→ 0as λ ↑ 1. This entails
J1(λ) =

1

‖q(λu)‖2
∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

1

2
〈Πu(w), w〉r−1L(r)Q(w)(1 + θ(rw)) dr µΣ(dw)

+ o

(
1

‖q(λu)‖2
∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), w〉r−1L(r)Q(w)(1 + |θ(rw)|) dr µΣ(dw)

)
.Using (53) yields, as a preliminary 
on
lusion:

J1(λ) =
L(η2(λ)‖q(λu)‖)

‖q(λu)‖2

(
1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) + o(1)

)
. (57)Let us turn to the term J2(λ), whi
h 
an be bounded using the Cau
hy-S
hwarz inequality:

|J2(λ)| ≤ 2

∫ ∞

η2(λ)‖q(λu)‖
r−3L(r)dr

∫

Ed−1

Σ

Q(w)µΣ(dw).The 
hange of variables r = η2(λ)‖q(λu)‖ρ yields
|J2(λ)| ≤ 2(η2(λ)‖q(λu)‖)−2L(η2(λ)‖q(λu)‖)

∫ ∞

1

ρ−3L(η2(λ)‖q(λu)‖ρ)
L(η2(λ)‖q(λu)‖)

dρ

∫

Ed−1

Σ

Q(w)µΣ(dw).Let us 
onsider the fun
tion h2 de�ned on (0,∞) by h2(ρ) = ρ−1L(ρ). Clearly, h2 is regularly varyingwith index −1 and therefore by a uniform 
onvergen
e result (see e.g. Theorem 1.5.2 p.22 in Bingham etal., 1987):
sup
ρ≥1

∣∣∣∣
h2(η2(λ)‖q(λu)‖ρ)
h2(η2(λ)‖q(λu)‖)

− ρ−1

∣∣∣∣→ 0 as λ ↑ 1.Sin
e the fun
tion ρ 7→ ρ−2 is integrable over [1,∞), it follows that
|J2(λ)| = O

(
(η2(λ)‖q(λu)‖)−2L(η2(λ)‖q(λu)‖)

)
= o

(
‖q(λu)‖−2L(η2(λ)‖q(λu)‖)

) (58)in view of the properties of η2(λ). Combining (56), (57) and (58) entails
‖q(λu)‖2

L(η2(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw).Finally, sin
e
∣∣∣∣∣

∫ ‖q(λu)‖

η2(λ)‖q(λu)‖

∆(z)

z
dz

∣∣∣∣∣ ≤ | log η2(λ)| sup
z≥η2(λ)‖q(λu)‖

|∆(z)| → 0 as λ ↑ 1it is thus 
lear that
L(‖q(λu)‖)

L(η2(λ)‖q(λu)‖)
=

c(‖q(λu)‖)
c(η2(λ)‖q(λu)‖)

exp

(∫ ‖q(λu)‖

η2(λ)‖q(λu)‖

∆(z)

z
dz

)
→ 1 as λ ↑ 1and the 
on
lusion follows. 22



Proof of Theorem 2. (i) We follow the lines of the proof of Theorem 1. Re
alling the notation introdu
edin (40), Lemma 7 yields for all k ∈ {1, . . . , d− 1}:
‖q(λu)‖

L(‖q(λu)‖)βk(λ) = − ‖q(λu)‖
L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , vk
〉

→
∫

Ed−1

Σ

〈w, vk〉Q(w)µΣ(dw)as λ ↑ 1. The �rst statement is then proven by mimi
king the proof of Theorem 1(i).(ii) From Lemma 7, and in view of equations (41), (45), it follows that
β2
k(λ) = o(‖q(λu)‖−2L(‖q(λu)‖)) (59)as λ ↑ 1 and for all k ∈ {1, . . . , d− 1}. Lemma 8 and equation (43) then yield

‖q(λu)‖2
L(‖q(λu)‖) (λb(λ)− 1) → −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) (60)as λ ↑ 1. Using on
e more equation (43), together with (59) and (60) entails
‖q(λu)‖2

L(‖q(λu)‖)

(
1− λb(λ) − 1

2

(
1− b2(λ)

))
→ 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) (61)as λ ↑ 1. One 
an thus use (61) to argue along the same lines as in the proof of Theorem 1(ii).4.5 Proof of Corollary 2Corollary 2 is a dire
t 
onsequen
e of Theorem 2(ii) and of the following result:Lemma 9. For all u ∈ Sd−1, one has
∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) =
ad
d

(detΣ)
1/2

(tr Σ− u′Σu).Proof of Lemma 9. The de�nition of µΣ entails
∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) = (detΣ)1/2
∫

Sd−1

〈Πu(Σ
1/2w), Σ1/2w〉σ(dw).Re
alling that Πu(y) = y − 〈y, u〉u for any y ∈ R

d, this yields
∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) = (detΣ)
1/2
∫

Sd−1

(
‖Σ1/2w‖2 − 〈Σ1/2w, u〉2

)
σ(dw).Let us denote by mij the entry in the i−th row and j−th 
olumn of Σ1/2. If w = (w1, . . . , wd)

′ and
u = (u1, . . . , ud)

′, one has
‖Σ1/2w‖2 =

d∑

i,j=1

d∑

k=1

mkimkjwiwj and 〈Σ1/2w, u〉2 =
d∑

i,j=1

d∑

k,l=1

mkimljwiwjukul. (62)Isotropy and symmetry arguments entail, for all i, j ∈ {1, . . . , d} with i 6= j:
∫

Sd−1

w2
i σ(dw) =

∫

Sd−1

w2
jσ(dw) and ∫

Sd−1

wiwjσ(dw) = 0. (63)23



Espe
ially, sin
e w2
1 + · · ·+ w2

d = 1 for all w ∈ Sd−1, it follows that, for all i ∈ {1, . . . , d}:
∫

Sd−1

w2
i σ(dw) =

ad
d
. (64)Combining (62), (63) and (64) yields

∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) =
ad
d

(det Σ)
1/2




d∑

i,k=1

m2
ki −

d∑

i=1

[
d∑

k=1

mkiuk

]2
 . (65)Let us �nally remark that, sin
e Σ1/2 is a symmetri
 matrix, it holds that

tr Σ =

d∑

i,k=1

m2
ki and u′Σu =

d∑

i=1

(
d∑

k=1

mkiuk

)2

.Plugging these two equalities into (65) 
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Figure 1: Three geometri
 iso-quantile 
urves {q(v), ‖v‖ ∈ {0.5, 0.65, 0.8}} 
omputed on a two-dimensionaldataset extra
ted from the Pima Indians Diabetes Database. The data set 
onsists of n = 392 pairs
(Xi, Yi), where Xi is the body mass index of the ith individual and Yi is its diastoli
 blood pressure. Bothvariables are 
entered and standardized.
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Figure 2: Extreme geometri
 quantiles from the Pareto model, top: α = 1.3, bottom: α = 1.5, dashedline: asymptoti
 equivalent, ×: numeri
al 
omputation.27
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Figure 3: Extreme geometri
 quantiles from the Pareto model, top: α = 1.7, bottom: α = 1.9, dashedline: asymptoti
 equivalent, ×: numeri
al 
omputation.28
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Figure 4: Extreme geometri
 quantiles from the Pareto model, top: α = 2, bottom: α = 2.1, dashed line:asymptoti
 equivalent, ×: numeri
al 
omputation. 29



−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40

−40 −30 −20 −10 0 10 20 30 40

−30

−20

−10

0

10

20

30

Figure 5: Extreme geometri
 quantiles from the Pareto model, top: α = 2.3, bottom: α = 2.5, dashedline: asymptoti
 equivalent, ×: numeri
al 
omputation.30
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