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Abstract

We investigate several distribution free dependence detection procedures, all based on

a shuffling of the trials, from a statistical point of view. The mathematical justification

of such procedures lies in the bootstrap principle and its approximation properties. In

particular we show that such a shuffling has mainly to be done on centered quantities

- that is quantities with zero mean under independence - to construct correct p-values,

meaning that the corresponding tests control their False Positive (FP) rate. Thanks to

this study, we introduce a method, named Permutation UE, which consists in a multiple

testing procedure based on permutation of experimental trials and delayed coincidence

count. Each involved single test of this procedure achieves the prescribed level, so that

the corresponding multiple testing procedure controls the False Discovery Rate (FDR),

and this with as few assumptions as possible on the underneath distribution, except

independence and identical distribution across trials. The mathematical meaning of

this assumption is discussed and it is in particular argued that it does not mean what

is commonly referred in neuroscience to as cross-trials stationarity. Some simulations

show moreover that Permutation UE outperforms the trial-shuffling of (Pipa & Grün,

2003) and the MTGAUE method of (Tuleau-Malot et al., 2014) in terms of single levels

and FDR, for a comparable amount of False Negatives. Application to real data is also

provided.
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1 Introduction

The possible time dependence either between cerebral areas or between neurons, and

in particular the synchrony phenomenon, has been vastly debated and investigated as a

potential element of the neuronal code (Singer, 1993). To detect such a phenomenon

at the microscopic level, multielectrodes are usually used to record the nearby electri-

cal activity. After pretreatment, the time occurrences of action potentials (spikes) for

several neurons are therefore available. One of the first steps of analysis is then to un-

derstand whether and how two simultaneously recorded spike trains, corresponding to

two different neurons, are dependent or not.

Several methods have been used to detect synchrony (Perkel et al., 1967; Aertsen

et al., 1989). Among the most popular ones, the Unitary Events (UE) method, due to

Grün and collaborators (Grün, 1996; Grün et al., 2002a,b, 2010), has been applied in the

last decade to a vast amount of real data (see, e.g., (Kilavik et al., 2009) and references

therein). Two of its main features are at the root of its popularity: the UE method is

not only able to give a precise location in time of the dependence periods, but also to

quantify the degree of dependence by providing p-values for the independence tests.

One can decompose the method in three main steps:

(i) The first step consists in choosing a way to count coincidences. In the original

UE method, the point processes modeling the data are binned and clipped at a rough

level (see Figure 1.A for a more precise description), the bins being about 5 ms wide.

However, it is proven in (Grün et al., 1999) that the binned coincidence count as a result

of this preprocessing may induce a loss in synchrony detection of about 60% in cer-

tain cases (see also an illustration in Figure 1.A). The idea of (Grün et al., 1999) was
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therefore to keep the data at the initial resolution level despite its high dimension, but

to define the notion of multiple shift (MS) coincidence count, nicely condensing the

dependence feature that neurobiologists want to analyze without any loss in synchrony

detection. The delayed coincidence count is a generalization of this notion to non dis-

cretized process and which still does not suffer from any loss in synchrony detection

(see Figure 1.B). Other coincidence count notions have also been used such as the one

in (Louis et al., 2010b) which also holds for non discretized process.

(ii) Once the coincidence count is fixed, one needs to understand what is the typical

behavior of this quantity under independence, so that independence is rejected if the

count is significantly unusual. To do so, the original method estimates the expected

number of coincidence under independence and assumes a Poisson distribution of the

count under independence. This assumption has been shown to be non completely ad-

equate in (Pipa et al., 2013; Tuleau-Malot et al., 2014) and the plug-in of estimates of

the underlying firing rates has also been discussed in (Gütig et al., 2001; Tuleau-Malot

et al., 2014). Notably in (Gütig et al., 2001) another method is introduced which uses

conditional distribution to avoid the misuse of plug-in estimates. However in all those

works, very strong assumptions on the distribution of the spikes are made: either bins

are assumed to be independent and identically distributed or the spike trains are as-

sumed to be Poisson or at least renewal processes. However conclusive experimental

evidence combined with many statistical and modeling studies show that those distri-

bution assumptions are not realistic - see (Nawrot et al., 2008; Farkhooi et al., 2009;

Pouzat & Chaffiol, 2009; Avila-Akerberg & Chacron, 2011) and the references therein.

This is the reason why a lot of interest has been shown on surrogate data methods
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- see (Grün, 2009; Louis et al., 2010a) for a methodological review. These methods,

unlike the ones cited above, are not linked to a particular coincidence count and they

can be indifferently applied to any of the previous counts discussed above. The main

idea is to use the original observed data set and to combine it with a computer ran-

dom generator to produce new artificial data sets mimicking how the data set would

behave under independence. Thanks to these surrogate data sets, it is a priori possible

to estimate the distribution of the coincidence count under independence and therefore

to build reasonable p-values. This can usually be achieved in practice through parallel

programming and Monte-Carlo approximation (Louis et al., 2010a).

There are mainly two trends in surrogate data methods. Either the trials are shuffled

(Pipa & Grün, 2003; Pipa et al., 2003), but it has been shown that this method suf-

fers from a non controlled False Positive rate when there is cross-trials non-stationarity

(Grün et al, 2003); or the spikes themselves are slightly moved as in the dithering

method - see (Louis et al., 2010b) and the references therein. This last method is more

able to cope with cross-trials non-stationarity. Indeed, and even under cross-trials non-

stationarity, several more or less technical variants of this method are able to reproduce

the mean intensity, also called profile or rate, and even the interspike interval distribu-

tion. However those methods cannot mimic the whole distribution of the coincidence

count under independence. As a consequence, the best dithering methods, in the sense

that these methods are able to control their False Positive rate even for highly non ho-

mogeneous processes in time, are much too conservative, as assessed in (Louis et al.,

2010b).

(iii) The third step of a UE method is linked to the multiple testing aspect, seen by
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S. Grün herself (Grün, 2009) as ”a useful side-effect” of the fact that the original UE

method needs homogeneity in time. Because of this drawback in the original procedure,

the UE tests described above are performed on small sliding windows on which the

homogeneity assumption is realistic. This allows, as a by-product, ”a time resolved

analysis [which] shows potential modulation of synchrony”. It has been proved however

in (Tuleau-Malot et al., 2014) that the procedure needs therefore to be corrected for the

multiplicity of the tests with, for instance, Benjamini and Hochberg procedure to control

the False Discovery Rate (Benjamini & Hochberg, 1995).

We here focus on surrogate data methods based on a shuffling or resampling of the

trials. Such procedures are mathematically justified by the bootstrap principle that in-

deed provides several ways to shuffle trials, all able to reproduce the distribution of the

count under independence, if applied to centered quantities. So our main concern is to

warn people using methods based on a shuffling of the trials against a direct applica-

tion of these methods to rough coincidence counts, which are not correctly centered.

As a consequence of this study, we show that a permutation of the trials in line with

(Hoeffding, 1952; Romano, 1989; Romano & Wolf , 2005) is the most able to mimic

the correct distribution among the resampling approaches investigated here. We couple

it with the delayed coincidence count to avoid loss in synchrony detection and a Ben-

jamini and Hochberg procedure controlling the False Discovery Rate when considering

sliding windows, to obtain a new method named Permutation UE. Because resampling

methods are quite demanding in terms of computational cost, we also propose a fast

algorithm to compute the delayed coincidence count, with a computational cost equiv-

alent to the one of the binned coincidence count.
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A major assumption of the present work, due to the shuffling of the trials, is the

independence and the identical distribution between trials in the probabilistic sense.

However this mathematical notion does not mean stationarity across trials, as com-

monly expressed in the neuroscience literature (Arieli et al., 1996; Grün et al, 2003;

Churchland et al., 2010; Nawrot, 2010; Farkhooi et al., 2011; Churchland et al., 2011;

Litwin-Kumar & Doiron, 2012; Farkhooi et al., 2013). This point is clearly discussed

hereafter in Section 5.

We begin with describing the mathematical framework in Section 2, by giving the

notation and the definition of binned and delayed coincidence counts together with a

detailed fast algorithm to compute the delayed one. In Section 3, we precisely discuss

the centering problem and its effect on the methods based on a shuffling of the trials.

In Section 4, we detail the Permutation UE method and apply it to real data. In Section

5, we discuss the limit of the methods in terms of both distribution free aspects, and

cross-trials stationarity and provide some open questions.

2 Framework

We start by giving some useful notation and reminders to understand the construction

and discussion of the dependence detection methods using a shuffling of the trials.

2.1 Notation

In all the sequel, X1 and X2 denote two point processes modeling the spike trains of

two simultaneously recorded neurons and X represents the couple (X1, X2). The ab-
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breviation ”i.i.d.” stands for independent and identically distributed. In this sense, by

assuming that n independent and identically distributed trials are observed, the obser-

vation is modeled by an i.i.d. sample of size n of couples from the same distribution

as X , meaning n i.i.d. copies X1, ..., Xn of X . This sample is denoted in the sequel

by Xn = (X1, ..., Xn). The corresponding probability and expectation are respectively

denoted by P and E. For another random variable, Y , conditional probability and con-

ditional expectation given Y are respectively denoted P(·|Y ) and E[·|Y ], they both are

random quantities that still depend on the value of Y .

The notation 1X∈A stands for a function whose value is 1 if X belongs to A and 0

otherwise. In particular note that

P(X ∈ A) = E [1X∈A] = E [E [1X∈A|Y ]] = E [P(X ∈ A|Y )] ,

which amounts to integrate first in the conditional distribution of X given Y and then

to integrate in the distribution of Y .

Since assessing dependence between X1 and X2 is the main focus of the present

work, the following notation is useful: X⊥⊥ denotes a couple (X1,⊥⊥, X2,⊥⊥) such that

X1,⊥⊥ (resp. X2,⊥⊥) has the same distribution asX1 (resp. X2), butX1,⊥⊥ is independent of

X2,⊥⊥. In particular, the couple X⊥⊥ has the same marginals as the couple X . Moreover,

X⊥⊥n = (X⊥⊥1 , ..., X
⊥⊥
n ), with X⊥⊥i = (X1,⊥⊥

i , X2,⊥⊥
i ), denotes an i.i.d. sample of size n from

the same distribution as X⊥⊥, and P⊥⊥ and E⊥⊥ are the corresponding probability and

expectation.

Note in particular that if the two observed neurons indeed behave independently,

then the observed sample Xn has the same distribution as X⊥⊥n .

Finally, for any point process Xj (j = 1, 2), dNXj stands for its associated point
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measure, defined for all function f by:

∫
f(u)dNXj(u) =

∑
T∈Xj

f(T ),

and for any interval I , NXj(I) denotes the number of points of Xj observed in I .

2.2 Binned and delayed coincidence counts

Because of the way neurons transmit information through action potentials, it is com-

monly admitted that the dependence between the spike trains of two neurons is due to

temporal correlations between spikes produced by both neurons. Informally, a coinci-

dence occurs when two spikes (one from each neuron) appear with a delay less than

a fixed δ (of the order of a few milliseconds). Several coincidence count functions

have been defined in the neuroscience literature, and among them the classical binned

coincidence count, introduced in (Grün et al., 2002a,b).

Definition 1 The binned coincidence count between point processes X1 and X2 on the

interval [a, b] with b − a = Mδ for an integer M ≥ 2 and a fixed delay δ > 0 is given

by

ψcoincδ (X1, X2) =
M∑
`=1

1NX1 (I`)≥11NX2 (I`)≥1,

where I` is the `th bin of length δ, i.e. [a+ (`− 1)δ, a+ `δ).

More informally, the binned coincidence count is the number of bins that contain at

least one spike of each spike trains, as one can see on Figure 1.A.

The binned coincidence count computation algorithm is usually performed on al-

ready binned and clipped data (see Figure 1). Therefore, given two sequences of 0 and
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1 of length M = (b − a)δ−1, the number of operations needed to compute the binned

coincidence count is O(M) = O((b−a)δ−1) (without taking the binning preprocessing

into account).

The more recent notion of delayed coincidence count, introduced in (Tuleau-Malot

et al., 2014), is a generalization of the multiple-shift coincidence count, defined in (Grün

et al., 1999) for discretized point processes, to non necessarily discretized point pro-

cesses.

Definition 2 The delayed coincidence count between point processes X1 and X2 on

the interval [a, b] is given by

ϕcoincδ (X1, X2) =

∫ b

a

∫ b

a

1|u−v|≤δdNX1(u)dNX2(v),

More informally, ϕcoincδ (X1, X2) is the number of couples of spikes (one spike fromX1

and one from X2) appearing in [a, b] with delay at most equal to δ. A visual example

is given on Figure 1.B. Note in particular that two coincidences are discarded by the

binned coincidence count on this particular example: one because of the clipping effect

in the third bin and one because of the effect of adjacent bins in the seventh and eighth

bins. Both of them are counted in the delayed coincidence count.

A rather naive algorithm to compute delayed coincidence count would test whether

for any pair (u, v) of a spike u in X1 and a spike v in X2, the delay |u− v| is less than

δ and to count the number of hits. This would lead to an algorithm whose complexity

is in the product of the number of points in each spike train. If one assumes both spike

trains to be Poisson with intensity λ1 and λ2, this algorithm has an average cost of

order O (λ1λ2(b− a)2) and is therefore quadratic in the length of the interval. One can
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actually drastically improve this rate thanks to the following algorithm for which the

result c := ϕcoincδ (X1, X2) is the delayed coincidence count.'

&

$

%

Delayed coincidence count algorithm

Given two sequences x1 and x2 of ordered points with respective lengths n1 =

NX1([a, b]) and n2 = NX2([a, b]), representing the observations of two point pro-

cesses X1 and X2,

- Initialize j = 1 and c = 0.

- For i = 1, ..., n1,

1. Assign xlow = x1[i]− δ.

2. While j ≤ n2 and x2[j] < xlow, j = j + 1.

3. If j > n2, stop.

4. Else (here necessarily, x2[j] ≥ xlow),

4.a Assign xup = x1[i] + δ and k = j.

4.b While k ≤ n2 and x2[k] ≤ xup, c = c+ 1 and k = k + 1.

This algorithm is slightly more intricate but the computational complexity is much

smaller than the previous one. Figure 1.C gives a visualization of the algorithm on

a very simple example. The main point is that the index j in Step 2 cannot decrease

and therefore it is not making a double full loop on all the indices of both sequences

x1 and x2. A pseudo double loop is made thanks to the index k in step 4.b which

indeed can take several times the same value but whose range is only governed by the

number of points that appear in an interval of length 2δ, namely [xlow, xup], which is

usually much smaller than the total length of the sequence x2. More precisely, the

complexity of the algorithm is therefore upper bounded, up to a constant, by n1 (for

steps 1, 3 and 4.a), plus n2 (for all steps 2 on all points of x1, that is the range of
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the index j which never decreases), and plus n1 times the number of points of x2 in a

segment (namely [xlow, xup]) of length 2δ (for step 4.b). On average, if X1 and X2 are

for instance independent homogeneous Poisson processes of respective intensities λ1

and λ2, the complexity is of order O((λ1 + λ2 + λ1λ2δ)(b − a)). As compared with

the binned coincidence count algorithm, whose complexity is of order O(δ−1(b − a)),

the present delayed coincidence count algorithm is therefore advantageous as soon as

λ1δ << 1 and λ2δ << 1, conditions that are usually satisfied in practice (take for

instance λ1 = λ2 = 30Hz and δ = 0.005s, which gives λ1δ = λ2δ = 0.15). Even if

both algorithms are linear in (b− a), the delayed coincidence count algorithm exploits

the sparsity of the spike trains through the constant (λ1 +λ2 +λ1λ2δ) in its complexity,

instead of δ−1 in the complexity of the binned coincidence count algorithm. In Figure 1

is given a more visual representation of this sparsity: notice for instance that the bins

with 0’s do not even have to be taken into account in the present delayed coincidence

count algorithm.

As explained in the introduction - point (ii) - all surrogate data methods (see (Louis

et al., 2010a)) could in principle be applied to this notion of delayed coincidence count,

at least when only two neurons are involved. In the sequel and for illustration purpose

in the simulations, we apply the different surrogate methods of trial-shuffling type to the

delayed coincidence count but the mathematical justification (Albert et al., 2015) and

therefore the described behaviors in Section 3 are the same whatever the coincidence

count that one would like to consider.
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x1[1] x1[2]

x2[1] x2[2] x2[3] x2[4]

x1[1] x1[2]

x2[1] x2[2] x2[3] x2[4]

x1[1] x1[2]

x2[1] x2[2] x2[3] x2[4]

x1[1] x1[2]

x2[1] x2[2] x2[3] x2[4]

xlow xup

i=1, 

2 coincidences have been found for x1[1]

xlow xup

i=2, step 1 : new position of xlow
          step 2 : j=2   4
          step 3 : no stop
          step 4a: new position of xup
          step 4b: k= 4   5; c=2   3

step 1 : position of xlow
step 2 : j=1    2
step 3 : no stop
step 4a: position of xup
step 4b: k= 2   4 ; c= 0   2

1 coincidence has been found for x1[2]

TOTAL : c=3 coincidences

scale

A: Binned coincidence count

X1

X2

0 0 1 0 0 0 1 0

1 0 1 0 0 0 0 1

binned coincidence count = 1

 B: Delayed coincidence count

X1

X2

scale

delayed coincidence count = 3

C: Algorithm for the delayed coincidence count

Figure 1: Coincidence counts. Part A gives an example of binned coincidence count on

a couple of spike trains (X1, X2) (the spikes corresponding to the respective dashes on

the line): after binning the data into blocks of length δ, one only keeps the information

whether there is at least a spike or not in the bin (clipping). The binned coincidence

count is then the number of times there is a ”1” for each spike train in the same bin.

Part B gives on the same example the number of delayed coincidence count, that is the

number of pairs of points (one on each spike train) at distance less than δ. Note that

these two coincidence counts are on this particular example different. Part C provides

a visualization of the first steps of the proposed algorithm. In particular, note that it

exploits the sparsity of the data represented via the vector x1 and x2: there is no com-

putational time spent on the central part of the drawing corresponding to the 0’s of the

binned process.
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3 Bootstrap and centering issues

Given an interval of time [a, b] and the observation of a sample Xn = (X1, . . . , Xn)

corresponding to n different trials in this interval, we focus here on the problem of

testing the null hypothesis:

(H0) ”X1 and X2 are independent on [a, b]”

against:

(H1) ”X1 and X2 are not independent on [a, b]”.

All existing UE methods are based on the total number of coincidences:

C = C(Xn) =
n∑
i=1

ϕ(X1
i , X

2
i ),

where ϕ generically denotes either ψcoincδ , or ϕcoincδ , or other coincidence count func-

tions that practitioners would like to use (see (Albert et al., 2015) for other choices).

To underline what is observed or not, when C is computed on the observation of Xn, it

is denoted by Cobs, the total number of observed coincidences.

In the following, several of these UE methods are described, which all rely on the same

paradigm: ”reject (H0) when Cobs is significantly different from what is expected un-

der (H0)”. More precisely, the independence null hypothesis (H0) is rejected and the

dependence is detected when a quantity, based on the difference between the observed

coincidence count and what is expected under (H0), is smaller or larger than some crit-

ical values. Those critical values are obtained in various ways, each of them being

peculiar to each method.
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3.1 Importance of a centering step when parameters are unknown

Before explaining the various resampling methods based on a shuffling of the trials in-

vestigated here where the centering issue appears as a major point, we want to underline

that such a centering issue also occurs in more naive methods, for which this problem is

easier to understand. Informally, there is a centering issue if a method is able to repro-

duce the distribution of centered quantities (that is with zero mean under independence)

but is not able to do so for non centered quantities.

Let us first look at a toy example. If the values of the expectation and the variance

of C under (H0), that is

c0 = E⊥⊥[C] and v0 = E⊥⊥
[
(C− c0)2] ,

are precisely known, then the classical central limit theorem gives under independence

that

C(X⊥⊥n )− c0√
v0

L−→
n→∞

N (0, 1). (1)

This means in particular that when the number of trials n tends to infinity, the cumu-

lative distribution function and the quantiles of (C(X⊥⊥n ) − c0)/
√
v0 are tending to the

ones of a standard Gaussian distribution,N (0, 1), that is a Gaussian variable of mean 0

and variance 1. Then, given α in (0, 1), the test which consists in rejecting (H0) when

(Cobs − c0)/
√
v0 is larger than z1−α, the 1 − α quantile of a standard Gaussian distri-

bution, is asymptotically (in n, the number of trials) of False Positive (FP) rate α. It

means that, for this test, the probability of rejecting independence, whereas indepen-

dence holds, is asymptotically equal to the prescribed α.

In this particular case, we could rewrite the above procedure in a complete equiv-
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alent way, as follows: we reject the independence (H0) when Cobs is larger than the

1− α quantile ofN (c0, v0), Gaussian distribution of mean c0 and variance v0. Another

way to state this is that as long as c0 and v0 are known, approximating the distribu-

tion of (C(X⊥⊥n ) − c0)/
√
v0 by N (0, 1) or approximating the distribution of C(X⊥⊥n ) by

N (c0, v0) is completely equivalent: this is due to the scaling and shifting properties of

the Gaussian distributions.

However, if c0 and v0 are unknown, and it is always the case in practice even if one

assumes Poissonian spike trains (since the firing rates are unknown), one would like

to replace c0 and v0 by estimates, namely ĉ0 and v̂0 and proceed as previously. It has

been shown in (Tuleau-Malot et al., 2014) that we cannot do that. Indeed the plug-

in step which consists in estimating the distribution of C(X⊥⊥n ) by N (ĉ0, v̂0) instead of

N (c0, v0) does not work for the non centered quantity C. Only the Gaussian approx-

imation of the distribution of the centered quantity, namely C(X⊥⊥n ) − ĉ0, holds and at

the price of modified variance. Note that this plug-in issue is known in different terms

since (Gütig et al., 2001), who advertise for the use of conditional distribution. However

both (Tuleau-Malot et al., 2014) and (Gütig et al., 2001) still assume strong distribution

assumption (such as Poissonian features) that can be avoided by surrogate data meth-

ods. Can we show similar Gaussian approximations without such strong distribution

assumptions?

Firstly it is possible to estimate c0 without making any strong distribution assump-

tion besides the fact that the trials are assumed to be i.i.d.

Indeed note that

c0 = E⊥⊥

[
n∑
i=1

ϕ(X1,⊥⊥
i , X2,⊥⊥

i )

]
= nE⊥⊥

[
ϕ(X1,⊥⊥, X2,⊥⊥)

]
,
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and that for i 6= i′, since Xi is always assumed to be independent of Xi′ , the following

equality holds

E
[
ϕ(X1

i , X
2
i′)
]

= E⊥⊥
[
ϕ(X1,⊥⊥, X2,⊥⊥)

]
. (2)

Thus, c0 can always be estimated in a distribution free manner by

Ĉ0(Xn) =
1

n− 1

∑
i 6=i′

ϕ(X1
i , X

2
i′).

The centered quantity of interest, in the sense that it has zero mean under independence,

is therefore the difference:

U = U(Xn) = C(Xn)− Ĉ0(Xn), (3)

its observed version being denoted by Uobs.

The next step is to give the asymptotic distribution of U (or a renormalized version

of it) without making any distribution assumptions in the same spirit as (1) so that one

has access to quantiles and critical values. The main mathematical difficulty is that now

Ĉ0(Xn) is random and that therefore U is not a simple sum over all the trials, but a sum

on all the (i, i′) pairs of trials 1.

Nevertheless, some asymptotic theorems close in spirit to central limit theorems

and proven in (Albert et al., 2015), show that under mild conditions (always satisfied in

practice in the present cases) the following convergence result holds:

Z(X⊥⊥n ) =
U(X⊥⊥n )√
nσ̂(X⊥⊥n )

L−→
n→∞

N (0, 1), (4)

1Double sum of this kind is usually called U-statistics of order 2. They are not sum of independent

variables because of the double sum.
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where

σ̂2(Xn) =
4

n(n− 1)(n− 2)

∑
i,j,k all different

h(Xi, Xj)h(Xi, Xk),

with

h(x, y) =
1

2

[
ϕ(x1, x2) + ϕ(y1, y2)− ϕ(x1, y2)− ϕ(y1, x2)

]
.

This result means that one exactly has a distribution approximation of the same form as

the one of the toy example (1).

As above for the toy example, denoting by Zobs the quantity Z computed on the

observed sample, (4) implies that for some fixed α in (0, 1), the test that consists in

rejecting (H0) when Zobs ≥ z1−α, is asymptotically of level α.

Let us look more closely at the quality of the approximation (4) on Figure 2. Clearly,

one can see that the distribution approximation is good when n is large (n = 200) as

expected, but not so convincing for small values of n (n = 20, or even n = 50),

particularly in the tails of the distributions. However, as it is especially the tails of the

distributions that are involved in the test through the quantile z1−α, one can wonder, by

looking at Figure 2, if it may perform reasonably well in practice with a usual number

of a few tens of trials.

However, unlike the toy example and in line with what happens in (Tuleau-Malot

et al., 2014), the fact that we have subtracted a random quantity Ĉ0 to C makes the

approximation not valid for the uncentered quantity C, as illustrated below. We cannot

go back and forth by using the scaling and shifting properties of the Gaussian distribu-

tions. This is what we call the centering issue, problem which is actually completely

related to the plug-in problem mentioned in (Gütig et al., 2001; Tuleau-Malot et al.,

2014). Indeed, looking informally at (4), and doing as if Ĉ0 was deterministic as for
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Figure 2: Gaussian approximation of the distribution of Z. In plain black, cumulative

distribution function (c.d.f.) of Z under (H0), that is of Z⊥⊥= Z(X⊥⊥n ) obtained with 2000

simulations of X⊥⊥n , for n = 20, 50 or 200 trials of two independent Poisson processes of

firing rate 30Hz, on a window of length 0.1s with δ = 0.01s. The red line corresponds

to the standard Gaussian c.d.f.

the toy example, if the scaling and shifting properties of the Gaussian distribution were

still holding, one could imagine that

U(X⊥⊥n )
L
≈

n→∞
N
(
0, nσ̂2(X⊥⊥n )

)
, (5)

and

C(X⊥⊥n )
L
≈

n→∞
N
(
Ĉ0(X⊥⊥n ), nσ̂2(X⊥⊥n )

)
. (6)

This is illustrated on Figure 3.

Looking at the first line of Figure 3, one can see that the approximation formulated

in (5) is actually conceivable for large values of n. Note that in practice, one cannot

have access to σ̂2(X⊥⊥n ) and it has to be replaced by σ̂2(Xn), meaning that it is computed
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Figure 3: Other Gaussian distribution approximations. Two first lines: c.d.f. of U and

C under (H0), obtained as in Figure 2. These c.d.f. are respectively compared with the

Gaussian c.d.f. with mean 0 and standard deviation
√
nσ̂(Xn), and the Gaussian c.d.f.

with mean Ĉ0(Xn) and standard deviation
√
nσ̂(Xn), for five different simulations of

Xn under (H0). Third line: c.d.f. of U under (H0) computed as above, compared

with the centered Gaussian c.d.f. with standard deviation
√
nσ̂(Xn), for five different

simulations of Xn under (H1) (same marginals as in the first two lines but X1 = X2).
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with the observed sample. This does not change anything under (H0) since Xn is in this

case distributed as X⊥⊥n . Yet this is a particularly important sticking point if (H0) is not

satisfied as one can see on the third line of Figure 3: the distribution of U(X⊥⊥n ) does

not look like a centered Gaussian distribution of variance nσ̂2(Xn), when Xn does not

satisfy (H0).

More importantly for the centering issue,the second line of Figure 3 shows that the

approximation formulated in (6) is in fact misleading. To understand why, one needs to

take into account the two following points.

(i) Ĉ0(X⊥⊥n ) moves around its expectation c0 (which is also the expectation of C(X⊥⊥n ))

with realizations of X⊥⊥n . These fluctuations have an order of magnitude of
√
n and are

therefore perfectly observable on the distribution of C(X⊥⊥n ) whose variance is also of

order
√
n.

(ii) nσ̂2(X⊥⊥n ) estimates the variance of U(X⊥⊥n ) and not the one of C(X⊥⊥n ) or Ĉ0(X⊥⊥n ).

This explains why not only the mean but also the variance are badly estimated in the

second line of Figure 3. Two distinct kinds of randomness (the one coming from C(X⊥⊥n )

and the one coming from Ĉ0(X⊥⊥n )) have to be taken into account to estimate the variance

of U(X⊥⊥n ).

As a conclusion of this first naive approach, the test of purely asymptotic nature,

which consists in rejecting (H0) when Zobs > z1−α may work for n large enough,

as the variance is here computed by considering the correctly recentered quantity U,

and this even if the behavior of U under (H1) is not good. However, an ad hoc and

more naive test, based on an estimation of the variance of non recentered quantity C

directly and without taking into account the fact that the centering term Ĉ0(Xn) is also
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random, would not lead to a meaningful test with correct p-values: this is therefore a

first example of centering issue.

3.2 The bootstrap approaches

In statistics, it is well known (Giné, 1997) that tests of purely asymptotic nature as

the one presented above are less accurate for small values of n than more involved

procedures. In this article, the focus is on bootstrap/resampling procedures that are

usually known to improve the performance from moderate to large sample sizes. Three

main procedures are investigated that are all three based on a shuffling of the trials: the

trial-shuffling introduced in (Pipa & Grün, 2003; Pipa et al., 2003), the full bootstrap

of independence and the permutation approach, the last two being more classical in

statistics (see e.g. (Romano, 1989)), but also already used on spike train data (see e.g.

(Ventura, 2010)).

The main common paradigm of these three methods, as described in the sequel,

is that starting from an observation of the sample Xn, they randomly generate, via a

computer, another sample X̃n, whose distribution should be close to the distribution of

X⊥⊥n (see also Figure 4).
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Trial-shuffling

X̃n = XTS
n = ((X1

iTS(1), X
2
jTS(1)), ..., (X

1
iTS(n), X

2
jTS(n))),

where the (iTS(k), jTS(k))’s are n i.i.d. couples drawn uniformly at random in

{(i, j) / i = 1, ..., n, j = 1, ..., n, i 6= j}.

In particular, the corresponding bootstrapped coincidence count is

CTS = C(XTS
n ) :=

n∑
k=1

ϕ
(
X1
iTS(k), X

2
jTS(k)

)
.

This algorithm seems natural with respect to (2) because it avoids the diagonal terms

of the square {(i, j) / i = 1, ..., n, j = 1, ..., n}. Hence as a result,

E[CTS] = c0 = E⊥⊥[C].

'

&

$

%

Classical full bootstrap

X̃n = X∗n = ((X1
i∗(1), X

2
j∗(1)), ..., (X

1
i∗(n), X

2
j∗(n))),

where the n couples (i∗(k), j∗(k)) are i.i.d. and where i∗(k) and j∗(k) are drawn

uniformly and independently at random in {1, ..., n}.

In particular, the corresponding bootstrapped coincidence count is

C∗ = C(X∗n) :=
n∑
k=1

ϕ(X1
i∗(k), X

2
j∗(k)).

Note that this algorithm draws uniformly at random in the square {(i, j) / i =

1, ..., n, j = 1, ..., n} and therefore does not avoid the diagonal terms. The idea behind

this algorithm is to mimic the independence under (H0) of X1
k and X2

k by drawing the
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indexes i∗(k) and j∗(k) independently. However

E[C∗] = n

(
1

n
E[ϕ(X1, X2)] +

n− 1

n
E⊥⊥[ϕ(X1,⊥⊥, X2,⊥⊥)]

)
.

Hence under (H0), E⊥⊥[C∗] = c0 but, under (H1), E[C∗] and c0 are only asymptotically

equivalent.'

&

$

%

Permutation

X̃n = XΠn
n = ((X1

1 , X
2
Πn(1)), ..., (X

1
n, X

2
Πn(n))),

where Πn is a permutation drawn uniformly at random in the group of permutations

Sn of the set of indexes {1, . . . , n}.

In particular, the corresponding bootstrapped coincidence count is

C? = C
(
XΠn
n

)
:=

n∑
i=1

ϕ
(
X1
i , X

2
Πn(i)

)
.

The idea is to use permutations to avoid picking twice the same spike train of the

same trial. In particular under (H0), the sum in C? is still a sum of independent vari-

ables, which is not the case in both of the previous algorithms. However, under (H1),

the behavior is not as limpid. As for the full bootstrap,

E[C?] = n

(
1

n
E[ϕ(X1, X2)] +

n− 1

n
E⊥⊥[ϕ(X1, X2)]

)
.

Hence under (H1), E[C?] and c0 are also only asymptotically equivalent.

To compare those three bootstrap/resampling algorithms, the first thing to wonder

is whether, at least under (H0), the introduced extra randomness has not impacted the

distribution. More precisely, as stated above, all three procedures satisfy

E⊥⊥[C(X̃n)] = E⊥⊥[C(X⊥⊥n )] = c0,
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but is the full unconditional distribution of C(X̃n) the same as the one of C(X⊥⊥n )? See

Figure 4 for a more visual explanation of what is the unconditional distribution.

The first line of Figure 5 shows as expected that the permutation does not change

the distribution of X⊥⊥n , since, as said above, no spike train is picked twice. However,

clearly the trial-shuffling and the full bootstrap have not the same property, even if the

distributions are quite close.

Nevertheless, this is not completely convincing. Indeed and as already mentioned in

Figure 4, the main particularity of surrogate data procedures is to be able for one current

observation of Xn to generate several surrogate data sets, that is several realizations of

X̃n, and to obtain not the unconditional distribution of C(X̃n) but the conditional dis-

tribution of C(X̃n) given Xn. What is important to emphasize is that this conditional

distribution (which is the one to which one has access in practice) actually depends on

the original data set. This is why on the second line of Figure 5, are given five real-

izations of the conditional cumulative distribution function: since this is a simulation,

we are able to produce 5 ”original” data sets and to see how the conditional distribu-

tion fluctuates thanks to the Nature randomness as described in Figure 4. What we can

expect is that as a proxy, this conditional distribution, which is the only accessible one,

will be close to the one we would like to know, that is the distribution of C⊥⊥.

However none of the three conditional distributions seems to fit the distribution of

C(X⊥⊥n ). One may eventually think that this is due to the Monte-Carlo approximation

of the conditional distributions, but for the trial-shuffling approach, Pipa and Grün de-

veloped an algorithm for exact computation of the conditional distribution (Pipa et al.,

2003): both Monte-Carlo and exact conditional distribution are so close that it is diffi-
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cult to make any difference between them.

Hence there should be another explanation. In fact, the curves on the second line

of Figure 5 are similar to the ones on the second line of Figure 3. In both set-ups, one

wonders if the distribution of C(X⊥⊥n ) can or cannot be approximated by a distribution

depending on the observation of Xn: a very basic Gaussian distribution for Figure 3 and

a more intricate distribution using the bootstrap paradigm for Figure 5. In both cases,

the conditional c.d.f. are widely spread around the aim which is the distribution of

C(X⊥⊥n ). Since the explanation for Figure 3 was a centering defect that can be corrected

by considering U, the explanation here is a centering defect for the procedures based

on a shuffling of the trials too, and this can also be corrected as one can see below.

3.3 Which centering for which bootstrap ?

To understand the centering issue of the procedures based on a shuffling of the trials,

one needs to understand more precisely the mathematical results on bootstrap.

The precursor work of Bickel and Freedman (Bickel & Freedman, 1981) on the

bootstrap of the mean can be heuristically explained as follows. Given a n sample

of i.i.d. real random variables Yn = (Y1, ..., Yn) with mean m and a corresponding

bootstrap sample Y∗n, it is not possible to estimate the distribution of the empirical mean

Ȳ = (1/n)
∑n

i=1 Yi directly. However one can estimate the centered distribution, i.e.

the distribution of Ȳ −m = Ȳ − E[Ȳ ]. To do so, it is sufficient to replace ”empirical

mean” by ”empirical bootstrap mean” and ”expectation” by ”conditional expectation”.

More explicitly, denoting by Ȳ ∗ the empirical mean of the bootstrap sample Y∗n, the

distribution of Ȳ − E[Ȳ ] is approximated by the conditional distribution given Yn of
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Ȳ ∗ − E[Ȳ ∗|Yn].

More generally, the bootstrap approaches that have been proved to work from a

mathematical point of view are all based on centered quantities (Giné, 1997): this is

Ȳ −m in the previous example but this can also be centered U-statistics. However, this

cannot be C, which is not centered, as one can see in Figure 5.

A suitable quantity in our context is U given in (3), since it has zero mean under

(H0). Indeed, by the bootstrap paradigm recalled above, the distribution of U(Xn)

under (H0), that is of U(X⊥⊥n ) (which has zero mean), should be well approximated by

the distribution of U
(
X̃n

)
− E

[
U
(
X̃n

)
|Xn

]
.

For the trial-shuffling, since

U
(
XTS
n

)
=

n∑
k=1

ϕ
(
X1
iTS(k), X

2
jTS(k)

)
− 1

n− 1

∑
k 6=k′

ϕ
(
X1
iTS(k), X

2
jTS(k′)

)
,

one can easily see that because the couple
(
iTS(k), jTS(k)

)
is drawn uniformly at ran-

dom in the set of the (i, j)’s such that i 6= j (set of cardinality n(n− 1)),

E
[
U
(
XTS
n

)
|Xn

]
=

1

n− 1

∑
i 6=j

ϕ
(
X1
i , X

2
j

)
− 1

n

∑
i,j

ϕ
(
X1
i , X

2
j

)
=

Ĉ0 (Xn)−C (Xn)

n

= −U (Xn)

n
.

Hence the quantity that needs to be computed on the surrogate data set when applying

the trial-shuffling method is

ŨTS = Ũ
(
XTS
n

)
= U

(
XTS
n

)
+

U (Xn)

n
.

Furthermore, similar computations show that the full bootstrap and the permutation

satisfy

E [U (X∗n) |Xn] = E
[
U
(
XΠn
n

)
|Xn

]
= 0.
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Hence, U (X∗n) and U
(
XΠn
n

)
can be computed directly on the surrogate data sets when

applying either the Full Bootstrap or the Permutation methods.

Figure 6 shows the quality of approximation of the distribution of U
(
X⊥⊥n
)

by the

conditional distribution given the observation of either ŨTS , UTS = U
(
XTS
n

)
, U∗ =

U (X∗n) or U? = U
(
XΠn
n

)
. Contrary to Figure 5, the conditional distributions of U∗ and

U? do not spread widely around the target distribution but are accurate approximations

not only under (H0) but even if the observed sample is simulated under (H1), which is

in complete accordance with the mathematical results of consistence proven in (Albert

et al., 2015). The approximation is just as accurate when using the recentered quantity

ŨTS to mimic the distribution of U⊥⊥but it is not for simply UTS , the difference between

the conditional c.d.f. of ŨTS and the one of UTS being particularly visible under (H1)

when X1 = X2. This means that one definitely need to recenter the quantities that are

computed on the surrogate data set by subtracting their conditional expectation given

the original data set to obtain a correct fit of the desired centered distribution under

independence.

Hence, as explained by the computations above, in a trial-shuffling approach, the

correctly recentered version leads to the correct bootstrap distribution. Note finally that

this corroborates the previous intuition: the reason why the approximation works for

U and not for C is a centering issue, that is exactly the same as for the first approach

of Figure 3. The centering is indeed random as in Figure 3 (here it can be viewed as

E[C(X̃n)|Xn]) and one needs to take it into account to have a correct approximation.

Finally an extra simplification holds in the permutation case, which may seem very

surprising.
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One can easily rewrite on the one hand,

U (Xn) =

(
1 +

1

n− 1

)
C (Xn)− 1

n− 1

∑
i,j

ϕ
(
X1
i , X

2
j

)
and, on the other hand, for the permutation sample

U
(
XΠn
n

)
=

(
1 +

1

n− 1

)
C
(
XΠn
n

)
− 1

n− 1

∑
i,j

ϕ
(
X1
i , X

2
j

)
.

Note that the sum
∑

i,j ϕ
(
X1
i , X

2
j

)
is invariant by the action of the permutation. Hence

if u?t denotes the quantile of order t of the conditional distribution of U
(
XΠn
n

)
given

Xn and if c?t denotes the quantile of order t of the conditional distribution of C
(
XΠn
n

)
given Xn, this very simple relationship holds

u?t =

(
1 +

1

n− 1

)
c?t −

1

n− 1

∑
i,j

ϕ
(
X1
i , X

2
j

)
.

Hence the test that rejects (H0) when U (Xn) > u?1−α is exactly the one that rejects

(H0) when C (Xn) > c?1−α. Therefore despite the fact that the conditional distribution

of C
(
XΠn
n

)
is not close at all to the one of C

(
X⊥⊥n
)
, the test based on C works, because

it is equivalent to the test based on U, for which the approximation of the conditional

distribution works. Note however that this phenomenon happens only in the permuta-

tion approach, but not in the trial-shuffling or the full bootstrap approaches.

3.4 Practical testing procedures and p-values

From the considerations given above, five different tests may be investigated, the first

one based on a purely asymptotic approach, and the four other ones based on resampling

approaches, with critical values approximated through a Monte-Carlo method. For each

test, the corresponding p-values (i.e. the values of α for which the test passes from

acceptance to rejection) are given.
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The naive test (N). It consists in rejecting (H0) when

Zobs ≥ z1−α.

The corresponding p-value is given by:

1− Φ
(
Zobs

)
,

where Φ is the c.d.f. of a standard Gaussian distribution.

The Trial-Shuffling test, version C (TSC). It consists in rejecting (H0) when

Cobs ≥ ĉTS1−α,

where ĉTS1−α is the empirical quantile of order (1 − α) of the conditional distribution

of CTS given Xn. This empirical quantile is estimated over B (B = 10000 usually)

realizations CTS
1 , ...,CTS

B given the observed sample Xn. The corresponding p-value is

given by:

1

B

B∑
i=1

1CTS
i ≥Cobs .

Despite the centering defect of this method underlined in Section 3.3, we kept this test

in the present study since it corresponds to the one programmed in (Pipa & Grün, 2003)

and since it is widely applied in the neuroscience literature.

The Trial-Shuffling test, version recentered U (TSU). It consists in rejecting (H0)

when

Uobs ≥ ŵTS1−α,

where ŵTS1−α is the empirical quantile of order (1 − α) of the conditional distribution

of ŨTS (the correctly recentered quantity) given Xn. This empirical quantile and the
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corresponding p-value are obtained in away similar to the above (TSC), based on B

realizations ŨTS
1 , ..., ŨTS

B of Ũ
(
XTS
n

)
given Xn.

The Full Bootstrap test, version U (FBU). It consists in rejecting (H0) when

Uobs ≥ û∗1−α,

where û∗1−α is the empirical quantile of order (1− α) of the conditional distribution of

U∗ given Xn. This empirical quantile and the corresponding p-value are obtained in a

way similar to the above (TSC), based on B realizations U∗1, ...,U
∗
B of U (X∗n) given

Xn.

The permutation test (P). The reader may think that it should consist in rejecting

(H0) when

Cobs ≥ ĉ?1−α,

where ĉ?1−α is the empirical quantile of order (1 − α) of the conditional distribution of

C? given Xn. Yet the test by permutation is in fact directly defined by its p-value, which

is slightly different here, equal to:

1

B + 1

(
1 +

B∑
i=1

1C∗i≥Cobs

)
,

where C?
1, ...,C

?
B are B realizations of C

(
XΠn
n

)
given Xn. The permutation test then

consists in rejecting (H0) when this p-value is less than α. Indeed, such a permutation

test, with such a slightly different version of p-value, has been proved to be exactly of

level α, whatever B (Romano & Wolf , 2005), thanks to exchangeability properties of

random permutations.
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Note however that such a slight correction does not work for full bootstrap or

trial-shuffling approaches, where the tests are only guaranteed to be asymptotically of

level α.

Saying that a test rejects at level α (or that its False Positive (FP) rate is smaller than

α) is exactly equivalent to saying that its p-value is less than α. If a test is of level α

for any α in (0, 1), the c.d.f. of its p-values should therefore be smaller than the one

of a uniform variable (i.e. the diagonal) under (H0). Between several tests with this

guarantee, the less conservative one is the one for which the c.d.f of its p-values is the

closest to the diagonal. The left hand-side of Figure 7 shows the c.d.f. under (H0) of

the corresponding p-values for the five considered testing procedures and focuses on

small p-values, which are the only ones usually involved in testing, to highlight the

main differences between the five methods. For the chosen small value of n (n = 20),

the c.d.f. of the (TSU) and (FBU) p-values are almost identical and above the diagonal,

meaning that the corresponding tests do not guarantee the level. On the contrary, the

c.d.f. of the (N) and (TSC) p-values are clearly under the diagonal and far from it,

meaning that the corresponding tests are too conservative. As guaranteed by (Romano

& Wolf , 2005), the permutation approach guarantees the level of the test: the c.d.f. of

the (P) p-values is also under the diagonal, under (H0), but much closer to the diagonal

than the one of the (N) and (TSC) p-values.

Furthermore, the behavior of the c.d.f. of the p-values under (H1) gives an indi-

cation of the power of the test. Indeed this c.d.f associates to each α in (0, 1), the

(estimated) probability that the test rejecting independence when its p-value is less than

α, actually rejects independence. This probability is, under (H1), 1 minus the False
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Negative (FN) rate. It can also be seen as the power of the test. Hence among the tests

that guarantee the level, the permutation test (P) is the one with the smallest FN rate,

that is the most powerful one.

Note that other simulations in more various cases have been performed in (Albert

et al., 2015) leading to the same conclusion.

We have also performed some simulations for which the firing rate is not constant

across the trials. The results are displayed on Figure 8. It is important to note that the

independence is rejected (that is when the p-values are clearly small, with a c.d.f. clearly

above the diagonal) only when the rates of each components X1 and X2 progress in a

coordinate way (see Figure 8.A). If only one rate varies (see Figure 8.B), the p-values

are all close to diagonal except for (TSC), for which the distribution approximation does

not work as we showed above. The same appears in the set-up considered by (Grün

et al, 2003; Grün, 2009) (see Figure 8.C) with p-values even closer to the diagonal,

because the number of trials is larger. Note that this set-up was given in (Grün, 2009)

as the worst case scenario of non-stationarity across trials for the trial-shuffling method

and it was stated that this is due to a violation of the underlying assumption of non-

stationarity across trials. However, as shown by Figure 8 in those two last situations,

the p-values behave as under (H0), except maybe for (TSC), and we believe that this

is explained not by a violation of the i.i.d. assumption on the trials but by a centering

defect, as explained above. As announced in the introduction, cross-trials stationarity

is not equivalent to the i.i.d. assumptions on the trials and this explains also why the

correctly centered bootstrap methods work in this non-stationary case. We discuss in

more detail this behavior in the discussion (see Section 5).
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In the sequel, since the permutation method is the only one able to guarantee the

level of the test (that is to control the (FP) rate) even for a very small number of

observation (see Figure 7), we focus on the permutation approach, keeping also the

trial-shuffling version C approach, denoted by (TSC) on the graphs, as a variant of the

method developed in (Pipa & Grün, 2003).

4 Permutation UE

4.1 Description of the complete multiple testing algorithm

To detect precise locations of dependence periods that can be matched to some ex-

perimental or behavioral events, the third step (point (iii) of the introduction) of a UE

method is classically to consider a family of windowsW of cardinal K, which is a col-

lection of potentially overlapping intervals [a, b] covering the whole interval [0, T ] on

which trials have been recorded (Grün et al., 1999; Tuleau-Malot et al., 2014). Then,

some independence tests are implemented on each window of the collection. Here we

propose a complete algorithm which takes into account the multiplicity of the tests, and

which moreover enables to see if the coincidence count is significantly too large or too

small on each window as in (Tuleau-Malot et al., 2014).
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Permutation UE algorithm

Fix a real number q in (0, 0.5) and an integer B larger than 2.

- Do in parallel for each window W = [a, b] inW:

* Extract the points of the X1
i ’s and X2

i ’s in [a, b].

* For all (i, j) in {1, ..., n}2, compute ai,j = ϕcoincδ

(
X1
i , X

2
j

)
over [a, b]

by the delayed coincidence count algorithm.

* Draw at random B i.i.d. permutations Πb
n, 1 ≤ b ≤ B, and compute Cb =

∑
i ai,Πb

n(i).

(There is one full new set of B permutations for each window.)

* Compute also Cobs =
∑

i ai,i.

* Return p+
W = 1

B+1

(
1 +

∑B
b=1 1Cb≥Cobs

)
and p−W = 1

B+1

(
1 +

∑B
b=1 1Cb≤Cobs

)
.

- Perform the BH procedure of (Benjamini & Hochberg, 1995) on the set of the above 2K p-values:

* Sort the p-values p(1) ≤ ... ≤ p(2K).

* Find k = max{l / p(l) ≤ lq/(2K)}.

* Return all the (W, εW )’s, for which W is associated with one of the p-values p(l) for l ≤ k,

with εW = 1 if p+
W ≤ p(k), so the coincidence count is significantly too large on W ,

and εW = −1 if p−W ≤ p(k), so the coincidence count is significantly too small on W .

The code has been parallelized in C++ and interfaced with R. The full corresponding

R-package is still a work in progress but actual codes are available at

https://github.com/ybouret/neuro-stat.

This algorithm corresponds to a slight variation of the multiple testing step of (Tuleau-
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Malot et al., 2014), but adapted to non necessarily symmetric distributions 2. In several

applications, neuroscientists are interested in detecting dependence periods for which

the coincidence count is only significantly too large. In this case, one can use the re-

stricted set of the p+
W ’s.

From a mathematical point of view, if the considered windows are disjoint and if

the spike trains are Poisson processes that are non necessarily stationary, the False Dis-

covery Rate (FDR) 3 of the above multiple testing procedure can be mathematically

proven4 to be controlled by q for any B ≥ 2. The problem of mathematically proving

that BH procedure guarantees an FDR smaller than q without those restrictions is very

difficult even in simple situations such as the Gaussian regression framework (Ben-

jamini & Yekutieli, 2001), while it is usually observed in practice that the FDR is still

controlled by q. However it has been proved in (Benjamini & Yekutieli, 2001) that for

any framework and therefore in particular for the most general setting of Permutation

UE, the FDR of BH is always smaller than q
∑2K

`=1 `
−1 ' q ln(2K). Hence, for in-

stance, with 50 windows and q = 0.01, we are still mathematically guaranteeing that

the FDR of Permutation UE described in the above sidebar is whatever the underlying

distribution controlled by 0.052. Moreover the distributions that are reaching this rate

are so particular that it is often advised even by mathematical experts of multiple testing

2Note in particular that for a fixed W , one cannot have both p+W < 0.5 and p−W < 0.5 and therefore,

if a W is detected, it can only be because of one of the two situations, p+W ≤ p(k) or p−W ≤ p(k), which

cannot happen simultaneously.

3see (Tuleau-Malot et al., 2014) or Table 1 for a precise definition

4The p+W ’s are independent random variables such that P⊥⊥(p+W ≤ α) ≤ α for all α in [0, 1] (Benjamini

& Yekutieli, 2001; Romano & Wolf , 2005).
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to do as if the control of the FDR by q holds as soon as typical simulations do not show

otherwise.

4.2 Comparison on simulations

Two sets of simulations have been carried out. The first one, namely Experiment 1,

combines different point processes encountered in the literature (homogeneous, and

inhomogeneous Poisson processes, Hawkes processes), and different kinds of depen-

dences. It is described in Figure 9.A. The second one, namely Experiment 2, consists

of simple independent homogeneous Poisson processes on the whole interval [0, 2], as

described in Table 1. The corresponding results are described in Table 1 and one run of

simulation of the Permutation UE method is presented in Figure 9. Four methods have

been compared:

• the MTGAUE method of Tuleau-Malot et al. (2014) which assumes both pro-

cesses to be homogeneous Poisson processes, with q = 0.05,

• the Trial-Shuffling, version C (TSC) which corresponds to the method of Pipa &

Grün (2003), which has been programmed with the delayed coincidence count

described above and which has not been corrected for multiplicity, that is with

level α = 0.05 on all windows,

• the same as above but corrected by Benjamini and Hochberg procedure (TSC +

BH), that is with q = 0.05,

• the Permutation UE approach described above, with q = 0.05.
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In Figure 9.B, several δ, that is several delays for the delayed coincidence counts, have

been tested and each line corresponds to a different value of δ. We see that except for

very few false positives, the method is able to detect the correct dependence features

and that it is also able to distinguish between situations where there are too many co-

incidences (bands delimited by plain black lines and containing red crosses) or too few

coincidences (bands delimited by dotted black lines and containing blue crosses), the

bands being what should be detected and the crosses being what is indeed detected in

the simulation. Moreover one sees that even if there are some variations, detections

occur for all reasonable values of δ.

The permutation approach always guarantees an FDR less than the prescribed level

of 0.05 whereas MTGAUE does not when the homogeneous Poisson assumption fails

(Experiment 1). The classical trial-shuffling method (where dependence detection oc-

curs each time the p-value is less than 0.05) seems to have comparable results in terms

of both FDR and False Non Discovery Rate (FNDR) on Experiment 1 but fails to con-

trol the FDR on the most basic situation, namely purely independent processes (Ex-

periment 2). Adding a Benjamini-Hochberg step of selection of p-values to the trial-

shuffling makes it more robust but at the price of a much larger FNDR with respect to

the Permutation UE method, a fact which is consistent with the conservativeness shown

in Figure 7.

4.3 Comparison on real data

Behavioral procedure. The data used in this theoretical article to test the dependence

detection ability of the four methods were already partially published in previous ex-
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Independ. Depend. Total

Rejected V S R

Accepted U T m−R

Total m0 m−m0 m

Experiment 1 Experiment 2

FDR FNDR FDR FNDR

MTGAUE 0.10 0.17 0.04 0

TSC 0.01 0.26 0.25 0

TSC + BH 0 0.32 0 0

P 0.01 0.23 0.02 0

Table 1: False Discovery and Non Discovery Rates. On the left hand-side, the classical

table for multiple testing adapted to our dependence framework, with a total number of

tests m = 2K. On the right hand-side, estimated FDR and FNDR over 1000 runs, FDR

being defined by E [(V/R)1R>0] and FNDR being defined by E [(T/(m−R))1m−R>0].

Experiment 1 is described in Figure 9, Experiment 2 consists of two independent ho-

mogeneous Poisson processes of firing rate 60 Hz on [0, 2]. The set of windows is as

in Figure 9. There are 50 trials and δ = 0.01s. MTGAUE is the method described in

(Tuleau-Malot et al., 2014) with q = 0.05. (TSC) is the trial-shuffling method with

Monte-Carlo approximation (B = 10000) and the selected windows are the ones whose

p-value are less than 0.05. (TSC+BH) is the same method, except that the multiplicity of

the tests is corrected by a Benjamini-Hochberg procedure (q = 0.05). (P) corresponds

to the Permutation UE method (B = 10000, q = 0.05).

perimental studies (Riehle et al., 2000; Grammont & Riehle, 2003; Riehle et al., 2006)

and also used in (Tuleau-Malot et al., 2014). These data were collected on a 5-year-old

male Rhesus monkey who was trained to perform a delayed multidirectional pointing

task. The animal sat in a primate chair in front of a vertical panel on which seven

touch-sensitive light-emitting diodes were mounted, one in the center and six placed
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equidistantly (60 degrees apart) on a circle around it. The monkey had to initiate a trial

by touching and then holding with the left hand the central target. After a fix delay of

500ms, the preparatory signal (PS) was presented by illuminating one of the six periph-

eral targets in green. After a delay of either 600ms or 1200ms, selected at random with

various probability, it turned red, serving as the response signal and pointing target.

During the first part of the delay, the probability presp for the response signal to occur at

(500+600)ms = 1.1s was 0.3. Once this moment passed without signal occurrence, the

conditional probability for the signal to occur at (500 + 600 + 600)ms = 1.7s changed

to 1. The monkey was rewarded by a drop of juice after each correct trial. Reaction

time (RT) was defined as the release of the central target. Movement time (MT) was

defined as the touching of the correct peripheral target.

Recording technique. Signals recorded from up to seven microelectrodes (quartz in-

sulated platinum-tungsten electrodes, impedance: 2− 5MΩ at 1000Hz) were amplified

and band-pass filtered from 300Hz to 10kHz. Using a window discriminator, spikes

from only one single neuron per electrode were then isolated. Neuronal data along with

behavioral events (occurrences of signals and performance of the animal) were stored

on a PC for off-line analysis with a time resolution of 10kHz.

In the following study, only trials where the response signal (RS) occurs at 1.7s are

considered. The expected signal (ES) corresponds to an eventually expected but not

confirmed signal, i.e. at 1.2s. Pairs 13 and 40 of the data set are considered here, as they

were already treated in (Tuleau-Malot et al., 2014) and in (Riehle et al., 2000) with the

Multiple Shift method (MS) of (Grün et al., 1999). This last analysis is also displayed
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on Figures 10 and 11 together with the methods described in the present article.

The (TSC+BH) method does not detect anything and is therefore not presented.

The Permutation UE (P) method detects less windows than the (MTGAUE), (TSC) and

(MS) methods. The above simulation study let us think that the extra detections of both

(MTGAUE) and (TSC) may be False Positives, since both methods do not control the

FDR as well as the Permutation UE method. However, the windows that are detected

by the Permutation UE (P) method are still in adequation with the experimental or

behavioral events. In particular, they still appear around the expected signal (ES) (blue

vertical bar), which is completely coherent with the analysis made in (Riehle et al.,

2000). Moreover (see Figure 11) the Permutation UE (P) method is able to detect also

significant lack of coincidences as the original (MS) method. In Figure 11, there are

also some windows that are detected by (P) but not by (TSC): this is also coherent with

the simulations of Figure 7 showing that (TSC) is too conservative and may have as

well too many false negatives.

5 Discussion

A UE method can be summarized in three steps:

(i) choose a coincidence count,

(ii) choose an approximation of the distribution of this count (or a function of this

count) under independence to find correct p-values (in the sense that the corre-

sponding tests control their False Positive (FP) rates),

(iii) combine the p-values for multiple testing on sliding windows.
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Our contribution to the steps (i) and (iii) is rather minor. As for the step (i), we

indeed choose to use the delayed coincidence count introduced in (Tuleau-Malot et al.,

2014), since it does not suffer from loss in synchrony detection. We here provide a fast

and efficient algorithm to compute it with an even better run time than a basic algorithm

for the binned coincidence count, using the sparsity of the signal. As for the step (iii),

we straightforwardly adapt what has been proposed in (Tuleau-Malot et al., 2014). Note

that up to an eventual logarithmic correction, this procedure mathematically guarantees

a control of the False Discovery Rate as soon as the p-values are correct.

Our main contribution consists in a careful analysis of what has to be done to obtain

correct p-values, that is of the step (ii).

A distribution free procedure. In this work, the only assumption that is made to

obtain correct p-values is that the trials are independent and identically distributed. In

particular no assumption is made on the underlying distribution of the spike trains.

They can of course be homogeneous or inhomogeneous Poisson processes as shown in

Figure 9 and Table 1. They can also be renewal processes in current or operational time

(Nawrot, 2010; Pipa et al., 2013), have a conditional intensity as, for instance, Hawkes

processes - see, for instance, Figure 9 and Table 1 or the simulations performed in

(Albert et al., 2015) - or Wold processes (Pouzat & Chaffiol, 2009), or they can have

even more complicated structure of dependence with respect to their history - see, for

instance, (Farkhooi et al., 2009, 2011). In fact they can be whatever one wants as long as

one assumes that the distribution of the point processes is the same across the trials and

that there is independence between the trials. All the mathematical material proving that
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they indeed can be ”whatever” that is biologically reasonable, is contained in (Albert

et al., 2015), where it has been shown that all the neuroscience models that we know are

indeed satisfying the technical assumptions hidden behind those mathematical results.

In short and for a non mathematical reader, it amounts to assume that each individual

point process modeling a spike train cannot explode and cannot produce a gigantic

number of spikes per unit of time, assumption which is always satisfied in practice

thanks to biological constraints.

The centering issue. Under this i.i.d. assumption, we have focused on two distinct

quantities: either C, the total number of coincidence, whose expectation c0 under inde-

pendence (H0) is not known, or U, a recentered count, which is obtained by subtracting

to C an estimate Ĉ0 of the unknown expectation under (H0) and which is therefore of

zero mean under (H0). We have shown that, because we subtracted a random quantity,

namely Ĉ0, it is possible to obtain accurate approximation of the distribution of U, the

centered quantity, but the approximation does not hold for C, the non centered one:

this is the centering issue described in Section 3. In particular, the bootstrap principle,

which is at the root of several surrogate data methods based on a shuffling of the trials,

cannot be applied to non centered quantities It is therefore possible to see that the trial-

shuffling method introduced by (Pipa & Grün, 2003; Pipa et al., 2003) performs poorly

when directly applied to C (TSC) but that it very accurately approximates the desired

distribution once C is correctly centered (TSU) (see, for instance, Figure 7). The same

behavior is pointed out for the full bootstrap method, which is more classical from a

statistical point of view. The permutation method is slightly better in the sense that,
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on the one hand, it does not suffer from the centering issue since the test based on the

centered quantity U and the test based on the non centered quantity C are equivalent,

and on the other hand, it is possible to mathematically guarantee the level whatever

the number of trials (see the left part of Figure 7 where the corresponding p-values are

under the diagonal even for n = 20 trials). This is why we chose the permutation to

complete the step (ii) of the UE method introduced in this article.

Practical implementation. Note that we used a Monte-Carlo approximation of the

distribution in the provided complete algorithm, which has first been programmed and

parallelized in C++, and then interfaced with R. In (Pipa et al., 2003) is given an exact

algorithm when the trial-shuffling is applied to the coincidence count C directly. We did

not follow this line of programming since this exact algorithm is quite long with respect

to the Monte-Carlo algorithm when the number of simulations is 10000 (as used in the

present work) and one can see on the bottom left of Figure 5 that the difference between

both results (Monte-Carlo and exact algorithms) is not detectable at first glance. Simu-

lations (in Figure 9 and Table 1) as well as a small real data set study show finally that

the Permutation UE method offers more guarantee in terms of FDR than the methods

of (Tuleau-Malot et al., 2014) and (Pipa & Grün, 2003; Pipa et al., 2003) applied to the

delayed coincidence count with a relatively comparable number of discoveries.

The i.i.d. assumption. The main point that remains to be discussed is the i.i.d.

assumption in view of the classical sticking point in neuroscience: cross-trials non-

stationarity. As shown on experimental studies (Arieli et al., 1996; Churchland et al.,

2010; Avila-Akerberg & Chacron, 2011), there is evidence of fluctuating ongoing ac-
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tivity in real neuronal networks, which leads to great cross-trials firing rate variability.

Hence, and even if this variability seems sometimes to decrease with the stimulus, one

needs to take it into account. Thus, the main question from a statistical point of view is:

what does it mean for the distribution of the sample Xn, that is the distribution of the

observed data set ?

Several properties have been given in the literature as hints of cross-trials non-

stationarity. In (Avila-Akerberg & Chacron, 2011), a spike count having a positive

variance is a result of ”trial to trial variability”. Yet with such a definition, i.i.d. homoge-

nous Poisson processes, which actually have a spike count with positive variance, would

be considered as cross-trials non-stationary, as well as any possible random model for

spike trains. Other properties are expressed in terms of the Fano Factor (FF ), defined

as the quotient of the variance of the spike count by the expectation of the spike count.

In (Grün et al, 2003) and (Churchland et al., 2010) for instance, a FF strictly larger

than 1 is presented as a hint of cross-trials non-stationarity. But renewal processes with

Gamma interspike interval (ISI) distributions may satisfy FF > 1, which in fact only

indicates that the processes are simply not homogeneous Poisson processes. In (Nawrot

et al., 2008), a ”measure” of non-stationarity across trials is given by the difference be-

tween the FF and the variation of the ISI (CV 2), which is the quotient of the variance

of the ISI by the expectation of the ISI. Yet, in (Farkhooi et al., 2009; Nawrot, 2010),

other models are constructed, with correlated ISI’s, that satisfy FF 6= CV 2, and that are

stationary across trial, this inequality only indicating that the processes are not renewal

processes.

In view of all these studies, none of these properties, expected to be at least a
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hint of cross-trials non-stationarity, can be given as an exact definition of cross-trials

non-stationarity. In our opinion, the best way to understand what is cross-trials non-

stationarity is to carefully analyze the models that have been simulated to represent

such a cross-trials non-stationarity in the above articles. From the simple one of (Grün

et al, 2003) and simulated in Figure 8.C, to the very intricate one of (Farkhooi et al.,

2011) through the statistical models used in (Ventura et al., 2005), one can see that

they all share the principle of doubly stochastic processes. The article of (Churchland

et al., 2011) is the one that maybe best formalizes this observation, as the cross-trials

variability is explained from a ”mixture of firing rate states”, the firing rates changing

”gradually during decision formation”. This is what we tried to catch in a very simple

way with the simulations of Figure 8.A and Figure 8.B. Following the description of

(Churchland et al., 2011), there is a hidden variable Y , called an ”intensity command”,

whose realization influences the parameters of the model for X: typically, the firing

rate of X is a function of Y whose value is fixed once Y is given. The variable Y may,

for instance, model either the variation of depth in anesthesia, the changes in the level

of attention of the animal or the degree of decision making. It can also be viewed as

the stimulus in experiments that are subject to stimulus variability (Ben-Shaul et al.,

2001) or as an oscillatory potential produced by a large non observed network of cells

influencing both neurons (Kass et al., 2011).

From a probabilistic point of view, our interpretation is that cross-trials non-stationarity

means that the distribution of the couple X = (X1, X2) is not given intrinsically but

is given conditionally to a certain random variable Y , that we call command variable

hereafter in line with (Churchland et al., 2011). The question is then: can Y be decom-
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posed in two independent ”command” variables Y 1 and Y 2 that respectively govern

the distributions of X1 and X2 or do we have a common command variable Y , that

can be viewed as the ”common source” of (Ben-Shaul et al., 2001)? In the first case,

if (X1, X2) are independent conditionally to Y = (Y 1, Y 2), if the distribution of X1

(respectively X2) is only governed by Y 1 (respectively Y 2) and if Y 1 is independent on

Y 2, then for all sets A,B,

P
(
X1 ∈ A,X2 ∈ B

)
= E

[
P
(
X1 ∈ A,X2 ∈ B|Y

)]
= E

[
P
(
X1 ∈ A|Y

)
P
(
X2 ∈ B|Y

)]
by independence of (X1, X2) given Y

= E
[
P
(
X1 ∈ A|Y 1

)
P
(
X2 ∈ B|Y 2

)]
(7)

since there is no common command variable

= E
[
P
(
X1 ∈ A|Y 1

)]
E
[
P
(
X2 ∈ B|Y 2

)]
since Y 1 is independent of Y 2

= P
(
X1 ∈ A

)
P
(
X2 ∈ B

)
.

Hence in this case and despite the command variable Y , one is still under global inde-

pendence between X1 and X2, that is (H0). As long as the command variable is i.i.d.

across the trials, the distribution of Xn is therefore still the one of a n i.i.d. sample sat-

isfying (H0). This is exactly what happens in Figure 8.C, where the simulation scheme

of (Grün et al, 2003; Grün, 2009) exactly satisfies this.

Since bootstrap methods are distribution free, they can in particular handle the fact

that the distribution of X is described via this doubly stochastic process. The only

thing that matters is whether there is still global (unconditional) independence between

X1 and X2. We believe that the explanation for the bad behavior of the trial-shuffling

described in (Grün et al, 2003; Grün, 2009) is not cross-trials non-stationarity but a
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centering defect, which can be seen via the behavior of (TSC) versus (TSU) on Figure

8.C. It is indeed possible that when using the binned coincidence count instead of the

delayed coincidence count, (TSC) goes from too conservative as on Figure 8.C to not

enough conservative as shown in the study of (Grün et al, 2003; Grün, 2009). In both

cases, (TSC) does not reproduce the right distribution under (H0) because the quantity

at hand is not correctly centered, but once this is corrected, (TSU) is perfectly able to

give correct p-values even in this cross-trials non-stationary case.

The same explanation holds for Figure 8.B. In this case, the command variable is

the index of the trial but it influences only X1 and not X2, so we are exactly in the same

set-up as without any common command variable: the p-values behave exactly as usual

under (H0). However in Figure 8.A, a common command variable (again the index of

the trial) governs both distributions: the p-values behave exactly as under (H1) in Figure

7. Note that it is actually reasonable to reject independence here: indeed (7) does not

hold and the variables X1 and X2 are globally dependent here, since there is definitely

a common command variable. A similar set-up of common command variable can be

viewed in the models of conditional dependence proposed by (Ventura et al., 2005) and

(Kass et al., 2011).

To conclude, what the surrogate methods based on a shuffling of the trials can do

with respect to cross-trials non-stationarity is also to detect whether there is a common

command variable or not. In particular, if X1 and X2 are independent conditionally to

the common command variable Y and do not present any ”fine temporal coordination of

spikes in neuronal preprocessing”, as stated in (Grün et al, 2003), the test is still likely

to reject the independence assumption. Yet, this is not a False Positive with respect to
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the statistical meaning of the test. Indeed, in this situation the spike trains X1 and X2

are correlated since they are not globally independent. However, they are conditionally

independent once the command variable is fixed and in this sense they do not really

present any synchrony. This kind of distinction between correlation and synchrony was

already underlined and discussed on cross-correlograms by Brody (1999a,b).

Finally, one could wonder what is really assumed by i.i.d. trials. The independence

between trials is, in our opinion, not really an issue since the trials are usually suffi-

ciently far apart in time. The main assumption is therefore the identical distribution. As

explained above, cross-trials non-stationarity interpreted as a command variable phe-

nomenon does not contradict this assumption. We can even not imagine how this as-

sumption can be defective in practice. Even in the extreme case where half of the trials

would be sampled from an anesthetized animal and the other half from a non anes-

thetized animal, considering the presence or not of anesthesia as a command variable

lead to i.i.d. trials from a mixture point of view.

This naturally leads to the following completely open question. Is the global inde-

pendence property really the assumption that the neuroscientists want to test?

On the one hand, in (Churchland et al., 2011), it is stated that ”variance itself can

be diagnostic of neural computation”. We interpret this in the present framework as

follows: if one is able to detect a common command variable (not known before hand),

then one is able to detect ”neural computation”. This line is totally in accordance with

the discussion of (Ben-Shaul et al., 2001) where global dependence can be viewed as

the presence of an ”internal variable” when ”the variability of all relevant stimuli or

actions has been accounted for” by the experimental design and therefore when the test
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has been applied only to trials that are homogeneous with respect to this experimental

design. Hence global independence may have a meaning in neuroscience.

On the other hand, a more precise description of the dependence may be needed.

For instance, Hawkes processes allow to model local independence. For instance, if the

command variable is the spike train of a third observed neuron, it is eventually possible

via the methods of (Hansen et al., 2015; Reynaud-Bouret et al., 2013) and under a

Hawkes distribution assumption, to see whether this third neuron influences both X1

and X2 with or without direct (local) dependence between X1 and X2. In the same

line, the works of (Ventura et al., 2005; Kass et al., 2011) give another precise model of

conditional independence that can be tested. Up to our knowledge, however, there is no

distribution free method that would be able to assess this, in particular if the command

variable is hidden.

Therefore, contrary to what is currently believed, the present statistical study shows

that surrogate data methods based on a shuffling of the trials can behave properly under

cross-trials non-stationarity if they are applied to correctly centered quantities and if

one wishes to detect global dependence. The other popular surrogate method based on

dithering (Louis et al., 2010b) is much more difficult to study from a mathematical point

of view, principally because, unlike bootstrap methods, there is no general mathematical

theory explaining why moving individual spikes would mimic the overall distribution of

the coincidence count or any centered version of it under independence. One possible

guess, which is maybe far fetched, is that dithering, as a much more local surrogate data

procedure, may be able somehow to detect local and not global dependence, if one can

correctly tune it.
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Another open question, which seems much more achievable, is to adapt those boot-

strap procedures to more than two neurons. Indeed, delayed coincidence counts have

already been introduced in this case in (Chevallier & Laloë, 2015) and similar bootstrap

procedures have been developed for more than two real valued variables in the precur-

sor work of (Romano, 1989).
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Nature
Randomness

Computer
randomness

Original data set

Surrogate data set

 Trial-shuffling Full Bootstrap

Permutation

built as either 

n=3 trials

Pick n= 3 couples (i,j) with replacement in 

         (1,2) (1,3)
(2,1)          (2,3)
(3,1) (3,2) 

(1,1) (1,2) (1,3)
(2,1) (2,2) (2,3)
(3,1) (3,2) (3,3)

Pick n= 3 couples (i,j) with replacement in 

Pick only 1 permutation       given by 

1    2    3
1    3    2
2    1    3
2    3    1
3    1    2
3    2    1

in

Unconditional distribution: all possible choices of both Nature and Computer randomness

Conditional distribution: 1 fixed original data set (Nature randomness), all possible choices of Computer randomness

Figure 4: Schematic view of the three bootstrap procedures. Note in particular that

n draws with replacement are necessary for the trial-shuffling and the full bootstrap

approach, whereas only one draw of one permutation is necessary for the permutation

approach. Note also that it is perfectly possible that a surrogate data set done by trial-

shuffling or full bootstrap approaches may perfectly pick twice the same trial and at the

same time leave out one or more of the original trials, whereas the permutation is always

exhaustive in this sense. Such typical draws are given by the red circles, leading to the

given surrogate data set for each method. Finally note that the unconditional distribution

let both randomness (Nature and Computer) vary and that this is not realistic since in

practice we have only one original data set. This is why the conditional distribution is

the one that can be simulated via a computer for a given observation.
59
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Figure 5: The unconditional distribution and conditional distributions of C under (H0).

C.d.f. of C(X⊥⊥n ) and (for the first line) of CTS = C(XTS
n ), of C∗ = C(X∗n) and of

C? = C(XΠn
n ) obtained from 10000 simulations of n = 20 trials of two independent

Poisson processes of firing rate 30Hz on a window of length 0.1s with δ = 0.01s. On the

second line, in addition to the c.d.f. of C(X⊥⊥n ), five observations of Xn = X⊥⊥n have been

simulated in the same set-up and given these observations, the conditional c.d.f. have

been approximated by simulating 10000 times the extra-randomness corresponding to

X̃n. For the trial-shuffling, in addition to this approximate Monte-Carlo method (MC),

the exact conditional c.d.f. has been obtained thanks to the algorithm of (Pipa et al.,

2003).
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Trial-Shuffling Full Bootstrap Permutation

Figure 6: Conditional distribution of U
(
X̃n

)
(or its recentered version ŨTS for the

Trial-Shuffling) given Xn. Cumulative distribution functions of U⊥⊥= U
(
X⊥⊥n
)

in black,

obtained by simulation as in Figure 5. For the first line, under (H0), five observations

of X⊥⊥n in the same set-up have been fixed and given these observations, the conditional

c.d.f. of UTS = U
(
XTS
n

)
, of ŨTS = UTS + Uobs/n, of U∗ = U (X∗n) and of U? =

U
(
XΠn
n

)
have been obtained as in Figure 5. For the second line, five observations of

Xn, simulated under (H1) with marginals equal to the ones of the first line but satisfying

X1 = X2, have been simulated and conditional c.d.f. are obtained in the same way as

above.
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Figure 7: Distribution of the p-values for the different tests. C.d.f. under both (H0)

and (H1) of the p-values for the five tests: naive (N), Trial-Shuffling version C (TSC),

Trial-Shuffling version U (TSU), Full Bootstrap version U (FBU), and Permutation (P).

Under (H0), the c.d.f. are obtained by simulations done as in Figure 5; the c.d.f. are then

plotted only for small p-values (≤ 0.1). Under (H1), the couple (X1, X2) is constructed

by injection (Grün et al., 2010; Tuleau-Malot et al., 2014), i.e. as (N1∪N inj, N2∪N inj)

where (N1, N2) are two independent Poisson processes of firing rate 27 Hz on a window

of length 0.1s and where N inj is a common Poisson process of firing rate 3Hz; once

again, 20 i.i.d. trials are simulated 10000 times to obtain the corresponding c.d.f. with

δ = 0.01s.
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B: Drift on X1, No drift on X2A: Drift on both X1 and X2 C: Hidden command

Figure 8: Distribution of the p-values for the different tests under varying firing rates.

C.d.f. of the p-values for the five tests: naive (N), Trial-Shuffling version C (TSC),

Trial-Shuffling version U (TSU), Full Bootstrap version U (FBU), and Permutation (P)

computed over 10 000 simulations. In A, n = 20 trials are drawn, the firing rates are

constant on each trial and they are regularly increasing, from trial 1 to trial 20, from

respectively 10Hz to 100Hz for X1 and from 10Hz to 50Hz for X2. Once the rates

fixed, both spike trains in each trial are independent homogeneous Poisson processes of

the prescribed rates. The length of the interval [a, b] is 0.1s and δ = 0.01s. In B, the

same set-up is taken except that the firing rate of X2 is fixed equal to 50 Hz. In C, the

simulation set up of (Grün, 2009) is taken: 100 trials of 1s duration and in each trial

i and each component j is independently drawn (i) first, a hidden command variable,

Y j
i , which is here a Bernoulli variable of parameter 0.7 (ii) the spike train Xj

i is then

simulated as a homogeneous Poisson process of firing rate 30Hz, if Y j
i =1 and of firing

rate 90Hz, if Y j
i = 0.
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Figure 9: Multiple tests. 9.A: description of Experiment 1. In the Poisson part, the

intensity of both Poisson processes is plotted. The injection component corresponds to

the part of a shared Poisson process which is injected in both processes corresponding

to X1 and X2, as explained in Figure 7. In the Hawkes part (see (Tuleau-Malot et al.,

2014) for a complete description), formulas for the spontaneous parameters and both

self interaction hi→i and cross interaction hi→j functions are given. 9.B: results of

the Permutation UE method (B = 10000, q = 0.05) performed on 191 overlapping

windows of the form [a, a + 0.1] for a in {0, 0.01, ..., 1.9} on one run of simulation for

50 trials of Experiment 1. A red (resp. blue) cross is represented at the center of the

window when it is detected by a p+
W (resp. p−W ). Each horizontal line corresponds to a

different δ in {0.001, 0.002, ...0.04}. The black vertical lines delimit the regions where

the independence hypothesis is not satisfied: plain for positive dependence (i.e. where

Cobs should be too large), and dashed for negative dependence (i.e. where Cobs should

be too small).
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Figure 10: Raster plots of the pair of neurons 13. In red the Unitary Events where the

coincidence count is significantly too large for the three methods (MTGAUE, TSC and

P) presented in Table 1 and for the Multiple Shift method (MS), with δ = 0.02s and

B = 10000, on overlapping windows of the form [a, a+0.1] for a in {0, 0.05, ..., 1.95}.

No interval was detected for a significantly too small coincidence count. Signs on

bottom corresponds to behavioral events. The first black vertical bar corresponds to the

preparatory signal (PS), the blue vertical bar to the expected signal (ES), the second

black vertical bar to the response signal (RS). The first hatched box corresponds to the

interval [mean reaction time (RT) minus its standard deviation, mean reaction time (RT)

plus its standard deviation], the second hatched box corresponds to the same thing but

for the movement time (MT). 65
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Figure 11: Raster plots of the pair of neurons 40. In red the Unitary Events where the

coincidence count is significantly too large for the three methods (MTGAUE, TSC and

P) presented in Table 1 and for the Multiple Shift method (MS), with δ = 0.02s and

B = 10000, on overlapping windows of the form [a, a+ 0.1] for a in {0, 0.05, ..., 2.1}.

In blue the Unitary Events where the coincidence count is significantly too small with

the same convention. Signs on bottom corresponds to behavioral events as described in

Figure 10.
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