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Introduction

In many contexts, users share common resources to realize some tasks while being not coordinated. Examples of such resources are means of transportation, machines in a flexible manufacturing environment, or arcs in a telecommunication network. Congestion may appear on resources, leading to strategic behaviors. Game theory is a useful approach to understand and predict the behaviors of the users and the resulting congestion on the resources. The games arising in such a context, called congestion games, have been studied since the 50's, addressing many questions, such as the existence and the uniqueness of the Nash equilibrium, the way to compute it and related complexity questions, or its efficiency with respect to the social optimum (via the so-called "Price of Anarchy").

One stream of questions is about the sensitivity analysis, defined as the evaluation of the impact of the input (graph, cost functions and demands) on the equilibrium. In practice, these analyses are used for designing networks, estimating origin-destination matrices, or fixing pricing rules. Such analyses have been mainly applied to nonatomic congestion games and formulas have been designed in order to perform the sensitivity analysis, see [START_REF] Roger | Sensitivity analysis for equilibrium network flow[END_REF], [START_REF] Qiu | Sensitivity analysis for variational inequalities defined on polyhedral sets[END_REF], [START_REF] Michael | Transportation network analysis[END_REF]. Nonatomic means that there is a continuous set of users, each with a negligible impact on the congestion. Taking a more theoretical point of view, [START_REF] Hall | Properties of the equilibrium state in transportation networks[END_REF] proved that the equilibrium flows of nonatomic games played on a network is continuous with respect to the demand when all users have the same cost functions. This result have been extended for cost functions depending on the flows on all arcs of the network by [START_REF] Dafermos | Sensitivity analysis for the asymmetric network equilibrium problem[END_REF]. A more general study, concerning in particular the differentiability, has been made by [START_REF] Patriksson | Sensitivity analysis of aggregated variational inequality problems, with application to traffic equilibria[END_REF] and [START_REF] Patriksson | Sensitivity analysis of traffic equilibria[END_REF]. The latter gave a characterization for the existence of a directional derivative of the equilibrium flow with respect to the demand. [START_REF] Josefsson | Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design[END_REF] showed that while equilibrium costs are directionally differentiable, this does not hold for the flows.

A natural intuition would be that an increase of the demand gives an increase of the equilibrium cost. [START_REF] Hall | Properties of the equilibrium state in transportation networks[END_REF] proved that this result is true for two-terminal graphs when players have the same cost functions, and [START_REF] Lin | Stronger bounds on Braess's paradox and the maximum latency of selfish routing[END_REF] gave an alternate combinatorial proof of this result. However this intuition is false in general, as noted for example by [START_REF] Fisk | More paradoxes in the equilibrium assignment problem[END_REF]. [START_REF] Dafermos | Sensitivity analysis for the asymmetric network equilibrium problem[END_REF] proved that an "average" total cost will necessarily increase. More recently, [START_REF] Englert | Sensitivity of Wardrop equilibria[END_REF] proved that there are networks for which a slight increase of the total demand changes the strategies of all users. This "microscopic" instability, in the sense that the total flow on each arc does not change too much, happens in particular for the class of generalized Braess graphs introduced by [START_REF] Roughgarden | On the severity of Braess's paradox: designing networks for selfish users is hard[END_REF].

Our purpose is to make a sensitivity analysis for atomic splittable games. We consider a finite set of non-negligible players having a stock, the demand, to divide among different resources. For example, a freight company may have to choose between several means of transportation. This situation can be modeled by an atomic game on a network with parallel arcs, each arc representing a resource. This kind of games have been extensively studied, see for example [START_REF] Orda | Competitive Routing in Multi-User Communication Networks[END_REF], [START_REF] Altman | Competitive routing in networks with polynomial costs[END_REF], [START_REF] Richman | Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users[END_REF], [START_REF] Bhaskar | Equilibria of atomic flow games are not unique[END_REF][START_REF] Bhaskar | The price of collusion in series-parallel networks[END_REF]. Further results and extensions on Nash equilibria in this context can be found in [START_REF] Gairing | Routing (un-) splittable flow in games with player-specific linear latency functions[END_REF], [START_REF] Harks | The impact of collusion on the price of anarchy in nonatomic and discrete network games[END_REF], [START_REF] Cominetti | The impact of oligopolistic competition in networks[END_REF]. These works consider mostly the case when every player is impacted in the same way by the congestion.

In this paper, we study the sensitivity of the equilibrium in atomic splittable games on parallelarcs graphs with player-specific cost functions. Questions like the continuity of the equilibrium and its differentiability are addressed, as well as questions about the consequence of a partial transfer of demand from a player to another one with a higher demand. The impact of making coalitions is a special case of this latter question.

Model and main results

2.1. Model. We are given a two-terminal graph with a set A of parallel arcs and K ≥ 2 players identified with the integers 1, . . . , K. Throughout the paper, the set {1, . . . , K} is denoted [K]. We consider the model of atomic splittable games: each player k has a demand d k ∈ R + and cost functions c k a : R + → R + , assumed to be increasing, differentiable, and strictly convex. A feasible strategy for the player k is an element

x k = (x k a ) a∈A of R A + such that a∈A x k a = d k . The quantity x k
a is then the flow of player k on the arc a. When each player has chosen a strategy, the total flow on arc a is the quantity x a = K k=1 x k a and the support of the strategy is the set of arcs "used" by this player supp(

x k ) = {a ∈ A : x k a > 0}. The cost supported by player k is a∈A c k a (x a ). A vector x = (x 1 , . . . , x K ) a∈A of feasible strategies is an equilibrium if for every player k a∈A x k a c k a (x a ) = min (y k a )∈R A + : a y k a =d k a∈A y k a c k a (y a ).
2.2. Properties. The following characterization of the equilibrium is standard and has been used for instance in [START_REF] Haurie | On the relationship between Nash-Cournot and Wardrop equilibria[END_REF].

Proposition 1. The vector x is an equilibrium if and only if, for all k, the vector x k is a feasible strategy for player k and

a∈A (c k a (x a ) + x k a c k a (x a ))(y k a -x k a )
≥ 0, for any other feasible strategy y k .

The following proposition is an alternate and again standard characterization of the equilibrium.

Proposition 2. The vector x is an equilibrium if and only if, for all k, the vector x k is a feasible strategy for player k and c k a (x a ) + x k a c k a (x a ) = π k for all a ∈ supp(x k ), where

π k = min a∈A c k a (x a ) + x k a c k a (x a ) . c k a (x a ) + x k a c k a (x a )
is the marginal cost of arc a for player k. Proposition 2 states thus that at equilibrium, the marginal costs of the arcs in the support of every player are all equal.

For the games considered in this paper, an equilibrium always exists, see [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF], [START_REF] Orda | Competitive Routing in Multi-User Communication Networks[END_REF]. Furthermore, the graph belongs to the class of nearly-parallel graphs and thus the equilibrium is unique [START_REF] Richman | Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users[END_REF].

2.3. Results. The uniqueness of equilibrium allows to define for each player k the map

e k : R K + -→ R A +
by defining e k (d) to be the strategy of player k at equilibrium when the demands are given by the components of d = (d 1 , . . . , d K ). Define

e : d ∈ R K + -→ (e 1 (d), . . . , e K (d)) ∈ (R A + ) K . It is a continuous map, see Proposition 3 of Section 3.
A demand transfer is a part δ ∈ [0, d i ] removed of the demand of a player i and added to the demand of a player j, the demand of the other players remaining the same. The new demand of player i is then d i -δ and the new demand of player j is then d j + δ.

Theorem 1. Suppose that |A| = 2 or K = 2, and that the cost functions are twice continuously differentiable. Let d 0 ∈ R K + be a demand vector such that for any pair of players, a sufficiently small nonzero demand transfer does not modify the supports of the players. Then e(•) is differentiable at d 0 .

Generically, all d 0 ∈ R K + satisfy this condition (it is for instance a consequence of Corollary 1 of Section 4.1). We do not know whether this theorem still holds when |A| ≥ 3 and K ≥ 3. However, we cannot expect e(•) to be differentiable everywhere, even if there is only one player, see Section 6.

Our two other main results are about the case when the players i and j involved in the transfer described above are such that d i ≤ d j .

Theorem 2. Suppose that |A| = 2 or K = 2. If a player i transfers a part of his demand to a player j with d i ≤ d j , then, on each arc, the flow of player i (resp. player j) decreases (resp. increases) or remains constant equal to zero.

The social cost is defined by

Q( x) = K k=1 a∈A x k a c k a (x a ).
It is the cost experienced by all players together.

Theorem 3. Suppose that c 1 a = • • • = c K a for all a ∈ A (we are no longer in the player-specific cost setting). Suppose moreover that at least one of the following conditions is satisfied.

• |A| = 2 • K = 2 and the cost functions are twice continuously differentiable . Then if a player i transfers a part of his demand to a player j with d i ≤ d j , the social cost at equilibrium decreases or remains constant.

A consequence of this theorem is that if the total demand k d k = d is fixed, the equilibrium with highest social cost is obtained when all players have the same demand equal to d/k. In the contrary, social cost is reduced when a monopole takes in charge the whole demand. Nevertheless, this is true under the conditions of the theorem. If these conditions are relaxed, there are situations where the conclusion of Theorem 3 does not hold, see Section 6.

Theorem 3 is a generalization of Theorem 3.23 of [START_REF] Wan | Contributions à la théorie des jeux d'évolution et de congestion[END_REF] when there are no nonatomic players. [START_REF] Wan | Contributions à la théorie des jeux d'évolution et de congestion[END_REF] proved that when there are two arcs the social cost at equilibrium cannot increase when two players merge, i.e. in our context when player i transfers all his demand to player j. The question whether our result remains valid with nonatomic players deserves future work.

Theorems 1, 2, and 3 are respectively proved in Sections 3, 4, and 5. We emphasize that the proof of Theorem 3 uses Theorems 1 and 2.

3. Regularity of equilibrium 3.1. Continuity. The following proposition holds for the model described in Section 2.1 in its full generality. It contrasts with Theorem 1, which requires the cost function to be twice continuously diffrrentiable.

Proposition 3. The map e(•) is continuous.

Proof. Let = {p ∈ R A + : a∈A p a = 1} be the (|A| -1)-dimensional simplex and F : K × R K + → (R A + ) K be defined by F k a ( p, d) = c k a K =1 p a d + p k a d k c k a K =1 p a d d k ,
for every a and k. The application F is continuous in both variables.

According to Proposition 1, e(d) is the equilibrium if and only if e k a (d) = p k a d k for all a and k, where p satisfies the variational inequality

(V I(d)) F ( p, d) • ( q -p) ≥ 0 for any q ∈ K .
By a sequential argument, using the continuity of F and the compactness of K , elementary calculations give that the solution of (V I(d)) is continuous with respect to d.

3.2.

Proof of Theorem 1. The strategies at equilibrium are completely determined by the supports of the players. This is due to the increasing assumption of the costs. When the supports are given, the equilibrium is characterized by equalities and then the inverse function theorem makes the job. This is the core idea of the proof of Theorem 1.

Lemma 1. Suppose that the cost functions are twice continuously differentiable. Choose an S k ⊆ A for each player k. Define the application H :

K k=1 R S k + × R K + → K k=1 R S k × R K by H( y, π) = (G( y, π), D( y)), where for a ∈ S k , y k ∈ S k , and π ∈ R K , we have G k a ( y, π) = c k a (y a ) + y k a c k a (y a ) -π k and D k ( y) = a∈S k y k a .
Let z be such that z a > 0 for every a ∈ S k and every player k, and let π ∈ R K . Then H is continuously differentiable and invertible in a neighborhood of ( z, π), with a continuously differentiable inverse.

Proof. Since c a is twice continuously differentiable for every a, the map H is continuously differentiable. We will show that the Jacobian matrix J of H at ( z, π) is nonsingular. The conclusion will then follow from the inverse function theorem.

We define

g k a = c k a (z a ) + z k a c k a (z a ) for every a ∈ S k and h k a = c k a (z a )
for every a ∈ A. Note that because of the assumptions, they are positive when a ∈ S k . A direct calculation gives the entries of J. For k ∈ [K] and a ∈ S k , we have

∂G k a ∂y b ( z, π) =    g k a for a = b, k = g k a + h k a for a = b, k = 0 for a = b. ∂G k a ∂π ( z, π) = 0 for k = -1 for k = ∂D k ∂y b ( z, π) = 0 for k = 1 for k = . ∂D k ∂π ( z, π) = 0.
We prove now that J is nonsingular by showing that its kernel contains only the zero vector. We denote by K a the set of players effectively using arc a:

K a = {k ∈ [K] : a ∈ S k }. Let ( λ, µ) ∈ K k=1 R S k × R K be in the kernel of J.
The equality J( λ, µ) = 0 can be written under the form (1)

       M a λ a = µ a for a ∈ A, a∈S k λ k a = 0 for k ∈ [K].
where λ a = (λ k a ) k∈Ka and µ a = (µ k ) k∈Ka , with

M a = (m k, ) being the |K a | × |K a | matrix such that m k, = g k a for k = g k a + h k a for k = .
It can be readily checked that M a is a nonsingular matrix because the g k a and the h k a are positive. In order to consider matrices with same dimension, we define Λ ∈ K k=1 R A by Λ k a = λ k a for a ∈ K a and 0 elsewhere. The system (1) is then equivalent to the following system:

       Λ a = M a µ for a ∈ A, a∈A Λ a = 0, where M a is a K × K matrix obtained from M -1
a by setting the missing coefficients to zero. These conditions imply that

a∈A Λ a = a∈A M a µ = 0.
A Z-matrix is a square matrix whose nondiagonal coefficients are nonpositive. According to a theorem by [START_REF] Minkowski | Zur theorie der einheiten in den algebraischen zahlkörpern[END_REF], if each column of a Z-matrix has a positive sum, then it is a nonsingular matrix. For more details, see [Berman and Plemmons, 1979, Chapter 6]. It can be checked that each M a is such a Z-matrix. Their sum is thus also such a Z-matrix, and is thus nonsingular. It gives µ = 0 and then Λ a = 0 for all a ∈ A. In particular, λ = 0. Therefore, J is nonsingular.

Proof of Theorem 1. Let d 0 be as in the statement. Define S k to be supp(e k (d 0 )). Let x = e(d 0 ). There exists

π ∈ R K + such that        c k a (x a ) + x k a c k a (x a ) -π k = 0 for k ∈ [K], a ∈ S k a∈A x k a = d k 0 for k ∈ [K] x k a = 0 for k ∈ [K], a / ∈ S k c k a (x a ) + x k a c k a (x a ) -π k > 0 for k ∈ [K], a / ∈ S k .
Indeed, it is a consequence of Proposition 2, except the fact that the last inequality is strict. We prove now this latter fact. Assume for a contradiction that there is a player k such that c k a (x a ) + x k a c k a (x a ) -π k = 0, while a / ∈ S k . The continuity of e and Corollary 2 (see Section 4) would then imply that a slight transfer of demand to player k would change the support of his strategy, which is in contradiction with the assumption regarding the non-modification of the support. Corollary 2 can be used since we have assumed that |A| = 2 or K = 2.

We can apply Lemma 1: there is a neighborhood V of (0,

d 0 ) in k∈[K] R S k × R K such that H -1 exists on V and is differentiable. Define P : (z, π) ∈ k∈[K] R S k + × R K + -→ y ∈ k∈[K] R A + with y k a = z k a if a ∈ S k 0 otherwise. Let ( z, π) = H -1 (0, d)) for some (0, d) ∈ V . It is straightforward to check that (P ( z, π), π
) is a solution of the system above with d k 0 replaced by d k , and thus that P ( z, π) satisfies the condition of Proposition 2. In other word, e(d) = P (H -1 (0, d)) for (0, d) ∈ V . The map P is differentiable everywhere and H -1 is differentiable on V . It leads to the desired conclusion.

4. Equilibrium and demand transfers: proof of Theorem 2 4.1. A more general result. Theorem 2 is a direct consequence of the following proposition. We define d δ the vector of demands after player i has transferred a part δ > 0 of his demand to player j: If x i a ≤ y i a , then x i a = y i a = 0 and x a ≤ y a . If x j a ≥ y j a , then x j a = y j a = 0 and x a ≥ y a . In case |A| = 2, we have moreover (x k a -y k a )(x a -y a ) ≤ 0 for k = i, j. This proposition is proved in the next subsection. We first show two corollaries. They will be useful in the proof of Theorem 3. The second one is also used in the proof of Theorem 1.

d i δ = d i -δ, d j δ = d j + δ,
Corollary 1. Suppose that |A| = 2 or K = 2, and let x = e(d) and y = e(d δ ). Then,

• supp(y i ) ⊆ supp(x i ) and supp(x j ) ⊆ supp(y j ).

• {a ∈ A : y a < x a } ⊆ supp(x i ) and {a ∈ A : y a > x a } ⊆ supp(y j ).

Proof. Let a be an arc in supp(y i ). We have y i a = 0. Proposition 4 implies then that x i a > y i a , which shows that supp(y i ) ⊆ supp(x i ). The inclusion supp(x j ) ⊆ supp(y j ) is proved similarly. This shows the first point.

Let a be such that y a < x a . Proposition 4 implies then that x i a > y i a , which shows that a ∈ supp(x i ). The other inclusion is proved similarly. This shows the second point.

We consider now the "limit" case when the cost of an arc with no flow is equal to the marginal cost.

Corollary 2. Suppose that |A| = 2 or K = 2, and let x = e(d) and y = e(d δ ).

If b / ∈ supp(x j ) is such that c j b (x b ) = min a∈A (c j a (x a ) + x j a c j a (x a )), then b ∈ supp(y j ). If b / ∈ supp(y i ) is such that c i b (y b ) = min a∈A (c i a (y a ) + y j a c i a (y a )), then b ∈ supp(x i ).
Proof. We only prove the first point, the proof of the second one being similar. If x b < y b , we have b ∈ supp(y j ) because of Corollary 1. We can thus assume for the remaining of the proof that x b ≥ y b . Suppose for a contradiction that b / ∈ supp(y j ). Consider an arc a ∈ supp(y j ). Proposition 4 gives that x j a < y j a . We have moreover

c j a (x a ) + x j a c j a (x a ) ≥ c j b (x b ) ≥ c j b (y b ) ≥ c j a (y a ) + y j a c j a (y a )
. The first inequality is a consequence of the assumption on b, the second one is a consequence of the inequality x b ≥ y b , the third one is a consequence of Proposition 2. Since c j a and c j a are increasing, we get that x a > y a .

Thus any arc a ∈ supp(y j ) is such that x a > y a . Now, take such an arc α, i.e. such that x α > y α . Since the total demand is the same before and after the transfer, there must be an arc α = α such that x α < y α . According to Corollary 1, we have α ∈ supp(y j ). This is in contradiction with the fact that such an arc must satisfy x α > y α . 4.2. Proof of Proposition 4. We start with a technical lemma.

Lemma 2. Let d u , d v ∈ R K + and let u = e(d u ) and v = e(d v ) for k ∈ [K]. Let a and b be two arcs such that u a ≤ v a and u b ≥ v b . If k is a player such that u k a < v k a , then u k b = v k b = 0 or u k b < v k b . Proof. If u k b = 0, then u k b ≤ v k b , with equality if and only if u k b = v k b = 0. We can thus suppose that u k b > 0. Proposition 2 gives c k b (u b )+u k b c k b (u b ) ≤ c k a (u a )+u k a c k a (u a ). Since 0 ≤ u k a < v k a , Proposition 2 gives c k a (v a ) + v k a c k a (v a ) ≤ c k b (v b ) + v k b c k b (v b
). These two equations together with the facts that c k a and c k a are increasing, u a ≤ v a , and δ , there is at least one arc a such that x i a > y i a . Lemma 2 with u = y and v = x implies that y i b = x i b = 0 or y i b < x i b for all arcs b ∈ A. We get the desired conclusion for i. The proof of the conclusion for j is similar and omitted. Finally, in case |A| = 2, Lemma 2 with u = x and v = y together with the fact that d k = d k δ for k = i, j shows that x k a = y k a for both arcs a in A, leading to the desired inequality. We can thus assume for the remaining of the proof that x = y.

u k a < v k a give that c k b (u b ) + u k b c k b (u b ) < c k b (v b ) + v k b c k b (v b ).
We first deal with the case K = 2. Since x = y, there is an arc α ∈ A such that x α = y α . Without loss of generality x α < y α , and there is an arc β ∈ A such that x β > y β . We have x α < y α for a player ∈ {i, j} and x β > y β for a player ∈ {i, j} (there are only two players).

For every arc b such that x b ≥ y b , apply Lemma 2 with a = α, u = x, v = y, and k = . Summing these inequalities over all arcs b, we get that d ≤ d δ and d ≥ d δ , and we conclude that = j and = i.

We have proved that x i a = y i a = 0 or x i a > y i a for every arc a such that x a ≤ y a , and x i a ≥ y i a for every arc a such that x a ≥ y a . It remains to prove that x i a > y i a is strict for arcs a such that

x a > y a . Consider then such an arc a. Since x j a ≤ y j a and there are only two players, we have a strict inequality for player i too: x i a > y i a . A similar argument for player j leads to the desired conclusion.

Suppose that |A| = 2. Let α and β be the two arcs and suppose without loss of generality that x α < y α and x β > y β . Applying Lemma 2 with a = α, b = β, u = x, and v = y, we get that x k α ≥ y k α for all k = j (using the fact the d k ≥ d k δ for such a player k). Since x α < y α , we get that x j α < y j α . For a player k = i, j, we have d k = d k δ . Thus x k β ≤ y k β for such a player. Note that we already get the last statement of the proposition.

Applying again Lemma 2 with a = α, b = β, u = x, v = y, but this time for k = j, we get that x j β = y j β = 0 or x j β < y j β . This already gives the conclusion for player j. Since x β > y β , it implies that x i β > y i β . It remains to prove that the conclusion holds for player i. Let a be an arc such that x i a ≤ y i a . We necessarily have a = α. Applying Lemma 2, this times with a = β, b = α, u = y, and v = x allows then to conclude. 5. Social cost at equilibrium when players have same cost functions: proof of Theorem 3

5.1. Main steps of the proof. The proof of Theorem 3 relies on two results: Corollary 1 and the following proposition, proved in the remaining of the section. We define d δ as in Section 4

d i δ = d i -δ, d j δ = d j + δ, and d k δ = d k for k = i, j.
Throughout the section, the inequality d i ≤ d j is assumed.

Proposition 5. Suppose that we are under the condition of Theorem 3 and that there exists δ > 0 such that supp(e k (d)) = supp(e k (d δ )) for both players k = i and k = j. Then there exists η > 0

such that h → Q( e(d h )) is nonincreasing on [0, η].
If e(•) is differentiable, e.g. the cost functions are twice continuously differentiable (Theorem 1), then we can actually show that h → Q( e(d h )) is differentiable with a nonpositive derivative at 0.

The remaining of the section is devoted to the proof of this proposition. We finish this subsection by explaining how this proposition can be used to prove Theorem 3.

Proof of Theorem 3. Corollary 1 implies that when player i transfers a part of his demand to player j, the support of player i does not increase and the support of player j does not decrease. It implies that for k = i and k = j, the set supp(e k (d h )) changes a finite number of times when h goes from 0 to d i . Hence, for almost all h ∈ [0, d i ], there exists some δ > 0 (depending on h ) such that supp(e k (d h )) = supp(e k (d h +δ )) for both k = i and k = j. Thus, Proposition 5 implies that h → Q( e(d h )) is nonincreasing almost everywhere on [0,

d i ]. Since h → Q( e(d h )) is continuous according to Proposition 3, the map h → Q( e(d h )) is nonincreasing on the whole interval [0, d i ].
5.2. Technical lemmas. Throughout this subsection, we assume that we are no longer in the player-specific cost function setting, i.e. we suppose that c 1 a = • • • = c K a for all a ∈ A. The cost function attached to arc a is denoted c a without superscript. We emphasize that the result of this subsection do not necessarily hold when we assume the costs to be player-specific.

We have divided this subsection into two parts. The first one deals with results regarding the supports of the strategies. The second one deals with the derivate of the social cost at equilibrium seen as a function of the transfer.

5.2.1.

Lemmas about the supports. The following lemma has been proved by [START_REF] Orda | Competitive Routing in Multi-User Communication Networks[END_REF]. It is stated here without proof.

Lemma 3. Let x = e(d). If d k 1 ≤ d k 2 , then x k 1 a ≤ x k 2
a for every arc a. The next lemma deals with the case when the condition of Proposition 5 is satisfied and when moreover the supports of player i and j are identical. In this case, the social cost is not only nonincreasing, it is even constant.

Lemma 4. Suppose that there exists δ ∈ (0, d i ] such that supp(e i (d)) = supp(e j (d)) = supp(e i (d δ )) = supp(e j (d δ )).

Then there exists

η > 0 such that h → Q( e(d h )) is constant on [0, η].
Proof. Let x = e(d) and denote y(h) = e(d h ). Denote by S 0 be the common support: S 0 = supp(x i ) = supp(x j ). Let

π k = min a∈A c a (x a ) + x k a c a (x a ) .
It is the marginal cost at equilibrium for player k when the demand is d. Let η = min(δ 0 , δ 1 ), where

δ 0 = min a∈S 0 x i a c a (x a ) a∈S 0 1 c a (x a )
and

δ 1 = min b / ∈S 0 c b (x b ) -π j a∈S 0 1 c a (x a )
.

η is well defined since c a > 0 for every x > 0, and is nonnegative, according to Proposition 2. Moreover, Corollary 2 shows that η > 0.

Let h ≤ η. We consider the strategy vector z defined by

z k a = x k a + d k h -d k βc a (x a )
1 {a∈S 0 } for every player k where β = a∈S 0 1 c a (xa) . The remaining of the proof consists in showing that z = y(h). Since such a z satisfies z a = x a for all a (checking straightforward), it will show that x a = y a (h) for all a, and in particular that Q(x) = Q(y(h)).

We first check that z leads to feasible strategies. For each player k and arc a, we have z k a ≥ 0 since h ≤ δ 0 . We have moreover a∈A z k a = d k h for each player k. Hence, we have feasible strategies. We check now that z is an equilibrium for d h , by checking that it satisfies the condition of Proposition 2. Consider first a player k ∈ {i, j}. For every arc a ∈ S 0 , we have

c a (z a ) + z k a c a (z a ) = c a (x a ) + x k a c a (x a ) + d k h -d k β = π k + d k h -d k β
Consider now an arc a / ∈ S 0 . By definition of z k a , we have z k a = x k a = 0 (we still work with k ∈ {i, j}) and thus

c a (z a ) = c a (x a ) ≥ π j + h β ≥ π k + d k h -d k β ,
where the first equality holds since z a = x a , the first inequality since h ≤ δ 1 , and the last inequality for player i since π j ≥ π i , according to Lemma 3. The condition of Proposition 2 is satisfied for every player k ∈ {i, j}. Consider now a player k = {i, j}. We have

d k h = d k and thus z k a = x k a for all a ∈ A. Hence, we have c a (z a ) + z k a c a (z a ) = π k for a ∈ supp(z k ) and c a (z a ) ≥ π k for a /
∈ supp(z k ). Again, the Proposition 2 is satisfied, this time for the players k / ∈ {i, j}. Therefore, z is an equilibrium for the demand d h .

By uniqueness of the equilibrium, z = y(h).

The following lemma can be seen as a complement of Corollary 1.

Lemma 5. Suppose that |A| = 2 or K = 2. Let δ ∈ (0, d i ) and denote x = e(d), y = e(d δ ). Suppose that supp(x i ) = supp(y i ) = supp(x j ) = supp(y j ). If x = y, then {a ∈ A, y a < x a } = supp(x i ) and {a ∈ A, y a > x a } = supp(x j ) \ supp(x i ).

Proof. Assume that x = y, i.e. that there exists an arc a on which x a = y a (and thus there are at least two such arcs, since the total demand remains constant).

Suppose first that |A| = 2. Corollary 1 gives that {a ∈ A : y a < x a } ⊆ supp(x i ) and {a ∈ A : y a > x a } ⊆ supp(x j ). Since x = y, then there exists an arc α with y α < x α and an arc α such that y α > x α . Since supp(x i ) ⊆ supp(x j ) (Lemma 3), | supp(x j )| ≤ 2, and supp(x i ) = supp(x j ), we get the conclusion.

Suppose now that K = 2. Again, there exists an arc α with y α < x α . Corollary 1 implies that α ∈ supp(x i ), and thus according to the assumption, we also have α ∈ supp(y i ). Lemma 3 implies that supp(x i ) ⊆ supp(x j ) and supp(y i ) ⊆ supp(y j ). Proposition 2 implies thus that 2c a (x a ) + x a c a (x a ) = 2c α (x α ) + x α c α (x α ) for all a ∈ supp(x i ), by summing the two marginal costs for the two players i and j, and similarly that 2c a (y a ) + y a c a (y a ) = 2c α (y α ) + y α c α (y α ) for all a ∈ supp(y i ).

Since y α < x α and since u → 2c a (u) + uc a (u) is increasing, we get y a < x a for all a ∈ supp(x i ). Combining this with the inclusion {a ∈ A : y a < x a } ⊆ supp(x i ) given by Corollary 1, we get that {a ∈ A : y a < x a } = supp(x i ).

Take now an arc a in supp(x j ) \ supp(x i ) = supp(y j ) \ supp(y i ). It is necessarily such that y j a = y a ≥ x a = x j a . Suppose for a contradiction that y a = x a , then Proposition 4 gives x j a = y j a = 0, which contradicts the way a has been taken. Thus y a > x a . Conversely, take an arc a such that y a > x a . It is not in supp(y i ). Thus y j a = y a > 0, which implies that a ∈ supp(y j ). Since supp(y j ) = supp(x j ), we get the conclusion. 5.2.2. Lemmas about the derivate of the social cost. Given z = R A + and an arc a ∈ A, we define the vector z -a ∈ R A\{a} + by z -a = (z b ) b =a . Then for every arc a ∈ A, we consider the function Q a : R

A\{a} + → R + defined by Q a (z -a ) = a =a z b c b (z b ) +   d - b =a z b   c a   d - b =a z b   , where d = k∈[K] d k is the total demand. Let x ∈ R A + be such that a∈A x a = d. We have then Q a (x -a ) = Q( x) and for any b = a (2) ∂Q a ∂z b (x -a ) = c b (x b ) + x b c b (x b ) -c a (x a ) + x a c a (x a ) .
Denote y(h) = e(d h ).

Lemma 6. Let h ∈ (0, d i ]. Suppose that supp(y i (h)) = supp(y j (h)). Let a ∈ supp(y i (h)) and b ∈ supp(y j (h)) \ supp(y i (h)). We have then Suppose first that |A| = 2. If we are under the condition of Lemma 4, the conclusion is immediate. We can thus assume that supp(x i ) = supp(y i (δ)) = supp(x j ) = supp(y j (δ)). Since there are only two arcs, there is an arc a ∈ supp(x i ) and an arc b ∈ supp(x j ) \ supp(x i ). We have Q( y(h)) = Q a (y b (h)) (there are only two arcs in A). A first application of Corollary 1 shows that supp(y i (h)) ⊆ supp(x i ). A second application shows that supp(y i (δ)) ⊆ supp(y i (h)). Since it is assumed that supp(x i ) = supp(y i (δ)) for all h ∈ [0, δ], we get that supp(y i (h) = supp(x i ) for all h ∈ [0, δ]. Similarly, supp(y j (h) = supp(x j ) for all h ∈ [0, δ]

Lemma 5 shows that the total flow on b increases when h increases (b is in supp(y j (h)) \ supp(y i (h))). The map h → y b (h) is thus an increasing map on [0, δ]. According to Lemma 6, we have

∂Q a ∂z b (y b (h)) < 0. Thus Q a is decreasing on [y b (0), y b (δ)]. Therefore the map h → Q( y(h)) is decreasing on [0, δ].
Suppose now that K = 2 and that the cost functions are twice continuously differentiable. If we are under the condition of Lemma 4, the conclusion is immediate. We can thus assume that supp(x i ) = supp(y i (δ)) = supp(x j ) = supp(y j (δ)). Again, supp(y i (h)) and supp(y j (h)) are constant for all h ∈ [0, δ].

Choose h 0 , h ∈ (0, δ), with h = h 0 . Let a ∈ supp(y i (h 0 )) as in Lemma 7. Lemma 5 shows that y b (h) -y b (h 0 ) and h -h 0 have opposite signs when b ∈ supp(y i (h 0 )) \ {a} and same sign when b ∈ supp(y j (h 0 )) \ supp(y i (h 0 )). Thus,

b∈supp(y

i (h 0 ))\{a} ∂Q a ∂z b y -a (h 0 ) y b (h) -y b (h 0 ) h -h 0 ≤ 0 for all h ∈ (0, δ), and b∈supp(y j (h 0 ))\supp(y i (h 0 )) ∂Q a ∂z b y -a (h 0 ) y b (h) -y b (h 0 ) h -h 0 ≤ 0
for all h ∈ (0, δ) (with the help of Lemma 6). This sum over arcs b not in supp(y j (h 0 )) is zero since y b (h) = y b (h 0 ) = 0. Besides, the cost functions being differentiable and since there are only two players, we can apply Theorem 1: h → y(h) is differentiable in a neighborhood of h 0 . Using the above inequalities, we get that the derivative of h

→ Q( y(h)) is nonpositive at h 0 : b =a ∂Q a ∂z b (y -a (h 0 ))y b (h 0 ) = lim h→h 0 b =a ∂Q a ∂z b (y -a (h 0 )) y b (h) -y b (h 0 ) h -h 0 ≤ 0.
Since this is true for any h 0 ∈ (0, δ), we get the conclusion: h → Q( y(h)) is nonincreasing on [0, δ] (using the continuity of h → y(h) ensured by Proposition 3 to get the conclusion for the boundary of [0, δ]).

Discussion

6.1. e(•) is not differentiable everywhere. The application e(•) is not differentiable everywhere as shown by the following example, inspired from [START_REF] Hall | Properties of the equilibrium state in transportation networks[END_REF]. Consider a parallel-link graph with two arcs a and b and only one player with demand d. Suppose that the cost functions are c a (x) = x + 1 and c b (x) = x.

A direct calculation gives that at equilibrium x a = 0 and x b = d when 0 ≤ d ≤ 1 2 , and x a = 2d-1 4 , x b = 2d+1 4 when d ≥ 1 2 . Hence e is not differentiable at the point d = 1 2 . 6.2. When there are three arcs and three players. Theorems 3 is not valid when there are three arcs and three players. We introduce the example of [START_REF] Huang | Collusion in atomic splittable routing games[END_REF], for which the social cost at equilibrium increases after a transfer.

Consider a parallel-link graph with three arcs a, b, and c, and three players 1, 2, and 3. Suppose that the players have the same cost functions c a (x) = 20x + 5000, c b (x) = x 2 + 500, and c c (x) = x 11 .

When the vector of demand is d = (0.1, 20.9, 200), the (rounded) flows at equilibrium are in the following table and the equilibrium cost is 1 558 627. After the transfer of δ = 0.1 from player 1 to player 2, we have demands d δ = (0, 21, 200). The (rounded) flows at equilibrium are in the following table and the social cost at equilibrium is 1 558 633. In particular, the cost has increased after the transfer. Moreover, the part regarding players that keep the same demand in Proposition 4 (more general result than Theorem 2) does not hold either, since (y 3 a -x 3 a )(y a -x a ) > 0, where x (resp. y) is the equilibrium flow before (resp. after) the transfer. However Theorem 2 still holds: on each arc the flow of player 1 decreases or remains constant equal to zero, and the flow of player 2 increases or remains constant equal to zero. 6.3. When we allow player-specific cost functions. Another question is whether Theorem 3 remains valid when we allow player-specific cost functions. The answer is 'no', as shown by the following example.

Consider a parallel-link graph with two arcs a and b, and two players 1 and 2. Let the cost on arc b for player 1 (resp. on arc a for player 2) be prohibitively high, in such a way that at equilibrium, for every repartition of the demand, player 1 (resp. 2) puts all his demand on arc a (resp. b). Let the costs be c 1 a (x) = 2x, c 2 b (x) = x. If d 1 = 3 and d 2 = 2, the social cost at equilibrium is 8, while after a transfer of 1, i.e. if d 1 = 4 and d 2 = 1, the social cost at equilibrium is 9. The result of Theorem 3 does not hold if we allow player-specific costs.

  and d k δ = d k for k = i, j. Proposition 4. Suppose that |A| = 2 or K = 2, and let x = e(d) and y = e(d δ ). Let a ∈ A.

  Finally, since u b ≥ v b and since c k b and c k b are increasing, we have u k b < v k b . Proof of Proposition 4. Let us first suppose that x = y. Since d i > d i

  It gives that x b = y b = 0 or x b < y b . In particular when applied with b = β, we get = . Since x b ≥ y b , we have x b ≥ y b . For every arc b such that x b ≤ y b , apply Lemma 2 with a = β, u = y, v = x, and k = . It gives that x b = y b = 0 and y b < x b . Since x b ≤ y b , we have x b ≤ y b .

  ∂Q a ∂z b (y -a (h)) < 0. Proof. Let x = y(h). Since a ∈ supp(x i ), we have c b (x b ) ≥ c a (x a ) + x i a c a (x a ) > c a (x a ). Consider the set I b of players k such that b ∈ supp(x k ). The set I b is nonempty and for every player k ∈ I b we have, according to Proposition 2, c b(x b ) + x k b c b (x b ) ≤ c a (x a ) + x k a c a (x a ). By summing over these players, we get|I b |c b (x b ) + x b c b (x b ) ≤ |I b |c a (x a ) a (x a ) < |I b |c a (x a ) + x a c a (x a ).Since |I b | ≥ 1 and c b (x b ) > c a (x a ), we have c b (x b ) + x b c b (x b ) < c a (x a ) + x a c a (x a ), and thus, using Equation (2), we have ∂Q a ∂z b (x -a ) < 0. Lemma 7. Suppose that K = 2. Let h ∈ (0, d i ]. There always exists an arc a ∈ supp(y i (h)) such that ∂Q a ∂z b (y -a (h)) ≥ 0 for all b ∈ supp(y i (h)) \ {a}.Proof. Let x = y(h). Pick an arc a ∈ arg max{c α (x α ) : α ∈ supp(x i )}.Let then b ∈ supp(x i ) \ {a}. Lemma 3 implies that supp(x i ) ⊆ supp(x j ). Thus a and b are in supp(x j ). Summing the marginal costs for players i and j, we get 2c a (x a ) + x a c a (x a ) = 2c b (x b ) + x b c b (x b ). According to the definition of a, we have c a (x a ) ≥ c b (x b ) and then c a (x a ) + x a c a (x a ) ≤ c b (x b ) + x b c b (x b ). Thus, using Equation (2), we have ∂Q a ∂z b (x -a ) ≥ 0. 5.3. Proof of Proposition 5. Proof of Proposition 5. Let x = e(d) and denote y(h) = e(d h ).