

A 2D discrete crowd movement model: pedestrian dynamics - crowd-structure interaction

Bachar Kabalan¹, Pierre Argoul¹, Gwendal Cumunel¹, Silvano Erlicher², Zoi Christoforou³ ¹ Laboratoire Navier UMR 8205 IFSTTAR-CNRS-ENPC, ² EGIS Industries, ³ LVMT UMR T 9404 IFSTTAR-ENPC-UPEM

INTRODUCTION: Modeling crowd movement

- Optimize the design and operation of a facility : safe and efficient circulation effective emergency evacuation
- Pedestrians might interact with a vibrating structure: phase synchronization phenomenon (footbridges)

Objectives

Develop a 2D discrete model

- Consider 3 degrees of freedom for the movement of a pedestrian
- Navigation strategies
- At-a-distance pedestrian interactions
- Crowd-structure interaction

A discrete model for crowd-structure interaction

- Pedestrian—bridge dynamic interaction (lateral vibrations)
 - The equation describing the dynamic behaviour of the footbridge projected onto the lateral mode

$$M_{str}\ddot{U}_{y}+C_{str}\dot{U}_{y}+K_{str}U_{y}=\sum_{i=1}^{N}\psi_{1}(q_{i}^{x})F_{i}^{y}(t)$$

• The dynamic equation for pedestrian *i* $F_i^y(t) = -m_i\psi_1(q_i^x)\ddot{U}_y(t) - m_i\ddot{u}_i^{tr,y}(t) + |F_i^{osc,T}|\sin(2\phi_i(t))\sin(\theta_i(t))|$ + $|F_i^{osc,N}|sin(\phi_i(t))cos(\theta_i(t))|$

Methodology

- Model crowd movement on a rigid floor
- Validate the model
- Model crowd-structure interaction for vibrating floors

The 2D discrete model

- Granular media- Non smooth mechanics (Frémond, 1995/ Dal Pont et Dimnet, 2008)
 - Detect contacts: Delaunay triangulation
 - Manage contacts : prevent interpenetration and define the nature of the collision using a pseudo-potential of dissipation
 - Determine the after collision velocity v^+ as a function of the before collision velocity v^-
- Adaptation to pedestrian dynamics
 - Choosing a navigation strategy:
 - The shortest path (Eikonal equation) • The shortest path (Eikonal equation + voronoi diagram)

 $\underline{\dot{u}}_{i}(t)$

Pécol et al.

 $\tau_i \underline{f}_i^a(t)$

• Phase equation for each pedestrian : the Kuramoto equation

 $\phi_i(t) = \omega_i + \epsilon_i A_v(t) \psi_1(q_i^x) \sin(\psi_{str}(t) - \phi_i(t) + \alpha)$

• Analytical study : Determining the critical number N_c , the post-critical amplitude of osccilations A_v^{pc} and the synchronization frequency ω_{syn}

Applications to real situations

• Estimating the dwell time of the trains in the Noisy-Champs station (Zoi Christoforou)

• Introduction of the navigation strategy into the granular model

 $\underline{f}_{i}^{a}(t) = m_{i} \frac{\parallel \underline{u}_{d,i} \parallel \underline{e}_{d,i}(t) - \underline{\dot{u}}_{i}(t)}{\tau_{i}}$

- Management of at-a-distance interactions
 - a repulsion force

 $ec{F}_{ii}^{rep} = Aexp[(r_{ij} - d_{ij})/B]ec{n}_{ij}$

• a vision field

Validation of the 2D discrete model

Reproducing self-organizational phenomena Pedestrian arch formation

- Lane formation in counter flow
- Funnel shape in front of the bottleneck
- Evacuation time flow values

• Numerical simulations of the north span of the Milliennium Bridge

Ongoing work - perspectives

- Non deformable agents (represented by circular disks)
- A sensibility analysis of the different input parameters using a Krigeage model
- Model the turbulence phenomenon using a cohesion factor
- Study crowd structure interaction by representing pedestrians by self-entrained oscillators