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Abstract

We investigate several distribution free dependence detection procedures, mainly based

on bootstrap principles and their approximation properties. Thanks to this study, we

introduce a new distribution free Unitary Events (UE) method, named Permutation UE,

which consists in a multiple testing procedure based on permutation and delayed co-

incidence count. Each involved single test of this procedure achieves the prescribed

level, so that the corresponding multiple testing procedure controls the False Discovery

Rate (FDR), and this with as few assumptions as possible on the underneath distribu-

tion. Some simulations show that this method outperforms the trial-shuffling and the

MTGAUE method in terms of single levels and FDR, for a comparable amount of false

negatives. Application on real data is also provided.

1 Introduction

The eventual time dependence either between cerebral areas or between neurons, and

in particular the synchrony phenomenon, has been vastly debated and investigated as a

potential element of the neuronal code (Singer, 1993). To detect such a phenomenon

at the microscopic level, multielectrodes are usually used to record the nearby electri-

cal activity. After pretreatment, the time occurrences of action potentials (spikes) for

several neurons are therefore available. One of the first steps of analysis is then to un-

derstand whether and how two simultaneously recorded spike trains, corresponding to

two different neurons, are dependent or not.
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Several methods have been used to detect synchrony (Perkel et al., 1967; Aertsen

et al., 1989). Among the most popular ones, the UE method, due to Grün and col-

laborators (Grün, 1996; Grün et al., 2010), has been applied in the last decade on a

vast amount of real data (see for instance (Kilavik et al., 2009) and references therein).

Two of its main features are at the root of its popularity: UE is not only able to give a

precise location in time of the dependence periods, but also to quantify the degree of

dependence by providing p-values for the independence tests.

From the initial method, substantial upgrades have been developed:

(i) In the original UE method, the point processes modelling the data are binned and

clipped at a rough level, so that the final data have a quite low dimension (around a few

hundreds per spike train). However, it is proved in (Grün et al., 1999) that the binned

coincidence count as a result of this preprocessing may induce a loss in synchrony

detection of about 60% in certain cases. The idea of (Grün et al., 1999) was therefore

to keep the data at the initial resolution level despite its high dimension, but to define

the notion of multiple shift (MS) coincidence count, nicely condensing the dependence

feature that neurobiologists want to analyze without any loss in synchrony detection.

(ii) The original UE method assesses p-values by assuming that the underlying point

processes are Poisson (or Bernoulli) processes. As there is still no commonly validated

and accepted model for spike trains (see for instance Pouzat & Chaffiol (2009) for

a thorough data analysis), several surrogate data methods have been proposed (Louis

et al., 2010). In particular, trial-shuffling methods (Pipa & Grün, 2003; Pipa et al.,

2003) allow to assess p-values based on the fact that i.i.d. trials are available, using

bootstrap paradigm and without making any assumption on the underlying point pro-
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cesses distribution. However, up to our knowledge, surrogate data methods are always

based on binned coincidence count (see section 2 for a precise definition) whose low

complexity combined to parallel programming (Denker et al., 2010) make algorithms

usable in practice.

(iii) The original UE method is based on two main statistical approximations. First,

it involves the underlying intensities (or firing rates) of the Poisson processes, which

are unknown in practice, and so replaced by estimates. However, this plug-in proce-

dure is not taken into account in the p-values computations. Then, the detection of

dependence through time is done by applying several tests at once without correcting

for the multiplicity of the tests. In the recent work of (Tuleau-Malot et al., 2014), a

multiple testing procedure based on a Gaussian approximation of the Unitary Events

(MTGAUE) corrects those two facts, moreover including a generalization of the notion

of MS coincidence count, namely the delayed coincidence count, which does not suffer

from any loss in synchrony detection. But MTGAUE is still based on the assumption

that the underlying point processes are Poisson.

Our aim is here to go further by proposing a new delayed coincidence count-based

multiple testing procedure, which does not need any binning preprocessing of the data

as in (Tuleau-Malot et al., 2014), but which does not assume any model on the underly-

ing point processes anymore. This procedure combines a permutation approach in the

line of (Hoeffding, 1952; Romano, 1989; Romano & Wolf , 2005), with the multiple

testing procedure of (Benjamini & Hochberg, 1995).

To do so, we first propose a fast algorithm to compute the delayed coincidence

count, with a computational cost equivalent to the one of the binned coincidence count.
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Next we study several distribution free tests, most of them based on bootstrap ap-

proaches, as the trial-shuffling, or the permutation approach. We finally propose a

complete multiple testing algorithm which satisfies similar properties as existing UE

methods, but without sharing any of the previous drawbacks. Some simulations and

applications to real data complete this study.

In all the sequel, X1 and X2 denote two point processes modelling the spike trains

of two simultaneously recorded neurons and X represents the couple (X1, X2). The

abbreviation ”i.i.d.” stands for independent and identically distributed. In this sense, by

assuming that n independent trials are observed, the observation is modeled by an i.i.d.

sample of size n of couples from the same distribution as X , meaning n i.i.d. copies

X1, ..., Xn of X . This sample is denoted in the sequel by Xn = (X1, ..., Xn). The

corresponding probability and expectation are respectively denoted by P and E.

Since the independence between X1 and X2 is the main focus of the present work,

the following notation is useful: X⊥⊥ denotes a couple (X1,⊥⊥, X2,⊥⊥) such that X1,⊥⊥

(resp. X2,⊥⊥) has the same distribution as X1 (resp. X2), but X1,⊥⊥ is independent of

X2,⊥⊥. In particular, the couple X⊥⊥ has the same marginals as the couple X . Moreover,

X⊥⊥n denotes an i.i.d. sample of size n from the distribution of X⊥⊥, and P⊥⊥ and E⊥⊥ are

the corresponding probability and expectation.

Note in particular that if the two observed neurons indeed behave independently,

then the observed sample Xn has the same distribution as X⊥⊥n .

The notation 1A stands for a function whose value is 1 if the event A holds and 0

otherwise.

Finally, for any point process Xj (j = 1, 2), dNXj stands for its associated point
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measure, defined by:

∫
f(u)dNXj(u) =

∑
T∈Xj

f(T ) for all measurable function f,

and for any interval I , NXj(I) denotes the number of points of Xj observed in I .

2 Binned and delayed coincidence counts

Because of the way neurons transmit information through action potentials, it is com-

monly admitted that the dependence between the spike trains of two neurons is due to

temporal correlations between spikes produced by both neurons. Informally, a coinci-

dence occurs when two spikes (one from each neuron) appear with a delay less than

a fixed δ (of the order of a few milliseconds). Several coincidence count functions

have been defined in the neuroscience literature, and among them the classical binned

coincidence count, used for instance in (Pipa & Grün, 2003; Pipa et al., 2003).

Definition 1 The binned coincidence count between point processes X1 and X2 on the

interval [a, b] with b − a = Mδ for an integer M ≥ 2 and a fixed delay δ > 0 is given

by

ψcoincδ (X1, X2) =
M∑
`=1

1NX1 (I`)≥11NX2 (I`)≥1,

where I` is the `th bin of length δ, i.e. [a+ (`− 1)δ, a+ `δ) and

1N
Xj (I`)≥1 =


1 if there is at least one point of Xj in the `th bin,

0 if there is no point of Xj in the `th bin.

More informally, the binned coincidence count is the number of bins that contain at least

one spike of each spike trains. The binned coincidence count computation algorithm is
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usually performed on already binned data. Therefore, given two sequences of 0 and 1 of

length (b−a)δ−1, 2(b−a)δ−1 operations are needed to compute the binned coincidence

count, without counting the number of operations needed for the binning preprocessing.

The more recent notion of delayed coincidence count, introduced in (Tuleau-Malot

et al., 2014), is a generalization of the multiple-shift coincidence count, defined in (Grün

et al., 1999) for discretized point processes, to non necessarily discretized point pro-

cesses.

Definition 2 The delayed coincidence count between point processes X1 and X2 on

the interval [a, b] is given by

ϕcoincδ (X1, X2) =

∫ b

a

∫ b

a

1|u−v|≤δdNX1(u)dNX2(v),

More informally, ϕcoincδ (X1, X2) is the number of couples of spikes (one spike from X1

and one from X2) appearing in [a, b] with delay at most equal to δ.

The delayed coincidence count c := ϕcoincδ (X1, X2) can be computed using the

following algorithm.
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Delayed coincidence count algorithm

Given two sequences x1 and x2 of ordered points with respective lengths n1 =

NX1([a, b]) and n2 = NX2([a, b]), representing the observations of two point pro-

cesses X1 and X2,

- Initialize j = 1 and c = 0.

- For i = 1, ..., n1,

1. Assign xlow = x1[i]− δ.

2. While j ≤ n2 and x2[j] < xlow, j = j + 1.

3. If j > n2, stop.

4. Else (here necessarily, x2[j] ≥ xlow),

4.a Assign xup = x1[i] + δ and k = j.

4.b While k ≤ n2 and x2[k] ≤ xup, c = c+ 1 and k = k + 1.

It is easy to see that the complexity of this algorithm is not governed only by the

lengths n1 and n2 but also by the random numbers of points in intervals of length 2δ

for step 4.b. More precisely, it is bounded by 3n1 (for steps 1, 3 and 4.a), n2 (for

all steps 2 on all points of x1) and 2n1 times the number of points of x2 in a segment

(namely [xlow, xup]) of length 2δ (for step 4.b). In average, ifX1 andX2 are for instance

independent homogeneous Poisson processes of respective intensities λ1 and λ2, at most

3λ1(b − a) + λ2(b − a) + 2λ1(b − a)(2δλ2) operations are required. So, for typical

parameters ((b − a) = 0.1s, δ = 0.005s, λ1 = λ2 = 50Hz), 40 operations in average

are required to compute the binned coincidence count, against 25 operations for the

delayed coincidence count. Both algorithms are therefore linear in (b− a) with a slight

advantage for the delayed coincidence count which exploits the sparsity of the spike
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trains, in the usual range of parameters. Notice that all surrogate data methods (see

(Louis et al., 2010)) could in principle be applied on this new notion of coincidence, at

least when only two neurons are involved.

3 Some distribution free independence tests

Given the observation of a n sample Xn = (X1, . . . , Xn) corresponding to n different

trials, the aim is to test:

(H0) ”X1 and X2 are independent on [a, b]”

against

(H1) ”X1 and X2 are not independent on [a, b]”.

All existing UE methods are based on a statistic equal to the total number of coinci-

dences:

C = C(Xn) =
n∑
i=1

ϕ(X1
i , X

2
i ),

where ϕ generically denotes either ϕcoincδ , or ψcoincδ , or other coincidence count func-

tions that practitioners would like to use (see (Albert et al., 2014) for other choices).

To underline what is observable or not, when C is computed on the observation of

Xn, it is denoted by Cobs, the total number of observed coincidences.

In the following, several of these UE methods or testing procedures are described,

which all rely on the same paradigm: ”reject (H0) when Cobs is significantly different

from what is expected under (H0)”. More precisely, the independence (H0) is rejected

and the dependence is detected when a quantity, based on the difference between the

observed coincidence count and what is expected under (H0), is smaller or larger than
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some critical values. Those critical values are obtained in various ways, each of them

being peculiar to each method. Note that the following procedures could be applied to

any chosen coincidence count function ϕ, though the implemented procedures of the

present simulations and data analysis only use the delayed coincidence count, that is

ϕ = ϕcoincδ .

3.1 A naive approach and the centering issue

As noticed above, the only question, when considering UE methods, is how to construct

the critical values.

If the values of the expectation and the variance of C under (H0), that is

c0 = E⊥⊥(C) and v0 = E⊥⊥
(
(C− c0)2) ,

are precisely known, then the classical Central Limit Theorem gives under indepen-

dence that

C(X⊥⊥n )− c0√
v0

L−→
n→∞

N (0, 1).

Then, given α in (0, 1), the test which consists in rejecting (H0) when (Cobs− c0)/
√
v0

is larger than z1−α, the 1− α quantile of a standard Gaussian distribution, is asymptot-

ically of level α. It means that, for this test, the probability of rejecting independence,

whereas independence holds, is asymptotically (in n, the number of trials) smaller than

the prescribed α.

In the present point processes framework, strong distribution assumptions, for which

the values of c0 and v0 are precisely known, are unrealistic. Even if the spike trains are

assumed to be homogeneous Poisson processes as in (Tuleau-Malot et al., 2014), those
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quantities depend, through some formulas, on the unknown firing rates that have to be

estimated and plugged into these precise formulas. It has been shown that this modi-

fies the asymptotic variance shape, and tests under Poisson assumptions with unknown

firing rates have been developed in (Tuleau-Malot et al., 2014).

Since Poisson assumptions are quite doubtful on real data (Pouzat & Chaffiol, 2009),

the aim of the present work is to go further by not assuming any Poisson or other model

assumptions for the spike trains. In this sense, the aim is to develop ”distribution free”

methods that are completely agnostic with respect to the underlying distribution of the

spike trains. In this case, a preliminary step is to estimate c0, only using the sample Xn

without any distribution assumption. Note that

c0 = E⊥⊥

[
n∑
i=1

ϕ(X1,⊥⊥
i , X2,⊥⊥

i )

]
= nE⊥⊥

[
ϕ(X1,⊥⊥, X2,⊥⊥)

]
,

and that for i 6= i′, as Xi is always assumed to be independent of Xi′ ,

E
[
ϕ(X1

i , X
2
i′)
]

= E⊥⊥
[
ϕ(X1,⊥⊥, X2,⊥⊥)

]
. (1)

Therefore, c0 can always be estimated in a distribution free manner by

Ĉ0(Xn) =
1

n− 1

∑
i 6=i′

ϕ(X1
i , X

2
i′).

Hence a reasonable test statistic would be based on the difference:

U = U(Xn) = C(Xn)− Ĉ0(Xn),

its observed version being denoted by Uobs. Here, U(Xn) is not an empirical mean,

but a U -statistic, so it does not satisfy the classical Central Limit Theorem. Hence,

its limit distribution under (H0) is not as straightforward as usual. Nevertheless, some
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asymptotic theorems, proved in (Albert et al., 2014), show that under mild conditions

(always satisfied in practice in the present cases) the following convergence result holds:

Z(X⊥⊥n ) =
U(X⊥⊥n )√
nσ̂(X⊥⊥n )

L−→
n→∞

N (0, 1), (2)

where

σ̂2(Xn) =
4

n(n− 1)(n− 2)

∑
i,j,k all different

h(Xi, Xj)h(Xi, Xk),

with

h(x, y) =
1

2

[
ϕ(x1, x2) + ϕ(y1, y2)− ϕ(x1, y2)− ϕ(y1, x2)

]
.

As above, denoting by Zobs the quantity Z computed on the observed sample, (2)

implies that for some fixed α in (0, 1), the test that consists in rejecting (H0) when

Zobs ≥ z1−α, is asymptotically of level α.

The approximation properties of (2) are illustrated on Figure 1.

Clearly, one can see that the distribution approximation is good when n is large

(n = 200) as expected, but not so convincing for small values of n (n = 20, or even

n = 50), particularly in the tail parts of the distributions. However, as it is especially

the tails of the distributions that are involved in the test through the quantile z1−α, one

can wonder, by looking at Figure 1, if it may perform reasonably well in practice with

a usual number of a few tens of trials.

Furthermore, looking informally at Equation (2), readers could think of two approx-

imations that could be roughly formulated in the following way:

U(X⊥⊥n )
L
≈

n→∞
N
(
0, nσ̂2(X⊥⊥n )

)
, (3)

and

C(X⊥⊥n )
L
≈

n→∞
N
(
Ĉ0(X⊥⊥n ), nσ̂2(X⊥⊥n )

)
. (4)
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n=20 n=50 n=200

N(0,1) N(0,1) N(0,1)

Figure 1: Gaussian approximation of the distribution of Z. In plain black, cumulative

distribution function (c.d.f.) of Z under (H0), that is of Z⊥⊥= Z(X⊥⊥n ) obtained with 2000

simulations of X⊥⊥n , for n = 20, 50 or 200 trials of two independent Poisson processes

of firing rate 30Hz, on a window of length 0.1s with δ = 0.01s. The dashed line

corresponds to the standard Gaussian c.d.f.

This is illustrated on Figure 2.

Looking at the first line of Figure 2, one can see that the approximation formulated

in (3) is actually conceivable for large values of n. Note that in practice, one cannot

have access to σ̂2(X⊥⊥n ) and it has to be replaced by σ̂2(Xn), meaning that it is computed

with the observed sample. This does not change anything under (H0) since Xn is in this

case distributed as X⊥⊥n . But this is a particularly important sticking point if (H0) is not

satisfied as one can see on the third line of Figure 2: the distribution of U(X⊥⊥n ) does

not look like a centered Gaussian distribution of variance nσ̂2(Xn), when Xn does not

satisfy (H0).
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n=20 n=50 n=200

Figure 2: Other Gaussian distribution approximations. Two first lines: c.d.f. of U and

C under (H0), obtained as in Figure 1. These c.d.f. are respectively compared with the

Gaussian c.d.f. with mean 0 and standard deviation
√
nσ̂(Xn), and the Gaussian c.d.f.

with mean Ĉ0(Xn) and standard deviation
√
nσ̂(Xn), for five different simulations of

Xn under (H0). Third line: c.d.f. of U under (H0) computed as above, compared

with the centered Gaussian c.d.f. with standard deviation
√
nσ̂(Xn), for five different

simulations of Xn under (H1) (same marginals as in the first two lines but X1 = X2).
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More importantly, the second line of Figure 2 shows that the approximation formu-

lated in (4) is in fact misleading. To understand why, one needs to take into account the

two following points.

(i) Ĉ0(X⊥⊥n ) moves around its expectation c0 (which is also the expectation of C(X⊥⊥n ))

with realizations of X⊥⊥n . These fluctuations have an order of magnitude of
√
n and are

therefore perfectly observable on the distribution of C(X⊥⊥n ) whose variance is also of

order
√
n.

(ii) nσ̂2(X⊥⊥n ) estimates the variance of U(X⊥⊥n ) and not the one of C(X⊥⊥n ) or Ĉ0(X⊥⊥n ).

This explains why not only the mean but also the variance are badly estimated in the

second line of Figure 2. Both randomness (the one of C(X⊥⊥n ) and the one of Ĉ0(X⊥⊥n ))

have to be taken into account to estimate the variance of U(X⊥⊥n ).

As a conclusion of this first naive approach, the test of purely asymptotic nature,

which consists in rejecting (H0) when Zobs > z1−α may work for n large enough, as

the variance is here computed by considering the correctly recentered statistic U, and

this even if the behavior of the statistic under (H1) is not clear. But an ad hoc and more

naive test statistic, based on an estimation of the variance of C directly and without

taking into account the fact that the centering term Ĉ0(Xn) is also random, would not

lead to a meaningful test.

3.2 The bootstrap approaches

It is well known (Giné, 1997) that tests of purely asymptotic nature as the one presented

above are less accurate for small values of n than more involved procedures. In this arti-

cle, the focus is on bootstrap/resampling procedures that are usually known to improve
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the performance from moderate to large sample sizes. Three main procedures are in-

vestigated: the trial-shuffling introduced in (Pipa & Grün, 2003; Pipa et al., 2003), the

classical full bootstrap of independence and the permutation approach (Romano, 1989).

The main common paradigm of these three methods, as described in the sequel,

is that starting from an observation of the sample Xn, they randomly generate via a

computer another sample X̃n, whose distribution should be close to the distribution of

X⊥⊥n (see also Figure 4).'

&

$

%

Trial-shuffling

X̃n = XTS
n = ((X1

iTS(1), X
2
jTS(1)), ..., (X

1
iTS(n), X

2
jTS(n))),

where the (iTS(k), jTS(k))’s are n i.i.d. couples drawn uniformly at random in

{(i, j) / i = 1, ..., n, j = 1, ..., n, i 6= j}.

In particular, the corresponding bootstrapped coincidence count is

CTS = C(XTS
n ) :=

n∑
k=1

ϕ
(
X1
iTS(k), X

2
jTS(k)

)
.

This algorithm seems natural with respect to (1) because it avoids the diagonal terms

of the square {(i, j) / i = 1, ..., n, j = 1, ..., n}. Hence as a result,

E(CTS) = c0 = E⊥⊥(C).
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Classical full bootstrap

X̃n = X∗n = ((X1
i∗(1), X

2
j∗(1)), ..., (X

1
i∗(n), X

2
j∗(n))),

where the n couples (i∗(k), j∗(k)) are i.i.d. and where i∗(k) and j∗(k) are drawn

uniformly and independently at random in {1, ..., n}.

In particular, the corresponding bootstrapped coincidence count is

C∗ = C(X∗n) :=
n∑
k=1

ϕ(X1
i∗(k), X

2
j∗(k)).

Note that this algorithm draws uniformly at random in the square {(i, j) / i =

1, ..., n, j = 1, ..., n} and therefore does not avoid the diagonal terms. The idea behind

this algorithm is to mimic the independence under (H0) of X1
k and X2

k by drawing the

indexes i∗(k) and j∗(k) independently. However

E(C∗) = n

[
1

n
E(ϕ(X1, X2)) +

n− 1

n
E⊥⊥(ϕ(X1,⊥⊥, X2,⊥⊥))

]
.

Hence under (H0), E⊥⊥(C∗) = c0 but, under (H1), E(C∗) and c0 are only asymptotically

equivalent.'

&

$

%

Permutation

X̃n = XΠn
n = ((X1

1 , X
2
Πn(1)), ..., (X

1
n, X

2
Πn(n))),

where Πn is a permutation drawn uniformly at random in the group of permutations

Sn of the set of indexes {1, . . . , n}.

In particular, the corresponding bootstrapped coincidence count is

C? = C
(
XΠn
n

)
:=

n∑
i=1

ϕ
(
X1
i , X

2
Πn(i)

)
.
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The idea is to use permutations to avoid picking twice the same spike train of the

same trial. In particular under (H0), the sum in C? is still a sum of independent vari-

ables, which is not the case in both of the previous algorithms. However, under (H1),

the behavior is not as limpid. As for the full bootstrap,

E(C?) = n

[
1

n
E(ϕ(X1, X2)) +

n− 1

n
E⊥⊥(ϕ(X1, X2))

]
.

Hence under (H1), E(C∗) and c0 are only asymptotically equivalent.

To compare those three bootstrap/resampling algorithms, the first thing to wonder

is whether, at least under (H0), the introduced extra randomness has not impacted the

distribution. More precisely, as stated above, all three procedures satisfy

E⊥⊥(C(X̃n)) = E⊥⊥(C(X⊥⊥n )) = c0,

but is the full distribution of C(X̃n) the same as the one of C(X⊥⊥n )?

The first line of Figure 3 shows as expected that the permutation does not change

the distribution of X⊥⊥n , since, as said above, no spike train is picked twice. However,

clearly the trial-shuffling and the full bootstrap have not the same property, even if the

distributions are quite close.

Nevertheless, this is not completely convincing. Indeed, the main advantage of

bootstrap procedures is to be able for one current observation of Xn to generate several

realizations of X̃n to obtain not the unconditional distribution of C(X̃n) but the condi-

tional distribution of C(X̃n) given Xn. Figure 4 gives a more visual representation of

the difference between conditional and unconditional distributions.
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Trial-Shuffling Full Bootstrap Permutation
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Figure 3: The unconditional distribution and conditional distributions of C under (H0).

C.d.f. of C(X⊥⊥n ) and (for the first line) of CTS = C(XTS
n ), of C∗ = C(X∗n) and of

C? = C(XΠn
n ) obtained from 10000 simulations of n = 20 trials of two independent

Poisson processes of firing rate 30Hz on a window of length 0.1s with δ = 0.01s. On the

second line, in addition to the c.d.f. of C(X⊥⊥n ), five observations of Xn = X⊥⊥n have been

simulated in the same set-up and given these observations, the conditional c.d.f. have

been approximated by simulating 10000 times the extra-randomness corresponding to

X̃n. For the trial-shuffling, in addition to this approximate Monte-Carlo method (MC),

the exact conditional c.d.f. has been obtained thanks to the algorithm of (Pipa et al.,

2003).
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Figure 4: Schematic view of the bootstrap paradigm and the difference between uncon-

ditional distribution and conditional distribution given the observation.

In particular, in a bootstrap testing procedure, the critical values are quantiles 1 of

the conditional distribution of the bootstrapped test statistic given the observation of

Xn and not the quantiles of the unconditional distribution. Hence, to see whether boot-

strapped critical values associated to C(Xn) are reasonable, the conditional distribution

of C(X̃n) given Xn has to be compared with the distribution of C(X⊥⊥n ), and this whether

Xn satisfies (H0) or not.

1In fact, the quantiles are usually approximated by a Monte-Carlo method, since one has access to

only a huge but still finite number of realizations of X̃n given Xn in practice.
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The second line of Figure 3 shows what happens for the approximated conditional

distribution of C(X̃n) given Xn under (H0) in the three considered bootstrap approaches.

Surprisingly none of these three conditional distributions seems to fit the distribution of

C(X⊥⊥n ). One may eventually think that this is due to the Monte-Carlo approximation

of the conditional distributions, but for the trial-shuffling approach, Pipa and Grün de-

veloped an algorithm for exact computation of the conditional distribution (Pipa et al.,

2003): both Monte-Carlo and exact conditional distribution are so close that it is diffi-

cult to make any difference between them. Hence there should be another explanation.

In fact, the curves on the second line of Figure 3 are similar to the ones on the second

line of Figure 2. In both set-ups, one wonders if the distribution of C(X⊥⊥n ) can or can-

not be approximated by a distribution depending on the observation of Xn: a very basic

Gaussian distribution for Figure 2 and a more intricate distribution using the bootstrap

paradigm for Figure 3. Nevertheless both distributions are too widely spread around

the aim which is the distribution of C(X⊥⊥n ). Since the explanation for Figure 2 was a

centering defect that can be corrected by considering U, one of the possible explanation

here is a centering defect for the bootstrap procedures too.

3.3 Which centering for which bootstrap ?

All the bootstrap approaches that have been proved to work from a mathematical point

of view are based on centered quantities (Giné, 1997). In particular, the precursor work

of Bickel and Freedman (Bickel & Freedman, 1981) on the bootstrap of the mean can

be heuristically explained as follows.

Given a n sample of i.i.d. real random variables Yn = (Y1, ..., Yn) with mean m
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and a corresponding bootstrap sample Y∗n, it is not possible to estimate the distribution

of the empirical mean Ȳ = (1/n)
∑n

i=1 Yi directly. However one can estimate the

centered distribution, i.e. the distribution of Ȳ − m = Ȳ − E(Ȳ ). To do so, it is

sufficient to replace ”empirical mean” by ”empirical bootstrap mean” and ”expectation”

by ”conditional expectation”. More explicitly, denoting by Ȳ ∗ the empirical mean of the

bootstrap sample Y∗n, the distribution of Ȳ − E(Ȳ ) is approximated by the conditional

distribution given Yn of Ȳ ∗ − E(Ȳ ∗|Yn).

Transposed in our framework, this paradigm would mean that one can obtain a

good fit of the distribution of (1/n)(C(X⊥⊥n ) − c0) by the conditional distribution of

(1/n)(C(X̃n) − E(C(X̃n)|Xn)) given Xn. But as seen above, constructing a test with

test statistic (1/n)(C(Xn) − c0) is impossible in a full distribution free context where

the value of c0 is unknown.

Therefore one needs to find a quantity that is completely observable but whose mean

is still null under (H0). The statistic U introduced in Section 3.1 is suitable from this

point of view. What one needs to check is whether the distribution of U(Xn) under

(H0), that is of U(X⊥⊥n ) (which has zero mean), is well approximated by the distribution

of U
(
X̃n

)
− E

(
U
(
X̃n

)
|Xn

)
.

For the trial-shuffling, since

U
(
XTS
n

)
=

n∑
k=1

ϕ
(
X1
iTS(k), X

2
jTS(k)

)
− 1

n− 1

∑
k 6=k′

ϕ
(
X1
iTS(k), X

2
jTS(k′)

)
,

one can easily see that because the couple
(
iTS(k), jTS(k)

)
is drawn uniformly at ran-
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dom in the set of the (i, j)’s such that i 6= j (set of cardinality n(n− 1)),

E
(
U
(
XTS
n

)
|Xn

)
=

1

n− 1

∑
i 6=j

ϕ
(
X1
i , X

2
j

)
− 1

n

∑
i,j

ϕ
(
X1
i , X

2
j

)
=

Ĉ0 (Xn)−C (Xn)

n

= −U (Xn)

n
.

Hence the correct bootstrap statistic is

ŨTS = Ũ
(
XTS
n

)
= U

(
XTS
n

)
+

U (Xn)

n
.

However similar computations show that the full bootstrap and the permutation satisfy

E (U (X∗n) |Xn) = E
(
U
(
XΠn
n

)
|Xn

)
= 0,

so U (X∗n) and U
(
XΠn
n

)
can be used directly.

Figure 5 shows the quality of approximation of the distribution of U
(
X⊥⊥n
)

by the

conditional distribution given the observation of either U∗ = U (X∗n) or U? = U
(
XΠn
n

)
.

The approximation is accurate under (H0) but it is actually also accurate even if the ob-

served sample is simulated under (H1), which is in complete accordance with the math-

ematical results of consistence in Wasserstein distance proved in (Albert et al., 2014).

The approximation is just as accurate for the recentered statistic ŨTS = UTS +Uobs/n.

Note that the difference between the conditional c.d.f. of ŨTS and the one of UTS is

particularly visible under (H1) when X1 = X2. Hence, as explained by the compu-

tations above, in a trial-shuffling approach, the recentered version leads to the correct

bootstrap distribution. Note finally that this corroborates the previous intuition: the rea-

son why the approximation works for U and not for C is exactly the same as for the
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Trial-Shuffling Full Bootstrap Permutation

Figure 5: Conditional distribution of U
(
X̃n

)
(or its recentered version ŨTS for the

Trial-Shuffling) given Xn. Cumulative distribution functions of U⊥⊥= U
(
X⊥⊥n
)

in black,

obtained by simulation as in Figure 3. For the first line, under (H0), five observations

of X⊥⊥n in the same set-up have been fixed and given these observations, the conditional

c.d.f. of UTS = U
(
XTS
n

)
, of ŨTS = UTS + Uobs/n, of U∗ = U (X∗n) and of U? =

U
(
XΠn
n

)
have been obtained as in Figure 3. For the second line, five observations of

Xn, simulated under (H1) with marginals equal to the ones of the first line but satisfying

X1 = X2, have been simulated and conditional c.d.f. are obtained in the same way as

above.

naive approach of Figure 2. The centering is indeed random (here it can be viewed as

E(C(X̃n)|Xn)) and one needs to take it into account to have a correct approximation.
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Finally an extra simplification holds in the permutation case, which may seem very

surprising. One can easily rewrite on the one hand,

U (Xn) =

(
1− 1

n− 1

)
C (Xn)− 1

n− 1

∑
i,j

ϕ
(
X1
i , X

2
j

)
and, on the other hand, for the permutation sample

U
(
XΠn
n

)
=

(
1− 1

n− 1

)
C
(
XΠn
n

)
− 1

n− 1

∑
i,j

ϕ
(
X1
i , X

2
j

)
.

Note that the sum
∑

i,j ϕ
(
X1
i , X

2
j

)
is invariant by the action of the permutation. Hence

if u?t denotes the quantile of order t of the conditional distribution of U
(
XΠn
n

)
given

Xn and if c?t denotes the quantile of order t of the conditional distribution of C
(
XΠn
n

)
given Xn, this very simple relationship holds

u?t =

(
1− 1

n− 1

)
c?t −

1

n− 1

∑
i,j

ϕ
(
X1
i , X

2
j

)
.

Hence the test that rejects (H0) when U (Xn) > u?1−α is exactly the one that rejects

(H0) when C (Xn) > c?1−α. Therefore despite the fact that the conditional distribution

of C
(
XΠn
n

)
is not close at all to the one of C

(
X⊥⊥n
)
, the test based on C works, because

it is equivalent to the test based on U, for which the approximation of the conditional

distribution works. Note however that this phenomenon happens only in the permuta-

tion approach, but not in the trial-shuffling or the full bootstrap approaches.

3.4 Practical testing procedures and p-values

From the considerations given above, five different tests may be investigated, the first

one based on a purely asymptotic approach, and the four other ones based on bootstrap

approaches, with critical values approximated through a Monte-Carlo method. For each
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test, the corresponding p-values (i.e. the values of α for which the test passes from

acceptance to rejection) are given.

The naive test (N) It consists in rejecting (H0) when

Zobs ≥ z1−α.

The corresponding p-value is given by:

1− Φ
(
Zobs

)
,

where Φ is the c.d.f. of a standard Gaussian distribution.

The Trial-Shuffling test, version C (TSC) It consists in rejecting (H0) when

Cobs ≥ ĉTS1−α,

where ĉTS1−α is the empirical quantile of order (1 − α) of the conditional distribution

of CTS given Xn. This empirical quantile is estimated over B (B = 10000 usually)

realizations CTS
1 , ...,CTS

B given the observed sample Xn. The corresponding p-value is

given by:

1

B

B∑
i=1

1CTS
i ≥Cobs .

Despite the problems underlined in Section 3.3, we kept this test in the present study

since it corresponds to the one programmed in (Pipa & Grün, 2003) and since this

bootstrap procedure is usually the one applied by neuroscientists.

The Trial-Shuffling test, version recentered U (TSU) It consists in rejecting (H0)

when

Uobs ≥ ŵTS1−α,

26



where ŵTS1−α is the empirical quantile of order (1 − α) of the conditional distribution

of ŨTS (the correctly recentered statistic) given Xn. This empirical quantile and the

corresponding p-value are obtained in a similar way as for the above (TSC).

The Full Bootstrap test, version U (FBU) It consists in rejecting (H0) when

Uobs ≥ û∗1−α,

where û∗1−α is the empirical quantile of order (1− α) of the conditional distribution of

U∗ given Xn. This empirical quantile and the corresponding p-value are obtained in a

similar way as for the above (TSC).

The permutation test (P) The reader may think that it should consist in rejecting

(H0) when

Cobs ≥ ĉ?1−α,

where ĉ?1−α is the empirical quantile of order (1 − α) of the conditional distribution of

C? given Xn. But the test by permutation is in fact directly defined by its p-value, which

is slightly different here, equal to:

1

B + 1

(
1 +

B∑
i=1

1C∗i≥Cobs

)
.

The permutation test then consists in rejecting (H0) when this p-value is less than α.

Indeed, such a permutation test, with such a slightly different version of p-value, has

been proved to be exactly of level α, whatever B (Romano & Wolf , 2005).

Note however that such a slight correction does not work for full bootstrap or trial-

shuffling approaches, where the tests are only guaranteed to be asymptotically of level

α.
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Figure 6: Distribution of the p-values for the different tests. C.d.f. under both (H0)

and (H1) of the p-values for the five tests: naive (N), Trial-Shuffling version C (TSC),

Trial-Shuffling version U (TSU), Full Bootstrap version U (FBU), and Permutation (P).

Under (H0), the c.d.f. are obtained by simulations done as in Figure 3; the c.d.f. are then

plotted only for small p-values (≤ 0.1). Under (H1), the couple (X1, X2) is constructed

by injection (Grün et al., 2010; Tuleau-Malot et al., 2014), i.e. as (N1∪N inj, N2∪N inj)

where (N1, N2) are two independent Poisson processes of firing rate 27 Hz on a window

of length 0.1s and where N inj is a common Poisson process of firing rate 3Hz; once

again, 20 i.i.d. trials are simulated 10000 times to obtain the corresponding c.d.f. with

δ = 0.01s.
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Saying that a test rejects at level α is exactly equivalent to saying that its p-value is

less than α. If a test is of level α for any α in (0, 1), the c.d.f. of its p-values should

therefore be smaller that the one of a uniform variable (i.e. the diagonal). Between

several tests with this guarantee, the less conservative one is the one for which the c.d.f

of its p-values is the closest to the diagonal. The left hand-side of Figure 6 shows the

c.d.f. under (H0) of the corresponding p-values for the five considered testing proce-

dures and focuses on small p-values, which are the only ones usually involved in testing,

to highlight the main differences between the five methods. For the chosen value of n

(n = 20), the c.d.f. of the (TSU) and (FBU) p-values are almost identical and above

the diagonal, meaning that the corresponding tests do not guarantee the level. On the

contrary, the c.d.f. of the (N) and (TSC) p-values are clearly under the diagonal and

far from it, meaning that the corresponding tests are too conservative. As guaranteed

by (Romano & Wolf , 2005), the permutation approach guarantees the level of the test:

the c.d.f. of the (P) p-values is also under the diagonal, but much closer to the diagonal

than the one of the (N) and (TSC) p-values.

Furthermore, the behavior of the c.d.f. of the p-values under (H1) gives an indica-

tion of the power of the test: the highest the c.d.f. of the p-values, the most powerful the

corresponding test. Hence among the tests that guarantee the level, the permutation test

(P) is the most powerful one. Note that other simulations in more various cases have

been performed in (Albert et al., 2014) leading to the same conclusion.

In the sequel, the focus is therefore on the permutation approach, keeping also the

trial-shuffling version C approach as a variant of the method developed in (Pipa & Grün,

2003).
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4 Multiple tests

4.1 Description of the complete multiple testing algorithm

To detect precise locations of dependence periods that can be matched to some ex-

perimental or behavioral events, it is classical to consider a family of windows W of

cardinal K, which is a collection of potentially overlapping intervals [a, b] covering the

whole interval [0, T ] on which trials have been recorded (Grün et al., 1999; Tuleau-

Malot et al., 2014). Then, some independence tests are implemented on each window

of the collection. Here we propose a complete algorithm which takes into account the

multiplicity of the tests, and which moreover enables to see if the coincidence count is

significantly too large or too small on each window as in (Tuleau-Malot et al., 2014).
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Permutation UE algorithm

Fix a real number q in (0, 0.5) and an integer B larger than 2.

- Do in parallel for all window W = [a, b] inW:

* Extract the points of the X1
i ’s and X2

i ’s in [a, b].

* For all (i, j) in {1, ..., n}2, compute ai,j = ϕcoincδ

(
X1
i , X

2
j

)
over [a, b]

by the delayed coincidence count algorithm.

* Draw at random B i.i.d. permutations Πb
n, 1 ≤ b ≤ B, and compute Cb =

∑
i ai,Πb

n(i).

* Compute also Cobs =
∑

i ai,i.

* Return p+
W = 1

B+1

(
1 +

∑B
b=1 1Cb≥Cobs

)
and p−W = 1

B+1

(
1 +

∑B
b=1 1Cb≤Cobs

)
.

- Perform the procedure of (Benjamini & Hochberg, 1995) on the set of the above 2K p-values:

* Sort the p-values p(1) ≤ ... ≤ p(2K).

* Find k = max{l / p(l) ≤ lq/(2K)}.

* Return all the (W, εW )’s, for which W is associated with one of the p-values p(l) for l ≤ k,

with εW = 1 if p+
W ≤ p(k), so the coincidence count is significantly too large on W ,

and εW = −1 if p−W ≤ p(k), so the coincidence count is significantly too small on W .

This algorithm corresponds to a slight variation of the multiple testing step of (Tuleau-

Malot et al., 2014), but adapted to non necessarily symmetric distributions 2. In several

applications, neuroscientists are interested in detecting dependence periods for which

the coincidence count is only significantly too large. In this case, one can use the re-

2Note in particular that for a fixed W , one cannot have both p+W < 0.5 and p−W < 0.5 and therefore,

if a W is detected, it can only be because of one of the two situations, p+W ≤ p(k) or p−W ≤ p(k), which

cannot happen simultaneously.
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stricted set of the p+
W ’s. Then if the considered windows are disjoint and if the spike

trains are Poisson processes that are non necessarily stationary, the False Discovery

Rate (FDR) 3 of the above multiple testing procedure is mathematically proved4 to be

controlled by q for any B ≥ 2.

The code has been parallelized in C++ and interfaced with R. The full corresponding

R-package is still a work in progress but actual codes are available at

https://github.com/ybouret/neuro-stat.

4.2 Comparison on simulations

Two sets of simulations have been performed, the corresponding results are described

in Table 1 and one run of simulation of the Permutation UE method is presented in

Figure 7. Four methods have been compared:

• the MTGAUE method of Tuleau-Malot et al. (2014) which assumes both pro-

cesses to be homogeneous Poisson processes,

• the Trial-Shuffling, version C (TSC) which corresponds to the method of Pipa &

Grün (2003), which has been programmed with the delayed coincidence count

described above and which has not been corrected for multiplicity.

• the same as above but corrected by Benjamini and Hochberg procedure (TSC +

BH),

3see (Tuleau-Malot et al., 2014) or Table 1 for a precise definition

4The p+W ’s are independent random variables such that P⊥⊥(p+W ≤ α) ≤ α for all α in [0, 1] (Benjamini

& Yekutieli, 2001; Romano & Wolf , 2005).
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• the Permutation UE approach described above.

The permutation approach always guarantees an FDR less than the prescribed level of

0.05 whereas MTGAUE does not when the homogeneous Poisson assumption fails (Ex-

periment 1). The classical trial-shuffling method (where dependence detection occurs

each time the p-value is less than 0.05) seems to have comparable results in terms of

both FDR and False Non Discovery Rate (FNDR) on Experiment 1 but fails to con-

trol the FDR on the most basic situation, namely purely independent processes (Ex-

periment 2). Adding a Benjamini-Hochberg step of selection of p-values to the trial-

shuffling makes it more robust but at the price of a much larger FNDR with respect to

the Permutation UE method, fact which is consistent with the conservativeness shown

in Figure 6.

4.3 Comparison on real data

Behavioral procedure The data used in this theoretical article to test the dependence

detection ability of the four methods were already partially published in previous ex-

perimental studies (Riehle et al., 2000; Grammont & Riehle, 2003; Riehle et al., 2006)

and also used in (Tuleau-Malot et al., 2014). These data were collected on a 5-year-old

male Rhesus monkey who was trained to perform a delayed multidirectional pointing

task. The animal sat in a primate chair in front of a vertical panel on which seven

touch-sensitive light-emitting diodes were mounted, one in the center and six placed

equidistantly (60 degrees apart) on a circle around it. The monkey had to initiate a trial

by touching and then holding with the left hand the central target. After a fix delay of

500ms, the preparatory signal (PS) was presented by illuminating one of the six periph-
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Figure 7: Multiple tests. 7.A: description of Experiment 1. In the Poisson part, the

intensity of both Poisson processes is plotted. The injection component corresponds to

the part of a shared Poisson process which is injected in both processes corresponding

to X1 and X2, as explained in Figure 6. In the Hawkes part (see (Tuleau-Malot et al.,

2014) for a complete description), formulas for the spontaneous parameters and both

self interaction hi→i and cross interaction hi→j functions are given. 7.B: results of

the Permutation UE method (B = 10000, q = 0.05) performed on 191 overlapping

windows of the form [a, a + 0.1] for a in {0, 0.01, ..., 1.9} on one run of simulation for

50 trials of Experiment 1. A black (resp. gray) cross is represented at the center of the

window when it is detected by a p+
W (resp. p−W ). Each horizontal line corresponds to a

different δ in {0.001, 0.002, ...0.04}. The black vertical lines delimit the regions where

the independence hypothesis is not satisfied: plain for positive dependence (i.e. where

Cobs should be too large), and dashed for negative dependence (i.e. where Cobs should

be too small). The dotted vertical line separates the region of high (on the left) and low

(on the right) dependence in the Hawkes positive dependence part.
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Independ. Depend. Total

Rejected V S R

Accepted U T m−R

Total m0 m−m0 m

Experiment 1 Experiment 2

FDR FNDR FDR FNDR

MTGAUE 0.10 0.17 0.04 0

TSC 0.01 0.26 0.25 0

TSC + BH 0 0.32 0 0

P 0.01 0.23 0.02 0

Table 1: False Discovery and Non Discovery Rates. On the left hand-side, the classical

table for multiple testing adapted to our dependence framework, with a total number of

tests m = 2K. On the right hand-side, estimated FDR and FNDR over 1000 runs, FDR

being defined by E [(V/R)1R>0] and FNDR being defined by E [(T/(m−R))1m−R>0].

Experiment 1 is described in Figure 7, Experiment 2 consists in two independent ho-

mogeneous Poisson processes of firing rate 60 Hz on [0, 2]. The set of windows is as

in Figure 7. There are 50 trials and δ = 0.01s. MTGAUE is the method described in

(Tuleau-Malot et al., 2014) with q = 0.05. (TSC) is the trial-shuffling method with

Monte-Carlo approximation (B = 10000) and the selected windows are the ones whose

p-value are less than 0.05. (TSC+BH) is the same method, except that the multiplicity of

the tests is corrected by a Benjamini-Hochberg procedure (q = 0.05). (P) corresponds

to the Permutation UE method (B = 10000, q = 0.05).

eral targets in green. After a delay of either 600ms or 1200ms, selected at random with

various probability, it turned red, serving as the response signal and pointing target.

During the first part of the delay, the probability presp for the response signal to occur at

(500+600)ms = 1.1s was 0.3. Once this moment passed without signal occurrence, the

conditional probability for the signal to occur at (500 + 600 + 600)ms = 1.7s changed
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to 1. The monkey was rewarded by a drop of juice after each correct trial. Reaction

time (RT) was defined as the release of the central target. Movement time (MT) was

defined as the touching of the correct peripheral target.

Recording technique Signals recorded from up to seven microelectrodes (quartz in-

sulated platinum-tungsten electrodes, impedance: 2− 5MΩ at 1000Hz) were amplified

and band-pass filtered from 300Hz to 10kHz. Using a window discriminator, spikes

from only one single neuron per electrode were then isolated. Neuronal data along with

behavioral events (occurrences of signals and performance of the animal) were stored

on a PC for off-line analysis with a time resolution of 10kHz.

In the following study, only trials where the response signal (RS) occurs at 1.7s are

considered. The expected signal (ES) corresponds to an eventually expected but not

confirmed signal, i.e. at 1.2s. Only the pair 13 of the previous data set is considered

here, as it was one of the main two examples already treated in (Tuleau-Malot et al.,

2014).

The results are presented in Figure 8. The (TSC+BH) method does not detect any-

thing and is therefore not presented. The Permutation UE method detects less windows

than both (MTGAUE) and (TSC) methods, but the detected windows are still in ade-

quation with the experimental or behavioral events. The above simulation study let us

think that the extra detections of both (MTGAUE) and (TSC) may be false positives,

since both methods do not control the FDR as well as the Permutation UE method.
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MTGAUE TSC P

Figure 8: Raster plots of the pair of neurons 13. In black the Unitary Events where the

coincidence count is significantly too large for the three methods (MTGAUE, TSC and

P) presented in Table 1, with δ = 0.02s and B = 10000. No interval was detected for

a significantly too small coincidence count. Signs on bottom corresponds to behavioral

events. The first black vertical bar corresponds to the preparatory signal (PS), the gray

vertical bar to the expected signal (ES), the second black vertical bar to the response

signal (RS).
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5 Discussion

After describing a fast algorithm to compute the delayed coincidence count, showing

that this notion can be used in practice for any surrogate data method in place of the

binned coincidence count, we have focused on distribution free methods to test the

independence between two simultaneously recorded spike trains. Though they are here

presented with the delayed coincidence count, all these distribution free methods could

be applied to any coincidence count if desired.

Once the coincidence count C chosen, we have first introduced an empirical quan-

tity or statistic U whose distribution is centered under the independence hypothesis

(H0). In the spirit of (Tuleau-Malot et al., 2014) but in a distribution free manner, a

first naive method consists in performing a Gaussian approximation of the distribution

of U under (H0). This method suffers from a not very sharp approximation when the

number of trials n is small (see Figure 1). Moreover the approximation is clearly not

valid when the observed sample does not satisfy (H0) (see the last line of Figure 2).

We then turned to bootstrap methods. One of the most well-known bootstrap method

in the neuroscience literature is the trial-shuffling (Pipa & Grün, 2003; Pipa et al., 2003).

It is usually based on a resampling approach directly applied on the coincidence count

itself, namely C. The other two investigated methods (full bootstrap and permutation)

are well-known in the statistics literature for independence testing between real valued

random vectors (Hoeffding, 1952; Romano, 1989) and have been recently applied to

point processes that are modeling here simultaneously recorded spike trains (Albert

et al., 2014). These last two methods are usually applied on centered statistics.

One of the main message of the present work is that applying bootstrap methods to
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non centered statistics, as C, does not lead to a correct approximation of the distribution

of C under (H0) (see the second line of Figure 3). This phenomenon, combined with

observations in the more classical framework of the naive test on Figure 2, leads us

to think about a centering defect. Once the methods are applied on correct centered

statistics (U or Ũ depending on the chosen bootstrap method), they all three outperform

the naive approach. The approximation is better under (H0) for small value of n (first

line of Figure 2 and first line of Figure 5) and is still accurate when the observed sample

does not satisfy (H0) (last line of Figure 2 and second line of Figure 5).

From an algorithmic point of view, all the corresponding bootstrap p-values are eval-

uated thanks to a Monte-Carlo algorithm and a program which interfaces R and C++,

thus making the running time fast and the use easy. Pipa and Grün (Pipa et al., 2003)

have given an exact algorithm when the trial-shuffling is applied on the coincidence

count C directly. It is a very elegant algorithm using the fact that C is an integer that

can take a small number of values. Unfortunately the same gain is not really possible for

U which is not an integer and which can take much more values. Moreover this exact

algorithm is quite long with respect to the Monte-Carlo algorithm when the number of

simulations is 10000 (as used in the present work) and one can see on the bottom left of

Figure 3 that the difference between both results ( Monte-Carlo and exact algorithms)

is not detectable at first glance.

A more precise study of the Monte-Carlo approximated bootstrap p-values shows

that for a small number of trials, the trial-shuffling and the full bootstrap methods, even

applied to a correctly centered statistic, do not provide tests of prescribed level. On

the contrary, the permutation method, thanks to an adequate version of its p-values

39



(Romano & Wolf , 2005), allows for a precise control of the level. The classical trial-

shuffling method based on the non centered quantity C and the naive approach also

both lead to a precise control of the level but in a more conservative way (see the right-

hand side of Figure 6). This is also showed by the behavior of the p-values under the

alternative, p-values that are smaller for the permutation approach than for the other two

methods (see the right-hand side of Figure 6).

Finally, we decided to combine the delayed coincidence count, which is much more

precise than the binned coincidence count (Tuleau-Malot et al., 2014; Grün et al., 1999)

with the permutation approach, and to apply the obtained independence testing proce-

dure to several windows of detection simultaneously. The final proposed method con-

sists in combining the individual tests with the approach of (Benjamini & Hochberg,

1995) to correct for the multiplicity of the tests. Parallel programming is used to treat

each window in an independent manner. This new algorithm named Permutation UE is

completely distribution free. It better controls the False Discovery Rate than MTGAUE

(Tuleau-Malot et al., 2014) or the classical trial-shuffling method applied on C (see

Table 1, methods (MTGAUE) and (TSC)). Moreover, it does not suffer from conserva-

tiveness as the trial-shuffling method applied on C, once the multiplicity of the tests is

taken into account (see Table 1, method (TSC+BH)). On real data, the results are simi-

lar to existing methods (MTGAUE, TSC) except for some detections that disappear but

that are likely to be false positive thanks to the present simulation study.

To conclude, we introduce in this article the Permutation UE method, which is a

Unitary Events method based on delayed coincidence count and on an evaluation of

p-values via a distribution free Monte-Carlo approximated permutation approach. This
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method does not suffer from any loss in synchrony detection as the binned coincidence

count (Grün, 1996), is distribution free and in this sense upgrades (Tuleau-Malot et al.,

2014). Moreover the algorithm is fast and parallelized, and despite using a Monte-Carlo

scheme, it can guarantee the single tests to be of the prescribed level and the multiple

test to control the FDR in a non asymptotic manner, therefore outperforming the trial-

shuffling method (Pipa & Grün, 2003; Pipa et al., 2003) in terms of both mathematical

caution and computing time, when compared with the exact algorithm described in

(Pipa et al., 2003). Finally it is still sufficiently sensitive to detect reasonable features

on real data sets. The only drawback is that it can only work for pairs of neurons. The

definition of delayed coincidence count for more than two neurons has been recently

introduced in Chevallier & Laloë (2014), but the combination of this notion with a

bootstrap approach is still an open question.
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