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Abstract

Background: The Thick Level Set model (TLS) is a recent method to delocalize local
constitutive models suffering spurious localization. It has two major advantages
compared to other delocalization methods. The first one is that the transition from
localization to fracture is taken into account in the model. The second one is that the
delocalization only acts when and where needed. In other words, the TLS has no effect
when the local model is stable. The former advantage was already detailed in several
papers (IJNME 86:358-380, 2011, CMAME 233:11-27, 2012, IJF 174:49-60, 2012). This
paper concentrates on the latter advantage.

Methods: The TLS delocalization approach is formulated as a bound on the damage
gradient. The non-local zone is defined as the zone where the bound is met whereas
the local zone is defined as the zone where it is not met. The boundary (localization
front) between the local and non-local zone is the main unknown in the problem.

Results: Based on the new model, a 1D pull-out test is solved both analytically and
numerically. Different regimes are observed in the solution as the loading progresses:
fully elastic, local damage, coupled local/non-local damage and, finally, purely
non-local damage.

Conclusions: The new model introduces delocalization as an inequality allowing local
damage to develop in zones whereas non-local damage may develop in other zones.
This reduces dramatically the cost of implementation of such models compared to fully
non-local models.

Keywords: Damage; Delocalization; Non-local damage models; Level set; TLS

Background
Although the scope of TLS application is much wider, we consider in this paper the
fracture of quasi-brittle structures under quasi-static loading and under small defor-
mation assumption. The loading is proportional to a scalar parameter. The material is
modelled by a time-independent elasto-damage constitutive model with scalar damage.
Due to quasi-static analysis, the loading parameter must be controlled especially when
bifurcation occurs.
The TLS model was introduced in several papers [1,2] and [3,4]. It lies between contin-

uum damage mechanics and fracture mechanics. Indeed, crack opening is allowed across
fully damaged zones (see [2] for instance). The fully damaged zone is located by a level
set. Let us note that the description above is different from a diffuse vision of the crack in
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which crack opening is not explicitly modeled as in the phase-field approach [5-7] or the
variational approach to fracture [8,9]. We are rather in the vein of transition from damage
to fracture as in [10]. However, the TLS will not be in need of a cohesive zone to perform
the transition. The model can be considered as a continuous transition from damage to
fracture.
The main idea of the TLS for quasi-brittle fracture is to bound the spatial gradient of

the damage variable d, thus avoiding spurious localization. One imposes that the spatial
damage distribution satisfies at all time

‖∇d‖ ≤ f (d) on � (1)

where � is the domain of interest. The choice of the function f (d) will be discussed in
what follows. As damage evolves, one eventually wants to locate the crack, i.e. the zone
for which d = 1. However, finding the iso-contour d = 1 for a quantity d than cannot
go beyond 1 is a tedious operation. This is where the level set ingredient comes into play.
Variable d is expressed in terms of a level set φ as depicted in Figure 1. This relation
introduces a length scale lc. Finding the zone d = 1, is now well-posed since the level set
φ is not strictly limited to lc but may go beyond. With the use of the surrogate variable φ,
condition (1) may be rewritten as{

‖∇φ‖ ≤ 1
d = d(φ)

(2)

where f (d) in (1) is related to d(φ) by f (d) = d′(φ(d)) (the prime indicating the derivative
of d with respect to φ). The function d(φ) is called the damage shape function and is the
main ingredient of the TLS. Equation (2) above indicates that φ is a distance function in
the zone where the constraint is active (we name this zone the localization zone). The
evolution of a distance function has been analyzed and updating algorithm proposed in
[11]. In the localization zone, the evolution of φ is non-local, indeed

‖∇φ‖ = 1 ⇒ ∇φ̇ · ∇φ = 0 (3)

The rate of change of φ is thus uniform on any segment alignedwith∇φ and the rate of d
is given by ḋ = d′(φ)φ̇. Such segments over which φ̇ is uniform are depicted in Figure 2. In
the local zone, the evolution of φ stems from the evolution of d and the relation d = d(φ).
The delocalization (1) used in the TLS is different from existing delocalization tech-

niques. Indeed, it directly uses the norm of the damage gradient. It is thus a Hamilton-
Jacobi type equation. On the contrary, damage gradient models [12-14] yield Laplacian
damage type equation rising the question of proper boundary conditions.

Figure 1 An example of damage shape function.
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Figure 2 Local (�−) and localization (�+) domains as well as cracks faces (�c). Inside �+ , we have
‖∇φ‖ = 1. It can be noted that ∇φ (and thus ∇d) is discontinuous along the dashed line which is the
so-called skeleton of the distance function.

The TLS shares some similarities with the so-called non-local integral approach
[15,16] in which weighted averages are performed over segments (1D), disks (2D)
and spheres (3D) of fixed size. In the TLS approach, however, weighted averages are
always performed on segments (Figure 2) whatever the dimension of the body and
over a length which is not fixed in time but evolves from zero to a maximum length
lc. Finally, note that as lc is the minimal distance between a point where d = 0
and a fully damaged point, d = 1, it plays the role of the fracture process zone
size.
After this quick introduction of the TLS, we get to the objective of the paper. In pre-

vious TLS paper, the delocalization condition (2) was considered as an equality on the
whole domain. It meant that d was zero on the domain except in zone where the gradi-
ent norm was fixed. The short-coming of this view was that uniform or smooth damage
field (because of damage hardening for instance) could not be modeled prior to localiza-
tion. The inequality analyzed in this paper allows a combination of local and non-local
evolutions. In the literature, the possibility to combine both local and non-local approach
is seldom discussed with the exception of the so-called morphing numerical technique
[17,18].
The paper is organized as follows. The TLS concept with the inequality constraint dis-

cussed above are detailed in the first section. Next, the TLS boundary value problem is
set up and a dissipation analysis is carried out. A 1D pull-out is solved semi-analytically
to show the main feature of the TLS solution. This 1D test is then solved numerically with
the TLS to observe the influence of the parameters choice in the model. A conclusion and
perspectives end the paper.

Methods
We consider a solid body occupying a domain �. The external surface ∂� is composed
of two parts ∂�u and ∂�T on which the displacements λud and the loading λTd are
prescribed, respectively. The parameter λ is a loading parameter.
Small strains and displacements are assumed as well as quasi-static evolution. The

current state is characterized by the displacement field u, from which the strain field
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ε = 1
2 (∇u+ ∇uT ) is derived. The current state is also characterized by an internal scalar

variable, the damage denoted d. In this paper, we will not consider other internal variables.
Regarding the material model, we consider a free energy ψ(ε, d) from which the stress

tensor σ and local energy release rate Y may be derived

σ = ∂ψ(ε, d)

∂ε
, Y = −∂ψ(ε, d)

∂d
(4)

The potentialψ is assumed for now at least convex with respect to ε. The need for other
properties will be discussed later.
Regarding the time-independent damage evolution, we consider a function y depending

on damage and strain history (through e) such that

ḋ ≥ 0, y(e, d) − Yc ≤ 0, (y(e, d) − Yc)ḋ = 0 (5)

where

e = e(ε(τ ), τ ≤ t) (6)

and Yc is some threshold. We believe the above formalism encompasses most of the dam-
age models in the literature. To be even more general, one may consider two relations of
the kind (5): one for damage in tension and a second one for damage in compression and
then combine these damages into d. One has a so-called associated damage model when
the y variable is Y . In this case, damage evolution is expressed in terms of the dissipation
potential ϕ∗(Y ) which is the indicator function of Y − Yc ≤ 0:

ḋ ∈ ∂ϕ∗(Y )

∂Y
(7)

Such model was already considered in [1] for dissymmetric tension-compression evo-
lution. We emphasize the fact that the TLS description is not restricted to associated
damage models.
What we have described so far is a purely local damage model. This type of model is

known to suffer spurious localizations meaning that the damage gradient may become
infinite. The main idea of the TLS approach is to bound damage gradient as expressed
in (1). In the TLS model, damage is allowed to go to 1 (but not beyond of course). The
location of a crack (or fully degraded zones like in comminution problems) is defined by
the set of points for which d = 1. Numerically speaking, finding the set of points for
which d = 1 knowing that d may not go beyond 1 is not very practical. This is why the
TLS expresses damage in terms of a surrogate variable φ whose values are not limited as
depicted in Figure 1. We assume the following regularity on d(φ)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d(φ) ∈ C0(]−∞,+∞[) and monotonically increasing
d(φ) = 0 if φ ≤ 0
d(φ) = 1 if φ ≥ lc
d(φ) ∈ C1(] 0, lc[)

(8)

Finding the subdomain where d = 1 is equivalent to find the subdomain whose
boundary is the iso-contour φ = lc.
In terms of the surrogate variable, φ, condition (1) reads

‖∇φ‖ ≤ 1 (9)

provided f (d) is given by

f (d) = d′(φ(d)) (10)
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For instance, if d is linear with respect to φ, the gradient of damage will be bounded by
a constant

d = φ/lc,φ ∈ [0, lc]=⇒ ‖∇d‖ ≤ 1
lc

(11)

whereas for more complex function d(φ), the bound depends on the level of damage. For
instance, for the profile shown in Figure 1, we have

d = 1 − (1 − (φ/lc))2 =⇒ ‖∇d‖ ≤ 2
lc

√
1 − d (12)

For a general power law with n ≥ 1, we obtain

d = 1 − (1 − (φ/lc))n =⇒ ‖∇d‖ ≤ n
lc

(1 − d)1−1/n (13)

Whether local or non-local constitutive model should be used at a point x is based on
condition (9).

‖∇φ(x)‖ < 1 ⇒ Local constitutive model at x (14)

‖∇φ(x)‖ = 1 ⇒ Non-Local constitutive model at x (15)

‖∇φ(x)‖ > 1 forbidden (16)

The first condition is the major novelty of this paper, compared to previous paper on
the TLS. At any time t, the domain may thus be decomposed into three non-overlapping
zones : a local zone �−, a non-local zone �+ and a fully damaged zone �c

� = �c ∪ �+ ∪ �− (17)

�− = {x ∈ � : ‖∇φ(x)‖ < 1,φ(x) < lc} (18)

�+ = {x ∈ � : ‖∇φ(x)‖ = 1,φ(x) < lc} (19)

�c = {x ∈ � : φ(x) ≥ lc} (20)

We define also the boundary 	c of the fully damaged zone and the interface 	 between
the local and non-local zones.

	c = ∂�c, 	 = �+ ∩ �− = ∂�+ ∩ ∂�− (21)

The boundary 	c defines the crack faces. Figure 2 shows a typical scenario of a crack
appearing inside the localization zone.
Note that the volume measure of �c may be zero. This information is part of the

solution process. We expect different shapes of �c in comminution and brittle crack
propagation.

Eikonal equation

Condition, ‖∇φ(x)‖ = 1 is a non-linear first-order partial differential equation. It is called
an eikonal equation and belongs to the Hamilton-Jacobi equation family. Among the pos-
sible solution satisfying ‖∇φ(x)‖ = 1, we will pick the one corresponding to the vanishing
viscosity solution [19]. It is characterized by

φ(x) = min
y∈	

(φ(y) + d(x, y)), x ∈ �+ (22)

where d(x, y) is the length of the shortest path connecting x and y inside �+. The value of
φ at x ∈ �+ can be thought as the minimal fare to go from 	 to x. The fare being the sum
of the initial fare φ(y) plus themileage from y to x. Damage on�+ is thus fully determined
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from values on 	. A 1D example of φ satisfying the eikonal on a segment [b, d] is given in
Figure 3.
The fact that damage is related to a variable satisfying the eikonal equation, the cor-

nerstone of the level set technology [11], explains why the damage model is coined Thick
Level Set. In the non-local zone, damage is modeled over a thick layer in terms of level
sets.

Damage evolution

In the local zone, �−, damage evolution is local and given by (5). In the non-local zone,
�+, damage rate is related to φ̇ by

ḋ = d′(φ)φ̇ (23)

where φ̇ is uniform on segments aligned with ∇φ, see Equation (3). We denote this space
asA:

φ̇ ∈ A = {
a(x) ∈ L2(�+) : ∇a · ∇φ = 0

}
(24)

Non-local damage evolution boils down to decomposing �+ into a set of independent
segments and finding a value φ̇ over each of them.
As in [2], we suggest to introduce averaged quantities, y, ḋ over each segments. This

may be expressed by a projection operation.

y ∈ A :
∫

�+
yd′a dω =

∫
�+

yd′a dω, ∀a ∈ A (25)

ḋ ∈ A :
∫

�+
ḋa dω =

∫
�+

ḋa dω, ∀a ∈ A (26)

We note that the averages satisfy the following property∫
�+

yḋ dω =
∫

�+
yḋ dω (27)

The above indicates that duality is preserved through the averaging technique. This is
not often the case in delocalization techniques as discussed in [20].
The local constitutive model, (5), is then expressed in terms of the non-local quantities

ḋ ≥ 0, y − Yc ≤ 0, (y − Yc) ḋ = 0 (28)

Figure 3 Distribution of φ on a 1D domain:� = [a, e] ,�+ = [b, d] ,�− = [a, b]∪ [d, e] ,� = {b, d}.
Slopes at 45 degrees on �+ indicate that φ behaves as a distance function (‖∇φ‖ = 1) whereas ‖∇φ‖ < 1
on �− . Point c is the skeleton of the distance function.
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where we have assumed Yc uniform (if not it needs to be averaged by formula (25)). Finally,
we write the relation giving φ̇ in terms of ḋ:

ḋ = d′φ̇, d′ ∈ A :
∫

�+
d′a dω =

∫
�+

d′a dω, ∀a ∈ A (29)

To end this section we illustrate the average formula on the 1D example depicted in
Figure 3. Averages are given by

On [b, c] : y =
∫ c
b yd

′(φ) dx∫ c
b d′(φ) dx

, ḋ(x) =
∫ c
b ḋ dx∫ c
b dx

(30)

On [c, d] : y =
∫ d
c yd

′(φ) dx∫ d
c d′(φ) dx

, ḋ(x) =
∫ d
c ḋ dx∫ d
c dx

(31)

TLS boundary value problem

We are now able to define the boundary value problem. The set of admissible displace-
ments is given by

U =
{
u ∈ C0(� \ �c),

∫
�\�c

ψ(ε(u), d(φ)) dω < +∞,u = λud on ∂�u

}
(32)

The fact that the fully damage zones are removed from the domain is important. It
allows the displacement to be discontinuous across 	c. Regarding the regularity of the
displacement, we request that the energy, i.e. integral ofψ over�\�c, is finite. This space
is not simply H1 as in elasticity since the stiffness is possibly vanishing on 	c boundary
[21].
Regarding the φ variable, it is required to be continuous over � and belong to the setK.

The admissible set for φ is denoted K.

K = {
φ ∈ C0(�) : ‖∇φ(x)‖ = 1, x ∈ (�+ ∪ �c), ‖∇φ(x)‖ < 1, x ∈ �−}

(33)

The continuity requirement on φ leads to a Hadamard compatibility condition on the
moving boundary 	. Let us define the jump of a quantity f across 	 by

[ f ]	 (x, t) = f +(x, t) − f −(x, t) (34)

The exponent −/+ placed on some quantities f defined at x on 	 has the following
meaning

f ±(x, t) = lim
h→0+ f (x ± hn(x, t), t) (35)

where n is the outward normal to �+. With these notations we have[
φ̇
]
	

+[∇φ]	 ·n vn = 0 (36)

where vn is the normal velocity of 	 counted positively along n. This gives the respective
evolution of domains �+ and �−.
Potential energy of the domain is given by :⎧⎪⎨

⎪⎩
u ∈ U , φ ∈ K
Epot(u,φ, λ) = ∫

�− ψ(ε(u), d(φ)) dω + ∫
�+ ψ(ε(u), d(φ)) dω

− ∫
∂�T

λTd · u da
(37)

Note that the same free energy expression, ψ , is used over �+ and �−. In what follows,
n is the outward normal vector to � on ∂� and to �+ on ∂�+. The set of admissible
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displacements variations is denoted as U0. It has the same definition as U except that u is
set to zero on ∂�u.
Assuming, that at time t, the spatial distribution of φ of the two volumes �+ and �−

is known, the displacement field u is the field that solves the stationarity of the potential
energy:

Epot,u δu = 0, ∀δu ∈ U0 (38)

This means;∫
�−

σ : ε(δu) dω +
∫

�+
σ : ε(δu) dω −

∫
∂�T

λTd · δu da = 0, ∀δu ∈ U0 (39)

For simplicity, we assume that the boundary 	c is traction free (no contact on crack
faces). The equilibrium (39) yields the following local equations

divσ = 0 over � \ �c (40)

[σ ]	 · n = 0 on 	 (41)

σ · n = λTd on ∂�T (42)

σ · n = 0 on 	c (43)

We stress the fact that 	c denotes the boundary of the fully damage zone and thus in
case of a crack 	c indicates both crack lips. To complete the set of equations to be solved
for a known damage distribution, we add the stress definition and kinematic relations

σ = ∂ψ(ε, d)

∂ε
over � \ �c (44)

ε = 1
2

(
∇u + ∇uT

)
over � \ �c (45)

[u]	 = 0 on 	 (46)

u = λud on ∂�u (47)

Finally, we need to add damage evolution equations in the local zone (5) and non-local
zone (28).

Dissipation analysis and fields regularity

The goal of this section is to analyze the expression of the dissipation as well as looking at
the fields regularity across the boundary 	.
Taking into account the conservation law for the total energy during the evolution of

the system, the total dissipation associated with the loading rate λ̇ is:

D =
∫

∂�T

λTd · u̇ da +
∫

∂�u
λ̇ud · σ · n da (48)

− d
dt

(∫
�−

ψ(ε, d(φ)) dω +
∫

�+
ψ(ε, d(φ)) dω

)
(49)

In the above, we did not consider the energy inside �c because it is assumed to be zero.
Indeed, no compression is considered in this zone (see (43)).
Using Leibniz formula for the time derivative of moving domains as well as the relation:

ψ̇ = σ : ε(u̇) − Yḋ (50)
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we obtain

D =
∫

∂�T

λTd · u̇ da +
∫

∂�T

λ̇ud · σ · n da −
∫

�−
σ : ε(u̇) dω −

∫
�+

σ : ε(u̇) dω

+
∫

	

[ψ]	 vn da −
∫

	c
ψ vn da +

∫
�−

Yḋ dω +
∫

�+
Yḋ dω

Integrating the domain integral by parts in the second line above and using the
equations characterizing the equilibrium state, we get

D =
∫

	

[ψ]	 vn + n · σ · [u̇]	 da −
∫

	c
ψ vn da +

∫
�−

Yḋ dω +
∫

�+
Yḋ dω (51)

During the propagation of the interface, perfect contact is assumed on 	, that is the
displacement jump across 	 must be zero at all time. As a consequence, the derivative
along the moving interface of the displacement jump must be zero, [22], yielding the so
called first Hadamard compatibility condition between the front velocity vn and the jump
in material velocities [u̇]	 :

[u̇]	 + [∇u]	 · n vn = 0 (52)

Equation (51), now becomes

D =
∫

	

n · [P]	 · n vn da −
∫

	c
ψ vn da +

∫
�−

Yḋ dω +
∫

�+
Yḋ dω (53)

where P is the Eshelby tensor

P = ψI − σ · ∇u (54)

The first term is the dissipation created by the interface propagation.We show now that
due to damage continuity on 	 this term is zero.
Since normal stress and displacement are continuous across 	, the product of the jump

in stress and strain across 	 is zero, [23,24]:

[σ ]	 : [ε]	 = 0 (55)

Let ψd(ε) be the density of free energy for a given value of damage and let ψ∗
d (σ ) be

its dual by the Legendre-Fenchel transform. Since the couples (ε+, σ+) and (ε−, σ−) do
satisfy the constitutive model (4), we have

ψd(ε
+) + ψ∗

d (σ+) − σ+ : ε+ = 0, ψd(ε
−) + ψ∗

d (σ−) − σ− : ε− = 0 (56)

Summing the two relations above and using (55), we have(
ψd(ε

+) + ψ∗
d (σ−) − σ− : ε+) + (

ψd(ε
−) + ψ∗

d (σ+) − σ+ : ε−) = 0 (57)

Since both terms above are greater or equal to zero (classical property of convex
analysis, see [25]), we have

ψd(ε
+) + ψ∗

d (σ−) − σ− : ε+ = 0, ψd(ε
−) + ψ∗

d (σ+) − σ+ : ε− = 0 (58)

This implies that the couples (ε+, σ−) and (ε−, σ+) do satisfy the constitutive model.
Assuming that the convex potential ψd(ε) is such that the stress associated to any strain
is unique, we have

[σ ]	 = [ε]	 = 0 (59)
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The continuity of the strain and displacement across 	 leads to the continuity of the
displacement gradient

[∇u]	 = 0 (60)

leading finally to the continuity of the Eshelby tensor.

[P]	 = 0 (61)

Dissipation is thus reduced to

D =
∫

�−
Yḋ dω +

∫
�+

Yḋ dω −
∫

	c
ψ vn da (62)

The dissipationmust be positive. For classical models in which Y is positive, this implies
that damagemay only grow. Damage growth will create a growth of the fully damaged zone
�c (and thus a negative velocity vn). The last term in (62) is thus automatically positive.
Whether this term is zero or not depends on the regularity of ψ on the boundary 	c. This
regularity must be assessed from the non-local constitutive model condition: y − Yc ≤ 0.
Note that dissipation may also be written

D =
∫

�−
Yḋ dω +

∫
�+

Yḋ dω −
∫

	c
ψ vn da (63)

where Y is defined by (25) (y replaced by Y ). The above expression exhibits the duality
between Y and ḋ in the localization zone.

Results
We consider a 1D axisymmetric fiber pull-out depicted in Figure 4. The fiber of radius
ri is considered rigid and infinitely long. It is pulled out of a clamped circular domain of
radius re = ri + L. The only non-zero stress component is the shear stress τ satisfying the
following equilibrium conditions

(τ r),r = 0 ⇒ τ(r) = τ(ri)ri
r

(64)

Figure 4 Pull-out of an infinite fiber of radius ri from a tube of radius re. Radius rl indicates the (evolving)
extent of the non-local damage zone.
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The only non-zero strain is the shear strain, derivative of the displacement along the
fiber direction

γ = u,r (65)

We consider the following free energy density involving some hardening function h(d),
satisfying h(1) = 0. The shear stiffness is denoted μ and Yc is also a material parameter.

ψ(γ , d) = 1
2
μ(1 − d)γ 2 + Ych(d) (66)

So, state laws read

τ = μ(1 − d)γ , Y = 1
2
μγ 2 − Ych′ (67)

The local evolution model is given by

ḋ ≥ 0, Y − Yc ≤ 0, (Y − Yc)ḋ = 0 (68)

The condition Y = Yc reduces to
τ

τc
= (1 − d)

√
h′ + 1︸ ︷︷ ︸

g(d)

, τc = √
2μYc (69)

Let us now be more precise on the type of function g(d) we will be considering. Basi-
cally, we are interested by C1 positive concave functions with a maximum value at some
damage dc < 1 :

g(d) ∈ C1([0, 1]) : g′′ < 0, g(0) = 1, g(1) = 0, g′(dc) = 0 (70)

We shall use in what follows

g(d) = (1 − d) exp
(

d
1 − dc

)
(71)

The corresponding stress strain curve is given in Figure 5. We will now search for the
complete solution linking the (non-dimensional) shear stressT needed tomove by a (non-
dimensional) displacement U the fiber:

T = τ(ri)
τc

, U = u(ri)μ
riτc

(72)

Four regimes will be observed. They are depicted in Figure 6: elastic, local damage, local
and non-local damage and finally purely non-local damage. The first two regimes may

Figure 5 Local constitutive model: stress versus rising strain (case dc = 0.5).
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Figure 6 Force-displacement curve in the case n= 2. The elastic part of the solution is on part [OA] of the
curve. The part [AB] corresponds to the development of local damage whereas part [BC] corresponds to both
local and non-local damage development. Finally, part [CD] is governed only by non-local damage. Letters A,
B and C are located at TA = 1, TB = 1.351 and TC = 1.368, respectively. The latter being the limit load.

be solved analytically whereas the two last one may not. We however pursue as much as
possible the analytical path. Next section is devoted to a numerical solver.

Pure elastic regime: T ∈ [0, TA = 1]

The displacement solution is given by

u(r) = T
τc
μ

∫ re

r

ri
r
dr = T

τc
μ
ri log

( re
r

)
(73)

We thus have a linear relationship between the stress and displacement

T = U
(
log

(
re
ri

))−1
(74)

Local damage regime: T ∈ [1, TB]

When T reaches 1 local damage starts around the fiber. Its distribution is obtained by
combining (64) and (69)

T = g(d)
r
ri

(75)

This distribution of local damage is acceptable provided the condition below holds true

‖∇φ‖ ≤ 1 i.e. ‖∇d‖ ≤ d′(φ(d)) (76)

The norm of the damage gradient is maximum at r = ri and of value∣∣∣∣ dd
dr

∣∣∣∣ = 1
ri

g(di)
g′(di)

(77)

where di = d(ri). Considering a general power law damage profile (13), the condition (76)
is ∣∣∣∣ g(di)g′(di)

∣∣∣∣ ≤ ri
lc
n(1 − di)1−1/n (78)

Let us denote by dBi the smallest value of damage for which the condition above is vio-
lated and TB the corresponding loading. Due to the fact that g′(dc) = 0, it is clear that
dBi will be slightly lower than dc. We note that as the material length gets bigger with
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respect to ri, non-locality (violation of (78)) will step in for smaller and smaller damage
di. Considering the choice (71), we get the condition∣∣∣∣ (1 − di)(1 − dc)

dc − di

∣∣∣∣ ≤ ri
lc
n(1 − di)1−1/n (79)

For instance if n = 1, we get

dBi = dc − (1 − dc)(lc/ri)
1 − (1 − dc)(lc/ri)

(80)

As a numerical application, with dc = 0.5 and lc/ri = 0.1, we get dBi = 0.47.

Combined local and non-local damage regime: T ∈ [TB, TC]

For a loading higher than TB, non-local damage will develop close to the fiber. Let [ri, rl]
be the current extension of the non-local damage zone in which damage ranges from di
to dl following:

r(d, di) = ri + φ(di) − φ(d) (81)

The condition for the non-local zone to grow is Y = Yc, i.e.∫ rl

ri
(Y − Yc)

dd
dφ

r dr = 0 (82)

Using, (81), we may rewrite it as∫ di

dl
(Y − Yc)r(d, di) dd = 0 (83)

Now, using (69), we get

T =
⎛
⎝∫ di

dl (1 − d)−2g2(d)(r(d, di)/ri) dd∫ di
dl (1 − d)−2(r(d, di)/ri)−1 dd

⎞
⎠1/2

(84)

Since loading is rising, so does local dl damage at r = rl, following

T = rl
ri
g(dl) (85)

Given T , system (84)-(85) returns unknowns di and dl as well as the extent of the non-
local zone rl = r(dl, di). We note that for T = TB, we have dl = di and rl = ri. Let TC be
the loading above which the system has no solution.

Non-local damage regime: T decreases from TC to 0

There is no solution of the problem for a loading higher than TC . When the loading
decreases below TC , there is of course a possible elastic solution. Another possible solu-
tion is the further development of the non-local damage zone (while damage in the local
zone no longer evolves since loading is decreasing). The system of equations to solve still
involves (84)

T =
⎛
⎝∫ di

dl (1 − d)−2g2(d)(r(d, di)/ri) dd∫ di
dl (1 − d)−2(r(d, di)/ri)−1 dd

⎞
⎠1/2

(86)

Equation (85) is now different and reads

TC = rl
ri
f (dl) (87)
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Indeed the damage at rl did not change from its value at load TC because the load has
been decreasing afterwards.

Analysis of the displacement of the fiber

The displacement of the fiber is given by

U = T
∫ re

ri

1
(1 − d)r

dr (88)

As the damage around the fiber goes to 1, the integrand goes to infinity. But, at the
same time the loading goes to zero. Let us study the limit of the fiber displacement for the
loading going to zero. The loading is given by (84) recalled below

T =
⎛
⎝∫ di

dl (1 − d)−2g2(d)(r(d, di)/ri) dd∫ di
dl (1 − d)−2(r(d, di)/ri)−1 dd

⎞
⎠1/2

=
⎛
⎝∫ di

dl N(d, di) dd∫ di
dl D(d, di) dd

⎞
⎠1/2

(89)

Due to the property of g(d), (70), we have

g(d) = O(1 − d) as d → 1 (90)

So

0 < N(d, di) < +∞,∀d, di ∈ [0, 1] (91)

Finally, we have

T = O
(√

1 − di
)
as di → 1 (92)

Note that this property does not depend on the choice of d(φ). Going back to the
displacement expression, (88), we have

U = T
∫ di

dl
(1 − d)−1(r(d, di))−1 dr(d, di)

dd
dd + CT (93)

where C is a finite constant and

r(d, di) = ri + φ(di) − φ(d) = ri + lc
(
(1 − d)1/n − (1 − di)1/n

)
(94)

assuming a power law asymptotic behavior of φ(d) as d goes to 1:

φ(d) = lc(1 − (1 − d)1/n) (95)

Finally, we get

U = T O
(
(1 − di)1/n−1 + C

) = O
(
(1 − di)1/n−1/2) as di → 1 (96)

We conclude that there exists three regimes of delocalization.

lim
di→1

U = 0 if n < 2 (97)

0 < lim
di→1

U < +∞ if n = 2 (98)

lim
di→1

U = +∞ if n > 2 (99)

When n < 2, the fiber displacement must be zero for total failure. When n = 2, there
exists a limit value of fiber displacement before total failure and when n > 2, it takes an
infinite displacement before total failure. It is interesting to note that these three regimes
also exist in gradient damage models [20].
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Numerical solve

Last section gave some insight on the different regimes in the solution. In order to plot the
solution, we detail here a 1D numerical solver. This code is rather ad hoc for 1D problem,
since we force the advance of the 	 boundary and find the corresponding loading and
fields. General 2D and 3D solvers will be detailed in a forthcoming paper. We search for
the solution at a set of discrete times. Consider the solution known at time tn, the solution
at time tn+1 must satisfy the following equations.

Kinematics and equilibrium on ] ri, re[.

un+1 ∈ U = {
u ∈ H1(] ri, re[) : u(re) = 0

}
(100)

γ
(
un+1) = un+1

,r (101)∫ re

ri
τn+1 γ (u∗) r dr = τcTn+1u∗(ri)ri, ∀u∗ ∈ U (102)

State laws and d(φ) relation on ] ri, re[.

τn+1 = τ
(
γ
(
un+1) , dn+1) = (

1 − dn+1) μγ
(
un+1) (103)

Yn+1 = Y
(
γ
(
un+1) , dn+1) = 1

2
μγ

(
un+1)2 − Ych′(dn+1) (104)

dn+1 = d
(
φn+1) (105)

Non-local evolution law on ] ri, rn+1
l [.

a =
∫ rn+1

l

ri

(
Yn+1 − Yc

)
d′(φn+1) r dr ≤ 0, (106)

b = φn+1(ri) − φn(ri) ≥ 0, ab = 0 (107)

φn+1 = φn+1
(
rn+1
l

)
+ rn+1

l − r, on ] ri, rn+1
l [ (108)

Local evolution law on ] rn+1
l , re[.

Yn+1 − Yc ≤ 0, φn+1 − φn ≥ 0,
(
Yn+1 − Yc

) (
φn+1 − φn) = 0 (109)

Regarding space discretization, the segment ] ri, re[ is discretized with a set of finite
elements. Initially, the non-local zone is empty and we proceed with a classical Newton-
Raphson scheme depicted in the solver flowchart without non-local zone.

Solver flowchart without non-local zone

1. initialization: u0 = d0 = T0 = 0
2. elastic step: find the load step for which damage starts
3. load step Tn+1 = Tn + 
T
4. iterations initialization k = 0
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5. solve linear system (110) to find 
u
6. after the first iteration adapt the load step so that the maximum damage increment

is dinc
7. update using (111)-(118)
8. if residual ≤ tol, go to 9 else go to 5
9. if ‖∇φn+1‖ ≤ 1, go to 3, else go to solver flowchart with non-local zone

The linear problem at each iteration reads: find 
u ∈ U such that:∫ re

ri
Hkγ (
u)γ (u∗)r dr = τcTn+1u∗(ri)ri −

∫ re

ri
τ kγ (u∗)r dr,∀u∗ ∈ U (110)

where the right hand side is the residual at iteration k. Once the displacement correction
is obtained, the local update of the fields is computed from

uk+1 = uk + 
u (111)

τ k+1 = τ
(
γ
(
uk+1

)
, dk+1

)
, Yk+1 = Y

(
γ
(
uk+1

)
, dk+1

)
(112)

Yk+1 − Yc ≤ 0, dk+1 − dn ≥ 0,
(
Yk − Yc

)(
dk − dn

)
= 0 (113)

φk+1 = φ
(
dk+1

)
(114)

whereas tangent operators are obtained by

Hk+1 = Hk+1
γ γ − ηkHk+1

γd

(
Hk+1
dd

)−1
Hk+1
dγ

(115)

ηk+1 = 1, if dk+1 − dk > 0 and 0 otherwise (116)

Hk+1
γ γ = ∂τ

∂γ
|k+1, Hk+1

γd = ∂τ

∂d
|k+1, (117)

Hk+1
dγ

= −∂Y
∂γ

|k+1,Hk+1
dd = −∂Y

∂d
|k+1 (118)

At the end of each load step, the gradient of the level set is computed. If it is below 1
everywhere the next load step is applied. If not, a non-local zone is placed and the solver
flowchart with non-local zone is used.

Solver flowchart with non-local zone

1. initialization: r0l = ri
2. increase non-local zone: rn+1

l = rnl + 
rl
3. iterations initialization: k = 0
4. linear solve: solve (119) to find 
u,
T ,
φ

5. load update: Tk+1 = Tk + 
T
6. update in local zone (111)-(118), and non-local zone (120)-(124)
7. if residual ≤ tol, go to 8, else go to 4
8. if domain not fully broken (d(ri) < 1), go to 2, else go to 9
9. end

The extent of the non-local zone is imposed and one tries to find a continuous
displacement and damage field satisfying the problem.
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The linear symmetric problem to be solved at each iteration when the non-local zone is
not empty is to find 
u ∈ U , 
φ ∈ A,
T ∈ R such that

∫ rn+1
l

ri

(
Hk

γ γ γ (
u) + Hk
γdd

′ (φk
)


φ
)

γ (u∗)r dr +
∫ re

rn+1
l

Hkγ (
u)γ (u∗)r dr − τc
Tu∗(ri) =

τcTku∗(ri)ri −
∫ re

ri
τ kγ (u∗)r dr, ∀u∗ ∈ U

∫ rn+1
l

ri

(
Hk
dγ d

′(φk
)

γ (
u) +
(
Hk
ddd

′2 (
φk

)
+

(
Yc − Yk

)
d′′(φk

))

φ

)
φ∗r dr =

∫ rn+1
l

ri

(
Yk − Yc

)
d′(φk

)
φ∗r dr, ∀φ∗ ∈ A

− 
φ + ηk

(
Hk
dd

)−1
Hk
dγ

γ (
u)

d′(φk) |rn+1,+
l

=
(
φk − φ

(
dk

))
|rn+1,+
l

(119)

where ηk is evaluated following (116). The update in the local zone follows (111)-(118)
whereas in the non-local zone we have

uk+1 = uk + 
u, φk+1 = φk + 
φ, (120)

dk+1 = d
(
φk+1

)
(121)

τ k+1 = τ
(
γ
(
uk+1

)
, dk+1

)
, Yk+1 = Y

(
γ
(
uk+1

)
, dk+1

)
(122)

Hk+1
γ γ = ∂τ

∂γ
|k+1, Hk+1

γd = ∂τ

∂d
|k+1, (123)

Hk+1
dγ

= −∂Y
∂γ

|k+1,Hk+1
dd = −∂Y

∂d
|k+1 (124)

Is is interesting to note the difference between the two solver flowcharts. When the
non-local zone is empty, the linear solve deals only with displacement increments and the
local update deals with the damage variable. On the contrary, when the non-local zone is
not empty, the linear solve involves both displacement and damage (or more precisely the
surrogate φ variable) increment in the non-local zone (local zone being treated as before).
The mesh is built so that it is much finer in the localization zone. Node j is located at a

position x(j) given by

x(j) = (ri + ((j − 1)/N)(re − ri))2

re − ri
+ ri, j = 1, . . . ,N + 1 (125)

where N is the number of elements considered. Results will be shown for the following
mechanical parameters:

ri = 0.1m, re = 0.2m, lc = 0.02m,
τc
μ

= 10−4, dc = 0.5 (126)

and numerical parameters

N = 200, dinc = 0.02 (127)

Regarding parameter 
rl, the non-local zone is advanced by one element at a time or
smaller when damage gets close to 1 at ri. This is done in order to capture the full load-
displacement curve. The formula used in the simulation is


rl = max
(
min

(
h∗,

(
lc − φn(ri)

)
/2

)
, 1.e−12 ∗ lc

)
(128)
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Figure 7 Distributions of φ/lc (top figure) and damage (bottom figure) for different loadings. Details
on the curves in each plot from bottom to top: Bottom curve corresponds to T = 1.232, damage evolution is
purely local. The next curve is for T = 1.351. It corresponds to the load at which ‖∇φ‖ = 1 at r = ri and
non-locality steps in. Next curve is for T = 1.368, it is the limit load. The load then decreases and damage
evolution is purely non-local. Last two curves are for T = 1.012 and T = 0.02, respectively. The latter case
depicts the profile at complete decohesion of the fiber.

Figure 8 Force-displacement curves for n= 1 (small dots), n= 2 (solid line), n= 3 (big dots).
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Figure 9 Force-displacement curves (zoom) for n= 2 and dinc = 0.02 with different mesh sizes:
N= 200 (solid line), N= 20 stars, N= 30 circles, N= 40 plus sign.

where h∗ is the size of the element adjacent to the non-local zone at time step n. The initial
(n = 0) non-local zone needs to be more than one-element for convergence. Between 5
and 10 elements are used.
As a final remark on the solver flowchart with the non-local zone, we noticed that in

non-local zone update, it was more efficient (reduced number of iterations) to take 
φ as
the one ensuring damage continuity rather that picking the one coming from step 3.

Discussion
In Figure 6, the force-displacement curve in the case n= 2 is shown. The figure indicates
the different regime of the solution (pure elastic, local damage, coupled and pure non-
local damage). Note that snap-back is taken into account automatically since the loading
is not imposed but an unknown in the numerical scheme. Profiles of φ and damage along
the radius at different loads are depicted in Figure 7.

Figure 10 Force-displacement curves (zoom) for n= 2 and N= 50 with different values of dinc:
dinc = 0.02 (solid line), dinc = 0.1 stars, dinc = 0.05 circles, dinc = 0.01 plus sign.
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Figure 8 shows the influence of the delocalization parameter n. Plots confirm the ana-
lytical limit results (97). As long as damage is purely local, all curves are superposed. As
non-locality steps in, the delocalization parameters n plays a role.
Finally, in order to show the insensitivity of the model with respect to the discretization

parameters N , dinc, we show Figure 9 the influence of the choice of the N parameter (for
the case n = 2 and dinc = 0.02). In Figure 10, we show the influence of dinc (for the
case n = 2 and N = 50). Note that as expected, parameter dinc has only an influence
when damage is purely local (rising part of the curve). For both figures, a zoom was used.
Otherwise, curves cannot be distinguished.

Conclusions
The Thick Level Set damage model allows coupling local damage evolution in some part
of the domain to a non-local damage evolution in the localization zone. Damage gradi-
ent is bounded. The bound is reached in the non-local zone (localization zone) and not
reached in the local one. The localization zone boundary is the main unknown in the
model. It evolves ensuring damage continuity. A semi-analytical 1D solution has been
developed showing different regimes in the solution (elastic, local damage, coupled local
and non-local damage and finally pure non-local damage). The solution was plotted using
a numerical scheme. This numerical scheme is ad hoc for the 1D problem considered.
The corresponding numerical implementation for 2D and 3D cases will be the subject of
a forthcoming publication.
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