A 2D discrete crowd movement model: pedestrian dynamics - crowd-structure interaction

Bachar Kabalan ${ }^{1}$, Pierre Argoul ${ }^{1}$, Gwendal Cumunel ${ }^{1}$, Silvano Erlicher ${ }^{2}$, Zoi Christoforou ${ }^{3}$ ${ }^{1}$ Laboratoire Navier UMR 8205 IFSTTAR-CNRS-ENPC, ${ }^{2}$ EGIS Industries, ${ }^{3}$ LVMT UMR T 9404 IFSTTAR-ENPC-UPEM

INTRODUCTION: Modeling crowd movement

- Optimize the design and operation of a facility : safe and efficient circulation - effective emergency evacuation
- Pedestrians might interact with a vibrating structure: phase synchronization phenomenon (footbridges)

Objectives

Develop a 2D discrete model

- Consider 3 degrees of freedom for the movement of a pedestrian
- Navigation strategies
- At-a-distance pedestrian interactions
- Crowd-structure interaction

Methodology

- Model crowd movement on a rigid floor
- Validate the model
- Model crowd-structure interaction for vibrating floors

The 2D discrete model

- Granular media- Non smooth mechanics (Frémond, 1995/ Dal Pont et Dimnet, 2008)
- Detect contacts: Delaunay triangulation
- Manage contacts : prevent interpenetration and define the nature of the collision using a pseudo-potential of dissipation
- Determine the after collision velocity v^{+}as a function of the before collision velocity v

- Adaptation to pedestrian dynamics
- Choosing a navigation strategy:
- The shortest path (Eikonal equation)
- The shortest path (Eikonal equation + voronoi diagram)
- Introduction of the navigation strategy into the granular model

$$
\underline{f}_{i}^{a}(t)=m_{i} \frac{\left\|\underline{\underline{u}}_{d, i}\right\| \underline{e}_{d, i}(t)-\dot{\underline{u}}_{i}(t)}{\tau_{i}}
$$

- Management of at-a-distance interactions
- a repulsion force

$$
\vec{F}_{i j}^{\text {rep }}=A \exp \left[\left(r_{i j}-d_{i j}\right) / B\right] \vec{n}_{i j}
$$

- a vision field

Validation of the 2D discrete model

Reproducing self-organizational phenomena

- Pedestrian arch formation
- Lane formation in counter flow
- Funnel shape in front of the bottleneck
- Evacuation time - flow values

A discrete model for crowd-structure interaction

- Pedestrian-bridge dynamic interaction (lateral vibrations)
- The equation describing the dynamic behaviour of the footbridge projected onto the lateral mode

$$
M_{s t r} \ddot{U}_{y}+C_{s t r} \dot{U}_{y}+K_{s t r} U_{y}=\sum_{i=1}^{N} \psi_{1}\left(q_{i}^{\chi}\right) F_{i}^{y}(t)
$$

- The dynamic equation for pedestrian i

$$
\begin{aligned}
F_{i}^{y}(t)= & -m_{i} \psi_{1}\left(q_{i}^{x}\right) \ddot{U}_{y}(t)-m_{i} \ddot{u}_{i}^{t r, y}(t)+\left|F_{i}^{o s c, T}\right| \sin \left(2 \phi_{i}(t)\right) \sin \left(\theta_{i}(t)\right) \\
& +\left|F_{i}^{\text {occ,N }}\right| \sin \left(\phi_{i}(t)\right) \cos \left(\theta_{i}(t)\right)
\end{aligned}
$$

- Phase equation for each pedestrian : the Kuramoto equation

- Analytical study : Determining the critical number N_{c}, the post-critical amplitude of osccilations $A_{y}^{p c}$ and the synchronization frequency $\omega_{\text {syn }}$

Applications to real situations

- Estimating the dwell time of the trains in the Noisy-Champs station (Zoi Christoforou)

- Numerical simulations of the north span of the Milliennium Bridge

Ongoing work - perspectives

- Non deformable agents (represented by circular disks)
- A sensibility analysis of the different input parameters using a Krigeage model
- Model the turbulence phenomenon using a cohesion factor
- Study crowd structure interaction by representing pedestrians by self-entrained oscillators

