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Asymptotic fields ahead a crack for a class
of non linear materials under mode III

Claude Stolz 
GeM UMR CNRS 8163, Ecole Centrale de Nantes, 1 rue de la Noe, F-44000 Nantes, France 

IMSIA, UMR CNRS 9219, EdF, Clamart Cedex F-92141, France

The paper considers the mechanical fields near the tip of a crack deformed by an anti-plane shear at infinity for a class of non linear elastic 
materials. For brittle material rupture occurs when a maximal stretch is reached. Taking account of this critical value, the crack is replaced 
by a totally damaged zone of finite thickness named a quasicrack. Inside this domain, the stress is identically zero and the shape of the 
boundary between damaged and undamaged body is found analytically.

1. Introduction

In fracture mechanics it is usually assumed that the

materials far away of the crack tip are undamaged. The

concentration of strain near the crack tip leads to initiation

of microcracks or microvoids. Hence the constitutive beha-

viour near the tip is quite different from the behaviour of

the bulk. A damage model seems to be a good approach

to describe such situations.

The solution of equilibrium of a crack in a linear elastic

body is obtained as an outer asymptotic expansion of the

displacement according to the distance to the crack tip.

Extensions of such analyses have been made in order to

take into account of the non linear effects on the asymp-

totic inner expansion based on finite elasticity or on elasto-

plasticity. For the finite anti-plane shear near the tip of a

crack in an incompressible hyperelastic solid the displace-

ment field possesses singularities or discontinuities of its

gradient depending on the stress–strain curve (Knowles,

1977; Knowles and Sternberg, 1980, 1981). In these stud-

ies, the constitutive behaviour is defined for any amount

of shear, which can be unbounded. For elastic power law

hardening material in mode III, the HRR field can be recov-

ered (Hutchinson, 1968; Rice, 1967, 1968).

In 1968, Neuber (1968) investigates the stress-concen-

tration under mode III for a notch. The solution is obtained

for non linear stress–strain laws monotonically increasing.

For a quasi-crack which consists of two parallel straight

lines ended by a cycloid, he shows that the stress is

uniform along the cycloid.

Different modelization of damage can be considered.

Continuous damage has been used to investigate the

asymptotic solution of mode III crack in damaged softening

material (Wang and Chow, 1992; Zhang et al., 1993). For

brittle material rupture occurs when a maximal stretch is

reached. When this value is reached, the material is broken

and a damaged zone grows inside the body. In the case of

elastic-brittle material, a closed form solution for the

dynamic propagation of mode-III crack has been obtained

(Bui and Ehrlacher, 1980). Under quasistatic conditions,

the shape of the damaged zone is a quasi-crack (Bui and

Ehrlacher, 1980). A similar solution is obtained for elastic
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– perfectly plastic brittle materials (Bui, 1980). The thick-

ness of the quasi-crack is determined by the value of the

stress intensity factor applied at infinity and the critical

value of shear amount.

More recently, brittle hyperelastic material solution for

constitutive laws which permit loss of ellipticity has been

considered (Stolz, 2010), using hodograph scheme as pro-

posed in Knowles (1977), Knowles and Sternberg (1981),

Rice (1967).

The purpose of the paper is to determine the mechan-

ical field ahead of a crack or of the quasicrack, depending

on the value of the critical shear. The shape of the dam-

aged zone under anti-plane shear conditions for different

class of non-linear elastic brittle material is also

investigated.

2. Preliminaries

Consider an isotropic homogeneous non linear elastic

body. Further we introduce rectangular cartesian coordi-

nates ðx1; x2; x3Þ. Suppose the interior of the body occupies

an open region X and consider a deformation correspond-

ing to anti-plane shear which involves displacements w in

the direction e3 normal to the plane ðx1; x2Þ

yðxÞ ¼ xþwðx1; x2Þe3: ð2-1Þ

The displacement w is the out-of-plane displacement at

point x of cartesian coordinates xi; i ¼ 1;2. The modulus

of the displacement gradient is denoted by R:

rw ¼ w;ie3 � ei; R2 ¼ w;iw;i ¼ rwT :rw

¼ jjrwjj2: ð2-2Þ

Suppose further the medium is an incompressible, homo-

geneous, isotropic elastic solid that possesses a strain

energy density E per unit undeformed volume. The energy

is a function EðI1; I2Þ of the first two fundamental invariants

I1; I2 of the left (or right) Cauchy–Green tensor. The third

fundamental invariant is unity since the material is incom-

pressible. For anti-plane shear I1 ¼ I2 ¼ I ¼ 3þ R2 and the

strain energy becomes a function WðIÞ ¼ EðI; IÞ. The

Cauchy stress r satisfies the state equation

r ¼
X

2

i¼1

siðe3 � ei þ ei � e3Þ; si ¼
@W

@w;i
¼ lðRÞw;i: ð2-3Þ

The balance of linear momentum in the absence of body

forces leads to the equilibrium equations

Div r
T ¼ 2ðW0ðIÞw;iÞ;i ¼ 0; ð2-4Þ

where i ¼ 1; 2 and the summation is implied. These differ-

ential equations are elliptic under the condition

2W0 þ 4R2W00
P 0: ð2-5Þ

This conditions implies that the local stress–strain curve

sðRÞ ¼ 2RW0ðIÞ ¼ RlðRÞ is an increasing function of R.

In this paper, we consider a class of constitutive laws

defined by material constants lo; l1; Ro; Ru; Rm; a:

R 6 Ro; s ¼ loR;

Ro 6 R 6 Ru; s ¼ l1Ro
R
Ro

� �a
;

Ru 6 Rm; s ¼ l1Ro
Ru
Ro

� �a
R
Ru

¼ l2R;

Rm 6 R; s ¼ 0:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð2-6Þ

For R 6 Ro the Eq. (2-4) are elliptic. For Ro 6 R 6 Ru elliptic-

ity is ensured if aP 0 otherwise the Eq. (2-4) are

hyperbolic.

This class of constitutive law contains many type of

classical laws used by different authors: (See Fig. 1).

� Elastic-brittle material, Bui and Ehrlacher (1980). This

classical law is described by Ro ¼ Ru ¼ Rm.

� Power- law brittle material, Neuber (1968), Stolz (2010).

l1 ¼ lo; Ru ¼ Rm; aP 0.

� Perfectly plastic materials, Rice (1967), Wang and Chow

(1992). a ¼ 0; Rm ¼ Ru ¼ 1
� Special material, Abeyaratne (1981). lu ¼ lo; l2 ¼ lo

ðRo=RuÞ3=2; Rm ¼ 1
� Non linear softening behaviour, Knowles and Sternberg

(1981). l1 ¼ lo; a ¼ �:5; Rm ¼ 1.

For brittle materials rupture occurs at a finite amount of

shear Rm. The goal of this article is to study the influence

of Rm on the solution of the problem of equilibrium.

3. Hodograph transformation

To determine the mechanical fields around the

damaged zone, the hodograph transformation is useful as

pointed by Hult and McClintock (1956), Knowles and

Sternberg (1980, 1981), Rice (1967). Other technics can

be used (Bui and Ehrlacher, 1980; Neuber, 1968). In the

hodograph transformation the components of the gradient

rw become the new independent variables. We consider

the mapping:

ðx1; x2Þ ! ðn1; n2Þ; ni ¼ w;iðx1; x2Þ: ð3-1Þ

Fig. 1. Typical constitutive behaviour.
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The displacement appears as a potential dw ¼P2
i¼1nidxi

� �

.

This mapping is invertible provided the Jacobian

H ¼ w;11w;22 � ðw;12Þ2 does not vanish. The Legendre trans-

formation U of w with respect to ni is given by:

Uðn1; n2Þ ¼
X

2

i¼1

xiw;iðx1; x2Þ �wðx1; x2Þ ¼ nixi �w: ð3-2Þ

By differentiating U with respect to n, the inverse mapping

is obtained:

xi ¼
@U

@ni
; w ¼ n:rU � U: ð3-3Þ

In the hodograph plane ðn1; n2Þ, the polar coordinates are

used ðn1 ¼ R cosH; n2 ¼ R sinHÞ and the physical coordi-

nates ðx1; x2Þ satisfy:

x1 ¼ cosH
@U

@R
� sinH

R

@U

@H
; x2 ¼ sinH

@U

@R
þ cosH

R

@U

@H
:

ð3-4Þ

The stress field takes the form

s1 ¼ r13 ¼ lðRÞR cosH; s2 ¼ r23 ¼ lðRÞR sinH ð3-5Þ

and the norm sðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21 þ s22

q

satisfies the constitutive

law sðRÞ ¼ lðRÞR.
For a given constitutive law, the Eq. (2-4) is rewritten in

the hodograph plane ðR;HÞ using the mapping (3-4) and

the potential U. The notation ðÞ0 indicates a derivation with

respect to R. The Eq. (2-4) becomes

@

@R
sðRÞ @U

@R

� �

þ sðRÞ0
R

@2U

@H2
¼ 0: ð3-6Þ

This equation has the form proposed by Knowles and

Sternberg (1980), Rice (1967). The Eq. (3-6) is homoge-

neous of degree one in U. The displacement w associated

to U satisfies

w ¼ R2 @

@R

U

R

� �

: ð3-7Þ

For the class of constitutive laws defined previously, the

solution of the problem of equilibrium is obtained by

integration of the Eq. (3-6) on each domain

ðR;0 6 H 6 pÞ of the hodograph lane, with respectively

ð0 < R < RoÞ; ðRo < R < RuÞ; ðRu < R < RmÞ. To each domain

in the hodograph plane corresponds a domain in the

physical space x1; x2.

When the stress–strain curve is continuous, along the

boundaries (R ¼ Ro or R ¼ Ru), the potential, the stress,

the displacement are continuous, this case arrives when

the differential equation are elliptic. When the stress–

strain curve is discontinuous or when softening occurs,

the intersection of the domains are not reduced to the

images of the curves (R ¼ Ro or R ¼ Ru). A solution is

obtained by ensuring the continuity of the displacement

w and of the stress vector r:n along a curve (shock curve)

across which discontinuities of the displacement gradient

can exist. The condition of uniqueness is not discussed in

this article, but it is relevant from the property that the

domain of hyperbolicity is embedded by the domain of

ellipticity. This will be discuss in another publication.

4. Peculiar solutions of equilibrium Eq. (3-6)

Consider a power stress–strain curve: sðRÞ ¼ ŝRa, the
set of solutions of (3-6) contains the particular functions

Ua ¼ RcosH

Z Ro

R

dt

sðtÞt2þa
; Va ¼R

2a
aþ1

logRcosH�ðH�p
2
ÞsinH

� �

;

T1 ¼RcosH; T2 ¼ RsinH;

for which the mapping ðR;HÞ ! ðx1; x2Þ can be determined.

For example, the function T1 (or T2) gives a shift of one

unity along e1 (resp. e2) in the physical coordinates. The

function Va permits a shift along x2 of p when H varies

from 0 to 2p at fixed R.

For H ¼ 0 or H ¼ p; r32 ¼ s2 ¼ 0, this is the boundary

condition satisfied for a crack or on the lip of the quasi-

crack. In this case, the potential U must satisfy:

x2ðR;HÞ ¼ 1

R

@U

@H
¼ CðR;HÞ;

8R; H ¼ 0; and H ¼ p; ð4-1Þ

where CðR;0Þ and CðR;pÞ are uniform, this condition is sat-

isfied by Ua and Va.

4.1. Anti-plane shear and mode III loading

In linear elasticity, the differential equation reduces to

Laplace’s equation and for a straight crack

(�1 6 x1 6 0; x2 ¼ 0) the solution of equilibrium is well

known. For polar coordinates ðr; hÞ centre at the crack tip,

the displacement is obtained as

w ! 2K

lo

ffiffiffiffiffiffiffi

r

2p

r

sin
h

2
; r ! 1 ð4-2Þ

For a linear elastic solid Ro ¼ 1 and lðRÞ ¼ lo, the solution

is then

U1ðR;HÞ ¼ A

2loR
cosH; w ¼ � A

loR
cosH ð4-3Þ

The potential U1 satisfies the boundary condition along the

crack lips H ¼ 0 and H ¼ p, the lips are stress free. The

comparison with (4-2) gives the relations

H ¼ 1

2
ðpþ hÞ; A ¼ K2

plo

: ð4-4Þ

This defines the loading to apply far ahead of the crack in

the following sections.

5. The quasi-crack solution in mode III

The mode III displacement field is applied at infinity.

The local behaviour is non-linear and the amount of shear

is limited by a critical value Rm, as described by the pro-

posed constitutive law.

Consider a brittle material with ðl1 ¼ lo;Ru ¼ RmÞ the

solution in the hodograph plane is builded by the combina-

tion of the proposed potential U; V as:
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06R6Ro; �UoðR;HÞ¼AoU1ðR;HÞ�BoV1ðR;HÞþCoT1ðR;HÞ
Ro6R6Rm

�U1ðR;HÞ¼A1UaðR;HÞ�B1VaðR;HÞþC1T1ðR;HÞ

The constants ðAo;A1;BoÞ and ðB1;Co;C1Þ are determined

by:

� asymptotic behaviour when R ! 0,

� traction-free conditions along the boundary of the dam-

aged zone,

� continuity of the displacement w everywhere,

� continuity of the stress vector along curves where �U and

rw are discontinuous.

For sake of simplicity, we introduce dimensionless

constants

a ¼ Ao

soRo

; a1 ¼ A1

asoRo

; bo ¼
Bo

a
; b1 ¼ B1

a
; q ¼ R

Ro

;

qm ¼ Rm

Ro

; Xi ¼
xi
a
; W ¼ w

a

5.1. Determination of the constants

The displacement is given on each domain by

0 6 q 6 1; Woðq;HÞ ¼ � 1
qþ boq
� �

cosH

1 6 q 6 qm; W1ðq;HÞ ¼ � a1
qa þ

2b1a
aþ1

q
� �

cosH

8

>

<

>

:

ð5-1Þ

The displacement must satisfied the matching condition at

1, so we obtain

a ¼ K2

ps2o
ð5-2Þ

The boundary along the damaged zone must be traction-

free. For that, the image of the hodograph plane in the

physical plane must be determined. The constants Ci are

chosen such that at point q ¼ 1;H ¼ p
2

� �

: X1 1�; p
2

� �

¼
X1 1þ; p

2

� �

. And the physical coordinates are given in each

domain by

� 0 6 q 6 1:

Xo
1 ¼ �1

2
� 1

2q2
cosð2HÞ � bo logq

Xo
2 ¼ � 1

2q2
sinð2HÞ þ bo H� p

2

� �

� 1 6 q 6 qm:

X1
1 ¼� a1

qaþ1
�bb1

� �

cos2H

2
þ a1

qaþ1
þb1

� �

b

2
�2b1a
aþ1

logq� a1

aþ1

X1
2 ¼� a1

qaþ1
�bb1

� �

sin2H

2
þb1 H�p

2

� �

where b ¼ ð1� aÞ=ð1þ aÞ.

For fixed q : q ¼ qa, the curve ðX1ðqa;HÞ;X2ðqa;HÞÞ is a
cycloid.

For the values Hl ¼ 0 or Hl ¼ p, the curves

ðXi
2ðq;HlÞ ¼ �Bip=2;8qÞ are two lines parallel to e1 where

s2 ¼ 0.

In the hodograph plane, the traction-free boundary con-

dition is given by the equation

s1dX2 � s2dX1 ¼ 0: ð5-3Þ

These conditions must be satisfied along the curves q ¼ qm

or H ¼ Hl. It is obvious that the traction-free boundary

condition is satisfied for Hl ¼ p
2
� p

2
for all q. The relation

along the cycloid where q ¼ qm gives the property

2b1

aþ 1
� a1
qaþ1

m

¼ 0: ð5-4Þ

The thickness H of the damaged zone is H ¼ b1ap. For

qm ! 1, the quantity b1 vanishes, the quasi-crack tends

to the classical crack, the thickness H vanishes, the cycloids

are circles as presented in Knowles and Sternberg (1980)

The determination of the solution depends on the

mechanical property, especially on the non linearity of

the constitutive behaviour defined by a.

5.2. Solutions for aP 0

The balance Eq. (2-4) are elliptic. This is the case

described study by Neuber (1968). If q2 P q1 the volume

bounded by the cycloid ðXðq2;HÞ;Yðq2;HÞÞ contains

the volume bounded by the cycloid ðXðq1;HÞ;Yðq1;HÞÞ.
For q ¼ 1 the stress s is continuous. The cycloid

ðX1
1ð1;HÞ;X1

2ð1;HÞÞ and the cycloid ðX2
1ð1;HÞ;X2

2ð1;HÞÞ are
identical when Woð1;HÞ ¼ W1ð1;HÞ under the conditions:

b1 ¼ bo; and 1 ¼ a1 � bb: ð5-5Þ

All the constants are then determined.

In addition, the thickness of the damaged zone with

respect to the external loading is determined. Inserting

the value of a1 in (5-4):

H ¼ abp ¼ K2

s2o
b; ð5-6Þ

1 ¼ 2b

aþ 1
qaþ1

m þ a� 1

2

� �

: ð5-7Þ

The last equation is related to the value of strain energy

along the cycloid q ¼ qm given by

EðRmÞ ¼
Z Rm

0

sðtÞdt ¼ 1

lo

s2o qaþ1
m þ a� 1

2

� �

: ð5-8Þ

Then the constant b is related to the flux of energy along

the cycloid q ¼ qm.

D ¼ HEðRmÞ ¼ abpEðRmÞ ¼
K2

2lo

: ð5-9Þ

This can be interpreted as the damage dissipation for a

steady state propagation of the quasi-crack and the equiv-

alent crack defined by the same loading at infinity (Stolz,

2010).

The equations of equilibrium are elliptic and there is no

discontinuities of the displacement gradient except for

q ¼ qm.

4



For qm ¼ 1, the results obtained by Bui (1980) are

recovered: b ¼ 1, that is the case of elastic-brittle material.

The thickness of the damaged zone satisfies the relation

H ¼ pa ¼ K2

s2o
ð5-10Þ

An estimation of the thickness for steel gives H of the order

of 100 lm.

When qm tends to1, the quasi-crack tends to be a crack

because the thickness vanishes and the solution of Rice

(1967) is recovered.

5.3. Solution for a 6 0 and Rm ¼ 1

Now the equilibrium equations are no longer elliptic,

there is softening for q > 1. We must construct a continu-

ous displacement field.

For �1 < a < 0 the solution is given by

(b ¼ ð1� aÞ=ð1þ aÞ).

� Ellipticity domain: For 0 6 qe 6 1, the Eq. (2-4) are

elliptic

Xe
1 ¼ rcoshþ a1

1þa
¼ ba1

2
� 1

2q2
e

cosð2HeÞ¼Xca1þ r1 cosh1;

Xe
2 ¼ rsinh¼� 1

2q2
e

sinð2HeÞ¼ r1 sinh1;

We ¼� 1

qe

cosHe:

In the physical plane, the ellipticity domain is the exte-

rior of the disc C1, see Fig. 2.

� Hyperbolicity domain: For 1 6 q, the Eq. (2-4) are

hyperbolic

Xh
1 ¼ rcoshþ a1

1þa
¼� a1

qaþ1
h

cos2Hh

2
� a1

qaþ1
h

b

2
þ a1
1þa

;

Xh
2 ¼ rsinh¼� a1

qaþ1
h

sin2Hh

2
;

Wh ¼� a1
qa

h

cosHh:

The domain of hyperbolicity H is plotted on Fig. 2.

To ensure the continuity of the displacement, we must

explain the displacement in terms of ðr; hÞ in the two

domains.

The domain of ellipticity 0 6 q 6 1 is the exterior of the

circle C1 of radius 1=2 centred in a1Xc , see Fig. 2. The circle

C:75 for q ¼ :75 belongs to the domain of ellipticity. With

respect to the polar coordinates at this point, we have

1

qe

¼
ffiffiffiffiffiffiffi

2r1
p

; 2He ¼ h1 þ p We ¼
ffiffiffiffiffiffiffi

2r1
p

sin
h1

2
ð5-11Þ

We proceed now for the hyperbolic case, q > 1. For

qh ¼ qa, the point ðX1;X2Þ is on the circle Ch of radius

1=ð2q1þa
h Þ. In Fig. 2 the circle C5 for q ¼ 5 belongs to the

domain of hyperbolicity, these points are also in the

domain of ellipticity. Upon referring to the polar coordi-

nates (r; h) and solving the quadratic equation in qh, one

is led to

a1

2qaþ1
h

¼ r
b cos h� SðhÞ

b2 � 1
; SðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2 þ b2 cos2ðhÞ
q

ð5-12Þ

The value of h is limited by the condition of existence of

SðhÞ. After some algebraic manipulations, we get the defini-

tion of Hh as

cosHh ¼ � 1
ffiffiffi

2
p ð1þ bÞ sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ b� b cos2 hþ SðhÞ cos hÞ
p ð5-13Þ

sinHh ¼ 1
ffiffiffi

2
p cos hþ SðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ b� b cos2 hþ SðhÞ cos hÞ
p ð5-14Þ

The value of the displacement has an analogous form as

HRR field

Wh ¼ a1 f ðhÞ sin h c
a

aþ1; f ¼ K
b cos hþ SðhÞð Þ

b

2

cos hþ SðhÞð Þ12
; ð5-15Þ

where

c ¼ r

a1
; K ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

bþ 1
p

2b=2
ð5-16Þ

The continuity of w is ensured along the line H ¼ p=2.
The domain of hyperbolicity must contain the disk C1,

and the constant a1 must be determined. The solution is

obtained by ensuring the continuity of w on a curve, this

curve is inside the intersection of the domains E and H.

Along this curve, we must ensure the equality

ðXe
1;X

e
2;WeÞ ¼ ðXh

1;X
h
2;WhÞ, this is an implicit equation of

a curve as a relation between qe; He and qh; Hh.

Fig. 2. The ellipticity (left) domain and the hyperbolicity domain (right) for a ¼ �:5.
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By replacing of h1 and r1 in terms of polar coordinates

r; h, and using the equality We ¼ Wh, the curve rsðhÞ satis-
fies the equation

�c2b � 2ða1c cos h� XcÞK2f
2cb�1 þ a21K

4f
4
sin

2
h ¼ 0

ð5-17Þ

This generalises the results of Knowles and Sternberg

(1980) for different a. On this curve the gradient of the dis-

placement has a discontinuity, but the stress vector must

be continuous.

AsWe ¼ Wh the normal vector n to the curve rsðhÞ in the

plane (x1; x2) is

njjrWe �rWhjj ¼ rWe �rWh; ð5-18Þ

then the continuity of the stress vector implies

ðlðRhÞrWh � lðReÞrWeÞ:n ¼ 0: ð5-19Þ

For the considered behaviour we obtain

l1q
a�1
h jjrWhjj2 þ lojjrWejj2

� ðl1q
a�1
e þ loÞqeqh cosðHe �HhÞ ¼ 0: ð5-20Þ

By elimination of ðqe;HeÞ using the relations

� sinð2HeÞ
2q2

e

¼ � a1

qaþ1
h

sinð2HhÞ
2

; � cosðHeÞ
qe

¼ � a1
qa

h

cosHh; kqaþ1
h ¼ 1 ð5-21Þ

we obtain finally

ðlo � l1a1Þ 1� a1

kb

� �

cos2 Hh ¼ 0: ð5-22Þ

As the stress s is continuous at point q ¼ 1; l1 ¼ lo then

a1 ¼ 1. The displacement w is then continuous along the

circle C1. The domain of hyperbolicity contains the interior

of the disc C1 and is limited by two ray-segments, see

Fig. 2.

0 < r <
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1

q

; ha ¼ � arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1

q
	

b ð5-23Þ

The curve L begins at ðr; hÞ ¼ ð0;0Þ and finishes at

ðrsðhaÞ; haÞ. When h ! 0þ; h1 ! p, and 0 ¼ Xc � r1 then

we know the value of Wa ¼ we at this point. The displace-

ment wh along the curve L tends to Wa and we obtain the

asymptotic value of rsðhÞ

rsðhÞ ¼ Wa ð5-24Þ

and the slope at the origin of the shock line is zero. When

the value of a < 0 decreases. the length of the domain of

hyperbolicity along X1 increases, see Fig. 3

For a finite qm, the domain of ellipticity must contain

the domain of hyperbolicity then b1 P b0. The Eq. (5-4) is

conserved. The potential �U is continuous along the line

H ¼ p
2
. A numerical solution is obtained ensuring the conti-

nuity of the displacement at the point image of

(q ¼ 1; H ¼ 0). The two constants bo; b1 are evaluated

ensuring the existence of a point ðqe 6 1;H ¼ 0Þ of the

domain of elasticity and a point ðqm;HhÞ where the

displacement Woðqe; 0Þ is equal to Whðqm;Hh. The solution

is theoretically closed, however the proof of the continuity

of the stress vector and of the displacement, along the

determined shock curve L, is obtained only numerically.

This point request more investigation.

6. A particular constitutive law

Consider now the special material introduced by

Abeyaratne (1981) for which the material characteristics

are l1 ¼ lo;a ¼ �1=2;l2 ¼ lo
Ro
Ru

� �3=2

;Rm ¼ 1
� �

. For this

case the domains of ellipticity and hyperbolicity are more

complex, see Fig. 5.

We consider now the same law with a finite Rm. By

applying the above results we can conclude that the local

solution is decomposed into three parts

� Ellipticity domain 0 6 q 6 1

X1 ¼ �1

2
� 1

2q2
cosð2HÞ � b logq

X2 ¼ � 1

2q2
sinð2HÞ þ b H� p

2

� �

W ¼ � 1

q
þ bq

� �

cosH

Fig. 3. The shape of the shock curve L, for a ¼ �:5 (left) and for a ¼ �:7

(right) under the same loading and the same scale, C1 is the circle q ¼ 1.

Fig. 4. The shock line for special law a ¼ �:5; qm ¼ 20; qu ¼ 8.
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� Hyperbolicity domain 1 6 q 6 qu

X1 ¼� a1
ffiffiffiffi

q
p �3b

� �

cos2H

2
þ3

a1
2
ffiffiffiffi

q
p þ3b

2
þ2b logq�2a

X2 ¼� a1
ffiffiffiffi

q
p �3b

� �

sin2H

2
þb H�p

2

� �

W ¼�ða1
ffiffiffiffi

q
p �2bqÞcosH

� Ellipticity domain qu 6 q 6 qm

X1 ¼ �b logq� a2

2q2
cos 2H� a2

2q2
u

þ 2a1

ffiffiffiffiffiffi

1

qu

s

� 1

 !

þ 3b logqu

X2 ¼ � a2
q2

sinð2HÞ þ b H� p
2

� �

W ¼ � a2
q

þ bq

� �

cosH

In this case, the domains are now defined by cycloids.

The continuity of w for qo; qu implies

1 ¼ a1 � 3b;
a2
q2

u

¼ a1
ffiffiffiffiffiffi

qu

p � 3b ð6-1Þ

The free stress boundary along the cycloid q ¼ qm implies

b� a2
q2

m

¼ 0 ð6-2Þ

then the constants are determined

b ¼ 1

ffiffiffiffiffiffi

qu

p
3þ qm

qu

� �2
� �

� 3

; a1

¼ b
ffiffiffiffiffiffi

qu

p
3þ qm

qu

� �2
!

a2 ¼ bq2
m ð6-3Þ

The determination of the shock curve is made numerically

and the solution is compared to the solution of Abeyaratne

(1981). The geometry is of the same type but the circles are

replaced by cycloids.

When qm tends to infinity, b tends to 0, the solution of

Abeyaratne (1981) is recovered, b ¼ 0; a1 ¼ 1; a2 ¼ qu

ffiffiffiffiffiffi

qu

p

and the cycloids are transformed in circles. In Fig. 5, the

curves ðX1ðq;HÞ;X2ðq;HÞÞ at fixed q are circles Cq. The

domain of ellipticity ð0 < q < 1Þ is the exterior of the disc

C1, the domain of ellipticity qu < q is the interior of disc

Cu. The domain of hyperbolicity is limited by the two

ray-segment ðbcÞ, ðb0
c0Þ contains the disc C1 and is limited

by the circle Cu.

The curve L does not emanate from the crack tip. In

Fig. 5 the position of the crack tip is the origin. The slope

of the ray-segment does not depend on qu.

7. The particular case a ¼ 0

For a ¼ 0, the stress s ¼ s1 is constant, the potential U

and the associated displacements, the polar coordinates are

� Ellipticity domain: 0 6 q 6 1

Ue ¼ q cosH

Z 1

q

dt

t3

Xe
1 ¼ �1

2
� 1

2q2
cos 2H ¼ r cos h� a ¼ r1 cos h1

Xe
2 ¼ �1

2
sin2H ¼ r sin h ¼ r1 sin h

We ¼ � 1

q
cosH

� Parabolic domain 1 6 q

Up ¼ aq cosH

Z 1

q

dt

t2
¼ a

1

q
� 1

� �

q cosH

Xp
1 ¼ a

2q
ð1� cosHÞ � a ¼ r cos h

Xp
2 ¼ � a

2q
sinH ¼ r sin h

Wp ¼ �a cosH

Assuming that Weð1;HÞ ¼ Wpð1;HÞ forall H, the con-

stant a must be equal to 1. Consider now the constitu-

tive law, in the elliptic domain, s ¼ so and when

qP 1, the stress is s1 for the sameH, such a continuous

solution is obtained only if s1 ¼ so. The solution is that

of Rice (1966).

When so – s1, we must determine a curve along which

the displacement is continuous simultaneously with the

stress vector. Then we must solve the system: find the

two families of points ðqe 6 1;HeÞ; ðqp P 1;HpÞ such that

Weðqe;HeÞ ¼ Wpðqp;HpÞ; Xe
1ðqe;HeÞ

¼ Xp
1ðqp;HpÞ; Xe

2ðqe;HeÞ ¼ Xp
2ðqp;HpÞ:

This system determines a curve implicitly. Along this curve

the normal vector is defined by

njjrWe �rWpjj ¼ rWe �rWp ð7-1Þ

Fig. 5. The domains and the shock curve L for a ¼ �:5; Rm ¼ 1, for qu ¼ 4 (left) and qu ¼ 8 (right).
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and the continuity of the stress vector ðrp � reÞ:n ¼ 0

determines the value of the constant a1.

As sp1 ¼ s1 cosHp; s
p
2 ¼ s1 sinHp and se1 ¼ soqe cosHe;

se2 ¼ soqe sinHe, the conditions of continuity is written as

s1qp þ soq2
e � ðs1qe þ soqeqpÞ cosðHp �HeÞ ¼ 0 ð7-2Þ

From the definition of the curve we have

cosðHp �HeÞ¼ acos2Hpþ
sin

2
Hp

qp

;
1

q2
e

¼ a2 cos2Hpþ
sin

2
Hp

q2
p

ð7-3Þ

then reporting these values in the expression of the stress-

vector continuity, we obtain

cos2 Hpð1� qpaÞðas1 � soÞ ¼ 0 ð7-4Þ

then this determines the value of a : a ¼ so=s1 for which

the stress vector is continuous.

The solution is continuous only at point q ¼ 1; H ¼ p=2
of the circle Ce. For this case the general form of the poten-

tial is recovered

U ¼ q cosH

Z 1

q

dt

sðtÞt2
: ð7-5Þ

When q tends to infinity, X1 tends to Xo ¼ �a, the parabolic

domain is inside the circle of radius a=2 centred at point

�a=2. For increasing q, the position of point at fixed q is

a circle tangent at point (Xo;0). The polar coordinates are

referred to this point.

Using the preceding results, in the elliptic domain, we

have the connection

1

q
¼

ffiffiffiffiffiffiffi

2r1
p

; 2H ¼ h1 þ p; W ¼
ffiffiffiffiffiffiffi

2r1
p

sin
h1

2
ð7-6Þ

And in parabolic domain,

r ¼ a

q
cos h; H ¼ hþ p

2
: ð7-7Þ

Now, we must find a curve, belonging the domain Cp
1=C

e
1,

along which the displacement is continuous. This curve is

defined by the equation weðrs; hÞ ¼ wpðrs; hÞ, so we have

r2s � 2a2rs cos h� ða4 sin2
h� 2a3 þ a2Þ ¼ 0; ð7-8Þ

then the equation of the shock curve L is given by:

rs ¼ a2 cos hþ 1� a2: ð7-9Þ

The shape of L is plotted in Fig. 6

We consider now that qm is finite, the solution is

obtained by addition of peculiar functions

� Ellipticity domain (exterior of Ce
1)

U¼1

2
qcosH

1

q2
�1

� �

�b1qðlogqcosH� H�p
2

� �

sinHÞ

X1 ¼� 1

2q2
cos2H�1

2
�b1 logq; X2 ¼� 1

2q2
sin2Hþb1 H�p

2

� �

W ¼� 1

q
þb1q

� �

cosH

� Parabolic domain (interior of Cp
1)

U ¼ aq cosH
1

q
� 1

� �

þ b2q H� p
2

� �

sinH;

X1 ¼ � a
1

q
� b2

� �

cos 2H� 1

2
� aþ b2;

X2 ¼ � a
1

q
� b2

� �

sin 2H

2
þ b2 H� p

2

� �

W ¼ �a cosH

The domain of ellipticity contains the parabolic domain

if b2 < b1.

Along the cycloid q ¼ qm, the stress free condition gives

b2 ¼ a

2qm

ð7-10Þ

The construction of the curve is now made numerically.

The solution is plotted in Fig. 7. Further studies is neces-

sary to prove analytically the continuity of the displace-

ment and of the stress vector along the line L.

When s1 ¼ so and Rm finite, the continuity of the dis-

placement, along q ¼ 1, and the condition along qm, imply:

a ¼ 1þ b; b1 ¼ b2 ¼ b; 2bqm ¼ a ð7-11Þ

and the solution of Bui (1980) is recovered. The domain

where (s ¼ so) is limited by the two cycloids C1; Cm (See

Fig. 8).

Fig. 6. The shock curve for a ¼ 0; Rm ¼ 1; qu ¼¼ qo ¼ 1; a ¼ 4.

Fig. 7. The shock line for a ¼ 0; qm ¼ 2; qu ¼ qo ¼ 1; a ¼ 4.
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8. Conclusion

We have determined the shape of the damaged zone

under anti-plane shear condition for hyperelastic brittle

material. The analytical results are a generalisation of pre-

ceding results obtained by Bui and Ehrlacher (1980,) for

brittle material. The thickness of the damaged zone is

determined by the critical strain energy at rupture and

the loading.

We have extend the theory for more complex constitu-

tive law and recovered results obtained many years ago.

The case of power law and extension on a class of non lin-

ear elastic law is discussed with and without brittle dam-

age. With brittle damage one obtains for mode III

loading, we have found the geometry of the quasi-crack

proposed by Neuber for hardening law, this results is

extended to some case of softening especially for a gener-

alisation of the special material introduced by Abeyaratne

(1981).
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