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Introduction

The P versus NP problem is a major unsolved problem in computer science. This problem was introduced in 1971 by Stephen Cook [START_REF] Cook | The complexity of Theorem Proving Procedures[END_REF]. It is considered by many to be the most important open problem in the field [5]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [3].

Informally, the solution of this problem requires finding out whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer. The informal term quickly used above means the existence of an algorithm for the task that runs in polynomial-time. The general class of questions for which some algorithm can provide an answer in polynomial-time is called P [START_REF] Oded Goldreich: P | Np-Completeness[END_REF]. For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it may be possible to verify the answer quickly. The class of questions for which an answer can be verified in polynomial-time is called NP [START_REF] Oded Goldreich: P | Np-Completeness[END_REF].

The biggest open question in theoretical computer science concerns the relationship between those two classes:

Is P equal to NP?

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF]GASARCH: The P=?NP poll[END_REF].

Indeed, many computer scientists have believed that P = NP. A key reason for this belief is that after decades of studying these problems no one has been able to find a polynomial-time algorithm for any of more than 3000 important known NP-complete problems [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Our proof (the existence of an NP-complete problem in P) shows the belief of almost all computer scientists was not a truly supposition.

Theoretical framework 2.1 Turing machines

The argument made by Alan Turing in the twentieth century states that for any algorithm we can create an equivalent Turing machine [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. Definition 2.1. Formally, a Turing machine is a quadruple M = (K, Σ, δ , s). K is a finite set of states; s ∈ K is the initial state. Σ is a finite set of symbols (we say Σ is the alphabet of M). We assume K and Σ are disjoint sets. Σ always contains the special symbols and : The blank and first symbol. Finally, δ is a transition function, which maps K × Σ to (K ∪ {h, "yes", "no"}) × Σ × {←, →, -}. We assume that h (the halting state), "yes" (the accepting state), "no" (the rejecting state), and the cursors directions ← for "le f t", → for "right" andfor "stay", are not in K ∪ Σ.

The definition above was taken from Papadimitriou's book [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. Function δ is also called the "program" of the Turing machine [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. It specifies for each current state q ∈ K and current symbol σ ∈ Σ, a triple δ (q, σ ) = (p, ρ, D) [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. p is the next state, ρ is the symbol to be overwritten on σ , and D ∈ {←, →, -} is the direction in which the cursor will move [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. For we require that, if for states q and p we have δ (q, ) = (p, ρ, D), then ρ = and D =→ [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. That is, always directs the cursor to the right and it is never erased [START_REF]PAPADIMITRIOU: Computational complexity[END_REF].

How is the program start? Initially the state is s [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. The tape is initialized to a , followed by finitely long string x ∈ (Σ -{ }) * [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. We say that x is the input of the Turing machine [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. The cursor is pointing to the first symbol, always a [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. From this initial configuration the machine takes a step according to δ , changing its state, printing a symbol and moving the cursor; then it takes another step, and another [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. In this process the Turing machine could not continue when it reaches a final state {h, "yes", "no"} [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. If this happens, we say the Turing machine has halted [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. If the state "yes" has been reached, we say the machine accepts its input; if "no" has been reached, then it rejects its input. If a Turing machine M accepts or rejects a string x, then we write M(x) = "yes" or M(x) = "no" respectively. If it reaches the halting state h, then we write M(x) = y, where the string y is considered as the output string, that is, the string remaining in M when this halts [START_REF]PAPADIMITRIOU: Computational complexity[END_REF].

There are some definitions related with this concept such as the deterministic or nondeterministic Turing machine. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. A nondeterministic Turing machine can contain more than one action defined for each step of the program, where this program is not a function, but a relation [START_REF]PAPADIMITRIOU: Computational complexity[END_REF].

Complexity classes

Another huge advance in the last century was the definition of a complexity class. A language L over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF].

Formally, let Σ be a finite alphabet (that is, a finite nonempty set) with at least two elements, and let Σ * be the set of finite strings over Σ, then a language over Σ is a subset L of Σ * [START_REF] Cormen | Introduction to Algorithms[END_REF]. We are going to assume in this work the alphabet Σ would be the binary {0, 1}. The language accepted by a Turing machine M is the set L = {x ∈ {0, 1} * : M(x) = "yes"}, that is, the set of strings that the Turing machine accepts. A language L is decided by a Turing machine M if every binary string is either accepted or rejected by M [START_REF] Cormen | Introduction to Algorithms[END_REF]. A language L is accepted in polynomial-time by a Turing machine M if for any n bit-length string x ∈ L, M accepts x in time O(n k ) for some constant k [START_REF] Cormen | Introduction to Algorithms[END_REF]. A language L is decided in polynomial-time by a Turing machine M if for any n bit-length string x ∈ {0, 1} * , M decides x in time O(n k ) for some constant k [START_REF] Cormen | Introduction to Algorithms[END_REF].

In computational complexity theory, the class P consists in all those decision problems (defined as languages) that can be decided on a deterministic Turing machine in an amount of time that is polynomial in the size of the input; the class NP consists in all those decision problems whose positive solutions can be verified in polynomial-time given the right information, or equivalently, that can be decided on a nondeterministic Turing machine in polynomial-time [START_REF]PAPADIMITRIOU: Computational complexity[END_REF].

NP-complete class

We say that a language L 1 is polynomial-time reducible to a language L 2 , written

L 1 ≤ p L 2 , if there exists a polynomial-time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * , x ∈ L 1 if and only if f (x) ∈ L 2 .
(

2.1)

There is an important complexity class called NP-complete [START_REF] Oded Goldreich: P | Np-Completeness[END_REF]. Informally, the NP-complete problems are a set of problems to which any other NP problem can be reduced in polynomial-time, but whose solution may still be verified in polynomial-time [START_REF] Oded Goldreich: P | Np-Completeness[END_REF]. Formally, a language L ⊆ {0, 1} * is NP-complete if • L ∈ NP, and

• L ≤ p L for every L ∈ NP. Furthermore, if L is a language such that L ≤ p L for some L ∈ NP-complete, then L is NP-hard [4]. Moreover, if L ∈ NP, then L ∈ NP-complete [4].

NP-complete problems

Three of the first discovered NP-complete problems were SAT , 3SAT and CIRCUIT-SAT [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

SAT

An instance of SAT is a Boolean formula φ which is composed of

• Boolean variables: x 1 , x 2 , .... ;
• Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), →(implication), ↔(if and only if); and

• parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables of φ and a satisfying truth assignment is a truth assignment that causes it to evaluate to true. A formula with a satisfying truth assignment is a satisfiable formula. The SAT asks whether a given Boolean formula is satisfiable.

3SAT

One convenient language is 3CNF satisfiability, or 3SAT [START_REF] Cormen | Introduction to Algorithms[END_REF]. We define 3CNF satisfiability using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals. A Boolean formula is in 3-conjunctive normal form, or 3CNF, if each clause has exactly three distinct literals.

For example, the Boolean formula

(x 1 ∨ x 1 ∨ x 2 ) ∧ (x 3 ∨ x 2 ∨ x 4 ) ∧ ( x 1 ∨ x 3 ∨ x 4 ) (2.2)
is in 3CNF. The first of its three clauses is (x 1 ∨ x 1 ∨ x 2 ), which contains the three literals x 1 , x 1 , and x 2 . In 3SAT , we are asked whether a given Boolean formula φ in 3CNF is satisfiable.

In addition, a Boolean formula is in 2-conjunctive normal form, or 2CNF, if it is in CNF and each clause has exactly two distinct literals. There is another problem called 2SAT , where we asked whether a given Boolean formula φ in 2CNF is satisfiable. This problem is known in P and is not known in NP-complete [START_REF] Aspvall | A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas[END_REF].

CIRCUIT-SAT

An instance of CIRCUIT-SAT is a Boolean circuit C defined as follows (this definition was taken from Papadimitriou's book [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]): Definition 2.2. A Boolean circuit is a directed acyclic graph C = (V, E), where the nodes V = {1, ..., n} are called the gates of C. We can assume that all edges are of the form (i, j) where i < j. All nodes in the graph have in-degree (number of incoming edges) equal to 0, 1 and 2. Also, each gate i ∈ V has a sort c(i) associated with it, where c(i) ∈ {true, f alse, ∧, ∨, } ∪ {x 1 , x 2 , ...}. If c(i) ∈ {true, f alse} ∪ {x 1 , x 2 , ...}, then the in-degree of i is 0, that is, i must have no incoming edges. Gates with no incoming edges are called the inputs of C. If c(i) = , then i has in-degree one. If c(i) ∈ {∧, ∨}, then the in-degree of i must be two. Finally, node n (the largest numbered gate in the circuit, which necessarily has no outgoing edges), is called the output gate of the circuit.

Let X(C) be the set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X : c(i) = x for some gate i in C}). We say that a truth assignment T is appropriate for C if it is defined for all the variables in X(C). Given such a T , the truth value of gate i ∈ V , T (i), is defined, by induction on i, as follows: If c(i) = true then T (i) = true, and similarly if

c(i) = f alse. If c(i) ∈ X, then T (i) = T (c(i)).
If now c(i) = , then there is a unique gate j < i such that ( j, i) ∈ E. By induction, we know T ( j), and then T (i) is true if T ( j) = f alse, and viceversa. If c(i) = ∨, then there are two edges ( j, i) and ( j , i) entering i. T (i) is then true if and only if at least one of T ( j), T ( j ) is true. If c(i) = ∧, then T (i) is true if and only if both T ( j) and T ( j ) are true, where ( j, i) and ( j , i) are the incoming edges. Finally, the value of the circuit, T (C), is T (n), where n is the output gate.

Therefore, the CIRCUIT-SAT will be the following problem: Given a Boolean circuit C, is there truth assignment T , appropriate to C, such that T (C) = true?

3 Results Definition 3.1. Given a Boolean formula φ in 3CNF and a Boolean variable x c in φ , the problem TWO-OR-THREE-3SAT consists in deciding whether φ has a truth assignment such that x c is true and each clause in φ has at least two true literals. Boolean formulas, and finally,

• we verify whether φ ∈ 2SAT and accept φ otherwise we reject φ .

We could see the clause (a ∨ b ∨ c) has at least two true literals for some truth assignment if and only if the Boolean formula (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) is satisfiable with that same truth assignment. Indeed, if we want to guarantee this property through all the clauses of φ , then each Boolean formula d i must have a satisfying truth assignment that should be contained into a single truth assignment for φ . This can be done with the simultaneous union of the truth assignment of each Boolean formula d i just joining the d i Boolean formulas with the AND function. The result would be a new Boolean formula φ in 2CNF. In addition, d m+1 will ensure that all possible satisfying truth assignments to φ have the variable x c as true.

Hence, a satisfying truth assignment to φ exists if and only if with this same truth assignment x c is true and each clause in φ has at least two true literals, that is precisely when (φ , x c ) ∈ TWO-OR-THREE-3SAT. The construction of φ is possible in polynomial-time, because we only need a polynomial iteration through all the m clauses of φ for this purpose. The decision of (φ , x c ) for TWO-OR-THREE-3SAT could be done in polynomial-time because 2SAT ∈ P [START_REF] Aspvall | A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas[END_REF].

Theorem 3.3. TWO-OR-THREE-3SAT ∈ NP-complete.
Proof. We already proved that TWO-OR-THREE-3SAT ∈ NP, because P ⊆ NP [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. We are going to make a polynomial-time reduction from CIRCUIT-SAT to this problem. Let's take a Boolean circuit C. We are going to assume that C has no AND gates. Indeed, we can change all the ANDs to ORs gates just adding a polynomial number of NOTs gates as result of applying De Morgan's Laws at each step [START_REF]PAPADIMITRIOU: Computational complexity[END_REF]. We will also assume the circuit C has no input gates of {true, f alse}, that is, all the input gates are variables. Indeed, we can replace each of these input gates of {true, f alse} with a new variable x i just adding the necessary gates for the Boolean expressions (x i ∨ x i ) instead of true and (x i ∧ x i ) instead of f alse. In addition, we assume that C is an standard circuit, and thus, the OR and NOT gates have only one outgoing edge with the exception of the output gate which has none [START_REF]PAPADIMITRIOU: Computational complexity[END_REF].

Then, in the graph represented by C, we add a new node T . We create for the node T an incoming edge from the output gate. We also add for each input gate i, where c(i) = x i , a new node Sx i such that Sx i will have an outgoing edge to node i. After that, we assign for each edge a Boolean variable in the following way: We assign the Boolean variable x i to the outgoing edge from Sx i to the input gate i where c(i) = x i , while we assign to the outgoing edge from the output gate to node T the Boolean variable x c and in the rest of the edges we take some arbitrary and different Boolean variables. We will call this new directed acyclic graph with new nodes and edges assigned to Boolean variables as C . We show some fragments of C in Figure 1. Now, we create a new Boolean formula φ that will be initially empty. Then, for each input gate i of C, where c(i) = x i , with the Boolean variable x i assigned to the incoming edge of i and every variable y assigned to some of the outgoing edges (i could have many outgoing edges) in C (see Figure 1), we add to φ the following clauses (x c ∨ x i ∨ y) and (x c ∨ x i ∨ y). Those clauses have always at least two true literals only when x c is true and y and x i have the same truth values, that is, when x i is true then y is true, and similarly when x i is false.

Next, for each NOT gate of C with an arbitrary Boolean variable x assigned to the incoming edge and another variable y assigned to the outgoing edge in C (see Figure 1), we add to φ the following clauses (x c ∨ x ∨ y) and (x c ∨ x∨ y). Those clauses have always at least two true literals only when x c is true and x and y have different truth values, that is, when x is true then y is false, and viceversa.

At the same time, for each OR gate of C with an arbitrary Boolean variables x and y assigned to the incoming edges and another variable z assigned to the outgoing edge in C (see Figure 1), we add to φ the following clauses (x c ∨ z∨ x), (x c ∨ z∨ y) and (z ∨ x ∨ y). Those clauses have always at least two true literals only when x c is true and z and (x ∨ y) have the same truth values, that is, when z is true then (x ∨ y) is true, and similarly when z is false.

The output gate in C will have an outgoing edge to T in C assigned to the Boolean variable x c . If the output gate is a NOT gate in C with an arbitrary Boolean variable x assigned to the incoming edge in C , we add to φ the following clauses (x c ∨ x∨ x) and (x c ∨ x∨ x c ). Those clauses have always at least two true literals only when x c is true and x is false. If the output gate is an OR gate in C with an arbitrary Boolean variables x and y assigned to the incoming edges in C , we add to φ the following clauses (x c ∨ x ∨ y), (x c ∨ x∨ x) and (x c ∨ y∨ y). Those clauses have always at least two true literals only when x c is true and (x ∨ y) is true.

Finally, we obtain a Boolean formula φ in 3CNF that contains the Boolean variable x c such that,

C ∈ CIRCUIT-SAT if and only if (φ , x c ) ∈ TWO-OR-THREE-3SAT. (3.1) 
Certainly, we can see if φ has a truth assignment T where x c is true and each clause in φ has at least two true literals, then we can affirm the truth assignment T ⊂ T (that is the truth assignment of all the variables x i in φ where c(i) = x i for the input gates i in C) is appropriate to C and T (C) = true. Indeed, this truth assignment T for φ will contain the value of each T (i) (for any gate i ∈ V in C) just expressed in the value of the Boolean variables of φ assigned to the respective outgoing edge or the incoming edge (in case of the input gates) in the nodes of C . Consequently, the truth value of x c is true in T if and only if the value of the circuit T (C) is true in T . Moreover, the construction of φ is possible in polynomial-time, because we only need a polynomial iteration through all the nodes and edges of C for this purpose. Theorem 3.4. P = NP.

Proof. This is a direct consequence of Theorems 3.2 and 3.3 [START_REF] Cormen | Introduction to Algorithms[END_REF].

Conclusions

This proof of P = NP will have stunning practical consequences, because it leads to efficient methods for solving some of the important problems in NP. The consequences, both positive and negative, arise since various NP-complete problems are fundamental in many fields.

Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution to an NP-complete problem such as 3SAT will break most existing cryptosystems including: public-key cryptography, symmetric ciphers and one-way functions used in cryptographic hashing. These would need to be modified or replaced by information-theoretically secure solutions not inherently based on P-NP equivalence.

On the other hand, there are enormous positive consequences that will follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are NP-complete, such as some types of integer programming and the traveling salesman problem. Efficient solutions to these problems have enormous implications for logistics. Many other important problems, such as some problems in protein structure prediction, are also NP-complete, so this will spur considerable advances in biology.

But such changes may pale in significance compared to the revolution an efficient method for solving NP-complete problems will cause in mathematics itself. Stephen Cook says: "...it would transform mathematics by allowing a computer to find a formal proof of any theorem which has a proof of a reasonable length, since formal proofs can easily be recognized in polynomial time" [3].
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 1 Figure 1: New nodes and edges, where all the edges are assigned to Boolean variables.
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