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Abstract. Recent work on brain tumor growth modeling for glioblas-
toma using reaction-diffusion equations suggests that the diffusion coeffi-
cient and the proliferation rate can be related to clinically relevant infor-
mation. However, estimating these parameters is difficult due to the lack
of identifiability of the parameters, the uncertainty in the tumor segmen-
tations, and the model approximation, which cannot perfectly capture
the dynamics of the tumor. Therefore, we propose a method for conduct-
ing the Bayesian personalization of the tumor growth model parameters.
Our approach estimates the posterior probability of the parameters, and
allows the analysis of the parameters correlations and uncertainty. More-
over, this method provides a way to compute the evidence of a model,
which is a mathematically sound way of assessing the validity of dif-
ferent model hypotheses. Our approach is based on a highly parallelized
implementation of the reaction-diffusion equation, and the Gaussian Pro-
cess Hamiltonian Monte Carlo (GPHMC), a high acceptance rate Monte
Carlo technique. We demonstrate our method on synthetic data, and four
glioblastoma patients. This promising approach shows that the infiltra-
tion is better captured by the model compared to the speed of growth.

1 Introduction

Glioblastomas (GBM) are one of the most common types of primary brain tu-
mors. In addition to being infiltrative by nature, they are also the most aggressive
of brain tumors. Reaction-diffusion equations have been widely used to model
the GBM growth, using a diffusion and a logistic proliferation term,
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Fig. 1: For the two time points: a) T1Gd with the abnormality segmented in
orange. b) T2-FLAIR with the abnormality segmented in red. ¢) Tumor cell
density using the maximum a posteriori parameters with the 80% and 16%
threshold outlined in black. d) Comparison between the clinician segmentations
and the model segmentations.

Equation (1) describes the spatio-temporal evolution of the tumor cell density
u, which infiltrates neighboring tissues with a diffusion coefficient D, and prolif-
erates with a net proliferation rate p. Equation (2) enforces Neumann boundary
conditions on the brain domain 2. Equation (1) admits solutions which asymp-
totically behave like traveling waves with speed v = 24/Dp and infiltration length
A = +/D/p [1]. The infiltration length is related to the spatial rate of decay of
the density u. Preliminary works suggest that D and p can help in assessing the
response to therapy [2].

The personalization of D and p is based on serial acquisitions of Magnetic
Resonance Images (MRIs). The tumor causes abnormalities on T1 post Gadolin-
ium (T1Gd) and T2-FLAIR MRIs, which can be monitored over time. To relate
the tumor cell density u to those images, it is usually assumed that the visible
borders of these abnormalities correspond to a threshold of the tumor cell den-
sity [1]. Since the T2-FLAIR abnormality is larger than the T1Gd abnormality,
the T2-FLAIR abnormality borders correspond to a lower threshold of tumor
cell density (Fig. 1). Therefore, given MRIs of a patient at 2 time points, it is
possible to extract the segmentations of the 4 visible abnormalities. Those can
be used to personalize a tumor growth model, i.e. to find the set of parameters
6 = (D, p) which best fits those segmentations.

This problem was studied by Harpold et al. [1] who described a heuristic to re-
late the volumes of the four available segmentations to the speed v = 24/Dp and
infiltration length A = \/D/p, based on the asymptotic behavior of the solutions
of equation (1), hence allowing for the personalization of D and p. Konukoglu et
al. [3] also elaborated a personalization strategy based on BOBYQA, a state-of-
the-art derivative-free optimization algorithm. However, this latter method only
considers one MRI modality per time point, and fails to simultaneously identify
D and p. These estimation procedures provide single-solutions which are sensi-
tive to the initialization, and do not provide any understanding about potential
correlation between parameters.
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Fig.2: a) Two synthetic time points with the simulated T1Gd and T2-FLAIR
abnormalities (orange and red resp.). b) Gaussian process interpolation of Epqy
using the evaluation of the posterior at well chosen points (in red). c¢) Kernel
density estimate of the posterior using 1000 samples. Results of the BOBYQA
optimization with multiple initializations in blue, true parameters in red.

To circumvent these drawbacks, we propose a method to estimate the poste-
rior probability of 8 = (D, p) from the T1Gd and T2-FLAIR abnormalities at 2
time points. We show how this method provides information on the confidence in
the estimation, and provides a global understanding of the correlation between
the parameters. We further demonstrate how the knowledge of the posterior
distribution can be used to compare different model hypotheses. The method
is based on the computation of the statistical evidence: the probability of ob-
serving the data given the model. The Bayes factor, defined as the ratio of the
evidence of two different models, allows one to compare the models and select
which better explains the data. This idea is applied to determine which tumor
cell density threshold is the most adequate for the T2-FLAIR abnormality.

Naive Monte Carlo would be impractical due to computational overload.
Some strategies rely on approximations of the posterior probability with sparse
grids [4], approximations of the forward model based on reduced order models
[5,6], or on expensive grid methods [7]. We present here a method based on
the highly parallelized implementation of the reaction-diffusion equation using
the Lattice Boltzmann Method (LBM), and the Gaussian Process Hamiltonian
Monte Carlo (GPHMC), a high acceptance rate Monte Carlo technique.

2 Method

2.1 Tumor Growth Model

We consider the model defined in equations (1,2). Following previous work [1],
the diffusion tensor is defined as D = d,, I in the white matter and D = d,,/10 I
in the gray matter, where I is the 3x3 identity matrix. We further identify the pa-
rameter D with d,,. As such, the diffusion is heterogeneous and locally isotropic.
This model reproduces the infiltrative nature of the GBM, takes into account
anatomical barriers (ventricles, sulci, falx cerebri), and the tumor’s preferential
progression along white matter tracts such as the corpus callosum. The reaction-
diffusion equation is implemented using the Lattice Boltzmann Method (LBM)



[8]. The LBM are parallelized such that simulating 30 days of growth, with a time
step of 0.1 day, takes approximately 80 seconds on a 60 core machine for a lmm
isotropic brain MRI. The initialization of the tumor cell density u(t = t1,x) at
the time of the first acquisition is of particular importance, as it impacts the rest
of the simulation. In this work, the tumor tail extrapolation algorithm described
in [9] is used. The tumor cell density is computed outward (and inward) of the
T1Gd abnormality borders as a static approximation of the wave-like solution
of equation (1) with parameter 6. Consequently, the T1Gd abnormality falls
exactly on the threshold of the tumor cell density at the first time point.

2.2 GPHMC

Given parameter @, the model is initialized by extrapolating the tumor cell
density from the T1Gd segmentation at time ¢;. Its dynamics is then simu-
lated using the LBM until time t5. The thresholded tumor cell density is then
compared to the segmentations S of the T1Gd at time t; and the T2-FLAIR
at time t; and to (Fig. 1). To cast the problem in a probabilistic framework,
we follow Bayes rule: P(68|S) o P(S]0) P(0). The likelihood is modeled as
P(S|0) o exp(—d(S,u)?/o?), where the distance d(S,u) is the mean symmet-
ric Hausdorff distance between the border of the segmentations S and the isolines
of the simulated tumor cell density u. The noise level is quantified through o.
Samples are drawn from the posterior probability using the Gaussian Process
Hamiltonian Monte Carlo [10].

Hamiltonian Monte Carlo (HMC). HMC is a Markov Chain Monte
Carlo algorithm which uses a refined proposal density function based on the
Hamiltonian dynamics [10]. The problem is augmented with a momentum vari-
able p ~ N(0,I). By randomly sampling p, we define the current state (6, p).
HMC is designed to propose a new state (6", p*) with constant energy H =
Epot + Exin, with potential energy Epor = —log(P(S|0)P(0)), and kinetic en-
ergy Exin = 1/2 ||p||3- The new state is the result of the Hamiltonian dynamics:
d@;/dt = OH/Op; and dp;/dt = —OH/d0;. The new state (6*,p*) is accepted
with probability A = min [1, exp(—H(0", p*) + H(@, p)]. The conservation of the
energy during the Hamiltonian dynamics, up to the numerical discretization ap-
proximation, insures a high acceptance rate A.

Gaussian Process Hamiltonian Monte Carlo (GPHMC). In the HMC,
computing the Hamiltonian dynamics requires a significant amount of model eva-
lutations. To circumvent this difficulty, Epo¢ is approximated with a Gaussian
process [10] (Fig. 2). During an initialization phase, Eyqs is evaluated by running
the forward model at random locations. Those evaluation points are used to de-
fine the Gaussian process approximating E,q - details in [10]. HMC is then run
using the Gaussian process interpolation of E,t to compute the Hamiltonian
dynamics. Given that the Gaussian process well captures Eyo, the GPHMC
benefits from the high acceptance rate of the HMC.

Posterior Density. P(0|S, M) is computed using a kernel density estima-
tion on the drawn samples {6, }~ ;. A bounce-back boundary condition is applied
to ensure the density integrates to 1 on the bounded parameter space.



2.3 Bayes Factor: Extension of the Chib’s Method

The evidence of the model M can be expressed using Chib’s method [11]
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In other words, the probability of observing the segmentation given the model
(evidence) is equal to the likelihood times the prior, normalized by the posterior.
The Chib’s method evaluates this equation on a sample @ of high posterior
probability, like its mode. We propose instead a more robust estimation of the
evidence, as an extension of the Chib’s method, by averaging it over the samples
{0} | drawn from the posterior distribution,
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This estimator is less prone to errors when the kernel density estimation of
the posterior approximately captures the real density at the modes. In order
to compare two models M; and Ms, we can compute the Bayes factor B =
(P(S|IM1)P(M1))/(P(S|M2)P(My)). If B is substantially larger than 1, it is
evidence that M is better suited to explain the data than M. This is a Bayesian
alternative to the frequentist hypotheses testing approach.

3 Experiments and Results

We present results on synthetic and real data. The tumor cell density visibility
thresholds are assumed to be 80% for the T1Gd abnormality and 16% for the
T2-FLAIR abnormality [12]. The parameters are constrained such that D €
[0.02, 1.5] mm?/days, and p € [0.002, 0.2] days~" [1]. The prior P(8) is assumed
uniform within this bounded box. After trials, the noise level has been manually
tuned to ¢ = 10 mm. Our results are compared to the direct minimization of
d(S,Y) using BOBYQA. BOBYQA is run 9 times with 9 different initializations
in the parameter space - around 20 iterations per BOBYQA were observed.
Finally, we compare two models using two different tumor cell density visibility
thresholds for the T2-FLAIR, abnormality frontier: 16% for the first model My,
and 2% for the second model My, following different studies [1]. The Bayes
factor between M; and M5 is computed to compare the models.

Synthetic Data. Starting from a manually drawn T1Gd abnormality seg-
mentation, the growth of a tumor is simulated on an atlas of white and gray mat-
ter during 30 days with D = 1.0 mm?2.days ' and p = 0.18 days~'. The first and
last images are thresholded in order to define the 4 segmentations (Fig. 2 left).
1000 samples are drawn with the GPHMC, using a GP interpolation of E, o with
35 points (Fig. 2 middle). The acceptance rate is 90%, demonstrating that the
Gaussian process successfully captured Epq;. The best BOBYQA solutions are
in very good agreement with the real parameters (Fig. 2 right). The existence of
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Fig. 3: Top: Data processing using the Fractional Anisotropy (FA) and the hemi-
sphere segmentation to ensure the separation of the hemispheres in the white
and gray matter. Bottom: T1Gd of the 4 real cases for the first time point. The
T1Gd (resp. T2-FLAIR) abnormality is outlined in orange (resp. red).

BOBYQA solutions somewhat distant from the true solution, demonstrates the
need for multiple initializations of the algorithm. The true parameter is outlined
by high posterior density isocontour, and the posterior reflects little correlation
between the parameters (unimodal and somewhat peaked posterior). Finally,
with equation (4), we computed a Bayes factor B = P(S|Mj)/P(S|M3) = 3,
indicating that M is better suited than M, in the synthetic case.

GBM Cases. The method is applied to the 4 GBM patients shown in Fig.
3 (bottom panel). The T1Gd and T2-FLAIR abnormalities are segmented by a
clinician. For each time point, the T2-FLAIR is rigidly registered to the T1Gd.
The rigidly registered T2-FLAIR at time t2 is then non-linearly registered to
the T2-FLAIR at time ¢;. All the segmentations are then mapped to the T1Gd
image space at time t; where the white matter, gray matter and cerebrospinal
fluid (CSF) are segmented (Fig. 3 top panel). Close attention is paid to the sepa-
ration of the hemispheres to prevent tumor cells from invading the contralateral
hemisphere. Voxels at the boundary of the hemispheres that show low Fractional
Anisotropy value are tagged as CSF to ensure the separation of the hemispheres,
while keeping the corpus calosum as white matter (Fig. 3).

The mean acceptance rate for the 4 patients is 74% (Fig. 1) which shows that
the Gaussian process successfully interpolate E,ot. The BOBYQA solutions, al-
though reasonable, fail to describe the spatial dynamics of the posterior (Fig. 4).
This emphasizes the need for a global understanding of the posterior’s behavior.
We see that the model can capture the infiltration length of the tumor growth:
the posterior is elongated along the line of constant infiltration A = \/D/p, es-
pecially for patients 1, 2 and 3 (see the black dashed line on Fig. 4). A small
infiltration A corresponds to a T2-FLAIR abnormality close to the T1Gd abnor-
mality (patient 1 Fig. 3) while a larger infiltration corresponds to more distant
abnormalities (patient 4 Fig. 3). However, the model less successfully captures
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Fig.4: Posterior estimation for the 4 real cases. The blue dots are the three
best BOBYQA solutions. The red dot is the maximum a posteriori of the drawn
samples Oyrap. The dashed black line is the line of constant infiltration p = D/A2.

the speed of the growth, as the posterior does not present a clear mode on the
constant infiltration line. For patient 3, the presence of two modes suggests that
the speed of growth might be explained by two sets of parameters. Moreover,
the presence of two modes is responsible for the relatively low acceptance rate
of 51%. The posterior distribution is more complex and therefore harder to in-
terpolate with the Gaussian process. For patient 4, the posterior is more peaked
and suggests that both the infiltration and speed can be explained by the model.
The simulation corresponding to the sample 8 of lowest potential energy E,ot is
presented on Fig. 1 (right). We note Oyap = (Dumap, pmap) the drawn sample
corresponding to the lowest potential energy Epqo¢. It is interesting to note that
Onap can be slightly skewed on the edge of high posterior isocontour (patient 3
or 4 on Fig. 1). This is caused by the very high sensitivity of the output to the
parameters’ value, as well as the likelihood model which allows for a certain noise
level 0. The Bayes factor between M; and My was computed for the different
patients (Fig. 1). We can see that for patients 1, 2, and 4, the Bayes factor leans
toward validating the model M; with a mean of 1.9. Patient 3 presents a lower
Bayes factor supporting model Ms, but this patient presents an odd posterior,
which might indicate that the reaction-diffusion model less successfully captures
the dynamics of the growth.

4 Conclusion

We presented a Bayesian personalization of the parameters of a tumor growth
model on 4 patients. The computation of the posterior provides far more in-
formation than the direct optimization, and takes only five times longer. Our
method provides a global understanding of the correlation between the param-
eters, and we showed that the model captures the infiltration way better than
the speed of growth of the tumor. Furthermore, it provides a way to compute
the Bayes factor and compare the validity of different model hypotheses, which
showed that a threshold of 16% was probably better suited for the data. In
the future, we want to apply this methodology to larger dimensional problems.
Namely, the noise level o could be included as an unknown, and depend on the



to — t1 (days)|Acc. rate (%)|Bayes factor
Patient 1 105 90 2.8
Patient 2 29 80 1.8
Patient 3 26 51 0.49
Patient 4 29 75 1.2

Table 1: Presentation of the patients.

image modality. Finally, we believe that such a method could be applied to per-
sonalized treatment planning.
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