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ABSTRACT

In this paper, we discuss a new way to model damage growth
in solids. A level set is used to separate the undamaged zone from
the damaged zone. In the damaged zone, the damage variable is
an explicit function of the level set. This function is a param-
eter of the model. Beyond a critical length, it is assumed that
the material is totally damaged, thus allowing a straightforward
transition to fracture. The damage growth is expressed as a level
set propagation. The configurational force driving the damage
front is non local in the sense that it averages information over
the thickness in the wake of the front. Three important theoret-
ical advantages of the proposed approach are as follows : (a)
The zone for which the materials is fully damaged is located in-
side a clearly identified domain (given by an iso- level set). (b)
The non-locality steps in gradually in the model. At initiation the
model is fully local. At initiation, micro-cracks being absent no
length scale should prevail. (c) It is straightforward to prove that
dissipation is positive. A numerical experiment of the cracking
of a multiply perforated plate is discussed.
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INTRODUCTION

It is well known that fracture mechanics alone may not
model the full scenario of the degradation of solids under me-
chanical loading. Crack initiation for instance requires dam-
age mechanics to model the gradual loss of stiffness in a small
area [1,2]. When it comes to modeling damage, special care
needs to be taken to avoid so called spurious localizations. Sev-
eral damage models were proposed in the literature to avoid spu-
rious localization as detailed in [3,4]:

* non local integral damage model: the damage evolution is
governed by a driving force which is non-local i.e. it is the
average of the local driving force over some region [5], [6];
* higher order, kinematically based, gradient models
through the inclusion of higher-order deformation gradient
[7-9] or additional rotational degrees of freedom [10] ;

* higher order, damage based, gradient models: the gradient
of the damage is a variable as well as the damage itself. This
leads to a second order operator acting on the damage: [11—
13].
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In this paper, we wish to model damage as a propagating
level set front which is yet another way to avoid spurious local-
ization.

A level set based damage model

We follow here the development of the TLS model described
in [14]. The free energy per unit volume ¢ depends on the strain
€ and a scalar damage variable denoted d.

¢ =0(e,d) e))
The state laws are obtained by differentiating the free energy

_do _do
G*ga Y**ﬁ 2

where o is the stress and Y the local energy release rate. For in-
stance, if we consider a symmetric behavior in tension and com-
pression, we may use the potential

(p(e,d):%(l—d)ezE:s 3)

leading to

1
c=(1-d)E ¢, YZES:Ezs 4)

The damage description is depicted in Fig. 1. The level set
¢ = 0 separates the domain Q into an undamaged zone and dam-
aged one. In the damaged zone, the damage variable d is an
explicit function of the level set. Note that a single level set
is needed even if damaged zones are disconnected as shown in
Fig. 1.

The damage increases progressively as the level set value
rises. Mathematically this is expressed by the following inequal-
ities:

d(¢) =0, ¢<0 5
d(¢)>0, 0<o<I (©6)
dg)=1, ¢>1 7

Consider a body Q. Along the external boundary dQ,
loading T¢(¢) is applied on Q7 and displacements u?(z) are
prescribed on the complementary part dQ, ; dQ = JdQr U

dQ,, 9dQrNIQ, = 0. Some parts of Q may be totally dam-
aged i.e. d = 1. We denote by Q,, the part of Q not fully dam-
aged:

Q={xeQ:¢(x) <L} (8)

Undamaged zone

¢<0,d=0

Fully degraded zone
d) >le,d=1

FIGURE 1. Multiple damaged, undamaged and transition zones are
described using only one thick level set.

Potential energy is written as a function of the displacement
field and the level set function ¢:

Ewo)= | plew.d@)de—[ Tuds ©

Q7

where €(u) denotes the strain, i.e. symmetric part of the gradient
of u. The displacement field must satisfy the kinematic boundary
conditions whereas the gradient of the level set field must be of
norm 1 since it is a signed distance function.

Taking the derivative of the potential energy with respect
the the front location, we get the definition of the configurational
force g along the front (whose curvilinear abscissa is denoted s)

1
_ ' _ ¢
g)= [ V0.9 0)1~F5d0  10)

where d’ is the derivative of d with respect to ¢ and p(s) is the
radius of curvature of the front I'g. The integral starts on I'g and
runs over a segment orthognal to I'g. The distance [/ is at most /..
We consider a very brittle damage model.
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(Y -Y.)d=0. (11)

It may be shown [15] that the corresponding relationship between
the front speed ¢ and the configurational force g reads

a>0, (g—g)d=0. (12)

g < g,

where g. is computed by (10) replacing Y (¢,s) by Y.. It may
shown that the condition g = g, tends to ¥ = Y, as the damage
zone tends to zero meaning the initial condition for damage to
grow is local.

DISCRETIZATION

The space discrtization is carried out by finite elements. The
displacement and level set fields are approximated over each el-
ement. In the numerical experiment described next section, sec-
ond order element are used for the displacement and first order
(nodal values) for the level set field. For a given loading and
level set location, the problem of finding the displacement field
is a linear problem (or non linear if dissymetric tension com-
pression behavior is considered). Once the displacement field is
known, one may compute the configurational force g (see Eqn.
(10)). Eqn. (10) is in fact not very convienent to be used with
finite element. Instead, we compute g by solving a variational
principle in the damage band (it is detailed in [15]). Since we
are dealing with a brittle behavior the loading is not a proper pa-
rameter because there might be no solution above some loading
(limit point). A bit like with arc length technique, we thus con-
sider the loading as an unknown and we force the maximum front
advance, amax to be a given value at each time step. At time z,,,
the front advance a at each point of the front is determined by an
explicit formula

a=k<(1+Aul/un>2 (gg)— 1>+ (13)

where U, is the known load fractoir at time #, and

Al =y — iy (14)
_ amax
= (1+ \%’4‘)271 (15)
Hn

Motivations for such a formula are detailed in [15]. Using
the front advance, the level set is updated and the loading at step

n+1 is given by the maximum load t,,; such that g < g, at
every point on the front. In case, some point in the domain has
reached the condition Y > Y, with the new loads, a level set (little
circle) is placed around this point.

Cracking of a multiply perforated plate

As a numerical experiment, we consider the problem of a
plate presenting three holes. Loading and boundary conditions
are represented in Fig. 2, taking into account the symmetry of
the geometry. The upper part of the plate presents a Young mod-
ulus ten times larger, the imposed load is therefore very close
to an imposed displacement during a large part of the compu-
tation. This computation illustrates the potential of the method,
especially for the initiation of damage and cracks. The computa-
tional mesh presents a characteristic element size of about /../10.
The damage profile is an arc-tangent profile

d(9) = cratan (cl (;P —03)) +cy (16)

where ¢; = 10,¢3 = 0.5 and ¢; and ¢4 are such that d(0) =0
and d(I.) = 1. The Young modulus and Poisson ratio used
are respectively £ = 36.5GPa and v = 0.2, while we choose
lc=410"%mand Y, = 10?Pa.

The damage evolution and the computational mesh are
shown in Fig. 3. The corresponding load-displacement curve
is depicted in Fig. 2. During the first computation steps,
we observe that six small defects have been initiated on the
holes, on the horizontal symmetry axis. Then, one after the
others, those defects first grow until reaching a complete
damage, and then propagate the crack (fully degraded zone)
horizontally. We also observe that the global stiffness of the
structure is not much affected as a defect grows from d = 0 to
d = 1. On the contrary, the crack propagation corresponds to
an unstable (strong snapback) process with large loss of stiffness.
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FIGURE 2. Load-displacement curve and domain definition and
boundary conditions for the three holes plate.
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