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Abstract: In the present paper, we propose a control strategy for the stabilization of a class of nonlinear
cascade systems with input-dependent saturation. The saturation constraint considered is a constraint of
order: the control input of one subsystem has to be smaller than the control input of the preceding subsystem
of the cascade structure. This class of systems include interconnected reactors device such as multi-stage
continuous fermentors. The control law is designed on the basis of a specific Lyapunov function previously
introduced by R.Antonelli and A.Astolfi in [1]. It guarantees the stability of the closed-loop system, the
convergence of the state variable to the set-point and the fulfillment of the saturation constraint all along
the trajectories of the closed-loop system. The approach is applied, in numerical simulation, to a concrete
example of a series of interconnected continuous bioreactors.
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1 INTRODUCTION

When working on real processes, whether they are
physical, chemical or biological, there are often some
technical constraints that we have to take into account
for the design of the control strategies. One classi-
cal constraint is the saturation of the inputs, which
often refers to the physical limitation of the actua-
tors. Such kind of constraint has been widely studied
in the literature for linear systems, and several ap-
proaches have been developed in that case. Some of
these approaches try to compensate the effect of the
saturation on the behavior of the closed-loop system,
as the anti-windup techniques [2]; other ones directly
include the saturation in the initial model before de-
signing the control law as it is the case, for example, of
methods based on polytopic representation of the sat-
uration [3]. However, in the case of nonlinear systems,
the problem is more complex which explains why few
research works have been published for the moment. In
these works, the authors generally try to adapt control
strategies initially developed for linear systems to non-
linear ones. It has lead to some interesting contribu-
tions about feedback linearization control for nonlinear
systems with input constraints [4, 5, 6, 7]. However,
input-output linearization is not always possible and
can be less efficient than other more advanced control
strategies. So, what can be done in that case? One
alternative can be found in the really interesting pa-
per written by R.Antonelli and A.Astolfi whose title is
“Continuous stirred tank reactors: easy to stabilize?”
[1]. In this paper, the authors propose a control strat-

egy to stabilize CSTR, which is based on a specific
Lyapunov function in which the bounds of the control
inputs explicitly appear. The control law designed on
the basis of this Lyapunov function, guarantees the
stability of the closed-loop system, the convergence of
the state variable to the set-point and the fulfillment
of the saturation constraint all along the trajectories of
the closed-loop system. The only required hypothesis
is that the set-point has to be the single and globally
asymptotically stable equilibrium point of the system
for a given constant value of the input, which fulfills
the saturation constraint. But, as always with Lya-
punov based control, a Lyapunov function has also to
be known, which is the main difficulty of the approach.
Even if the paper of Antonelli and Astolfi is devoted
to the control of CSTR, the approach used to design
the control law is general and can be applied to a wide
class of systems, for both stabilization [8] or design of
adaptive control laws [9].
In the present paper, we will extend the approach pre-
sented in [1] to a class of nonlinear cascade systems
with input dependent saturations. The saturation con-
straint considered is a constraint of order: the control
input of one subsystem has to be smaller than the con-
trol input of the preceding one (in the cascade struc-
ture). This class of systems include interconnected
continuous reactors device such as multi-stage continu-
ous fermentor (MSCF) [10, 11]. Indeed, the input flow
rates of each reactor of the MSCF, which are taken as
control inputs, are constrained, the input flow rate of
one reactor being necessarily smaller than the output



flow rate of the preceding one.
The paper is organized as follows. In section 2, we
first recall the result presented in [1] and propose an
extension to a class of multi-input nonlinear systems.
Then, the case of cascade systems with input satura-
tion constraint of order type is considered. In section
3, the control strategy is applied on a concrete exam-
ple of a series of interconnected continuous bioreactors.
Some numerical simulations are given to highlight the
efficiency of the method.

2 CONTROL of CASCADE SYSTEMS
with INPUT SATURATION CON-
STRAINT of ORDER TYPE

In this section, we propose a control strategy for the
stabilization of a class of nonlinear cascade systems
with input-dependent saturation of order type. This
control strategy is based on an extension of a result
presented in [1], which is recalled here-after.

Lemma 1 [1] Consider the system

dξ

dt
= φ(ξ) + ψ(ξ)v, (1)

where ξ(t) ∈ Rn is the state, v(t) ∈ R is the control,
and φ, ψ : Rn 7→ Rn. Suppose that there exist a con-
stant control v = v∗ and a positive definite and radially
unbounded function V (ξ) such that:

φ(0) + ψ(0)v∗ = 0, (2)

∀ξ 6= 0,
dV

dt
=
∂V

∂ξ
φ(ξ) +

∂V

∂ξ
ψ(ξ)v∗ < 0. (3)

Then, for any v and v such that v < v∗ < v, there
exists a dynamic control law, which does not require
the knowledge of v∗, namely v = θ with:

dθ

dt
= k

∂V

∂ξ
ψ(ξ)(θ − v)(θ − v), (4)

with θ(0) ∈ (v, v) and k > 0, such that the closed
loop system (1)-(4) is stable in the sense of Lyapunov,
the variable ξ converges to zero whatever the initial
condition ξ(0) and, along the trajectories of the closed
loop system, θ(t) = v(t) ∈ (v, v), ∀t > 0.

The result presented in lemma 1 is suitable for non-
linear input-affine systems with constant input satu-
ration. In lemma 2, we present an extension of this
result to a class of multi-input nonlinear systems.

Lemma 2 Consider the system

dξj
dt

= φj(ξ) + ψj(ξ)

j∏
k=1

vk, j = 1 : n (5)

where ξ =
(
ξT1 , . . . , ξ

T
n

)T
with ξj(t) ∈ Rnj is the state,

vj(t) ∈ R, j = 1 : n are the control inputs, and φj , ψj :
RN 7→ Rnj with N =

∑n
k=1 nk. Let Ω be an invariant

set of (5) to which belongs 0. Suppose that there exist

some constant control inputs vj = v∗j , j = 1 : n, and a
function V (ξ), positive definite in Ω and such that:

∀j = 1 : n, φj(0) + ψj(0)

j∏
k=1

v∗k = 0; (6)

dV

dt
=

n∑
j=1

∂V

∂ξj

[
φj(ξ)+ψj(ξ)

j∏
k=1

v∗k

]
60 in Ω; (7)

and

{
ξ ∈ Ω such that

dV

dt
= 0

}
= {0} . (8)

Then, for any vj and vj such that vj < v∗j < vj, there
exists a dynamic control law, which does not require
the knowledge of v∗j , namely vj = θj with σj(θj) =
kj(θj − vj)(θj − vj) and:

dθn
dt

= σn(θn)
∂V

∂ξn
ψn(ξ), (9)

dθj 6=n
dt

= σj(θj)
[∂V
∂ξj

ψj(ξ) +

n∑
l=j+1

∂V

∂ξl
ψl(ξ)

l∏
k=j+1

θk

]
,

with θj(0) ∈ (vj , vj) and kj > 0, such that the

closed loop system (5)-(9) is asymptotically stable in
the sense of Lyapunov, the variable ξ converges to 0
whatever the initial condition ξ(0) ∈ Ω and, along the
trajectories of the closed loop system, θj(t) = vj(t) ∈
(vj , vj), ∀t > 0.

Proof. Consider the function W (ξ, θ) = V (ξ) +∑n
j=1

∏j−1
k=0 v

∗
k

(
ωj(θj)− ωj(v∗j )

)
with v∗0 = 1, and

where:

ωj(θ) = ln((vj−θj)τj/kj )− ln((θj−vj)(τj+1)/kj ) (10)

with kj > 0 and τj =
v∗j−vj
vj−vj < 0.

Note that τj + 1 =
v∗j−vj
vj−vj > 0. More-

over, the function W is positive in Ωξθ ={
(ξ, θ) ∈ Ω× Rn|vj < θj < vj , ∀j = 1 : n

}
, and

such that W (ξ, θ) = 0 if and only if ξ = 0 and
θj = v∗j , ∀j = 1 : n. Indeed we have:
• V is positive definite in Ω and for all j = 1 : n, the
function ωj is such that:

∀θj ∈ R,
∂ωj
∂θj

=
1

kj

θj − v∗j
(vj − θj)(θj − vj)

< 0 if vj < θj < v∗j < vj
= 0 if vj < θj = v∗j < vj
> 0 if vj < v∗j < θ < vj .

• So we have, ∀θj ∈ (vj , vj)\
{
v∗j
}
, ωj(θj)−ωj(v∗j )>0,

and W (ξ, θ) = 0⇔ V (ξ) = 0 and ωj(θj) = ωj(v
∗
j ), ∀j

⇔ ξ = 0 and θj = v∗j , ∀j.



Consequently (with vj = θj , and the control law de-
fined by (9)):

dW

dt
=

n∑
j=1

(
dξj
dt

∂W

∂ξj
+
dθj
dt

∂W

∂θj

)

=

n∑
j=1

(φj(ξ) + ψj(ξ)

j∏
p=1

v∗p)
∂V

∂ξj

+
[ 1∏
k=1

θk−θ1
1−1∏
p=0

v∗p

]
︸ ︷︷ ︸

=0

∂V

∂ξ1
ψ1(ξ)+

n∑
j=2

Aj(θ, v
∗)
∂V

∂ξj
ψj(ξ)

with, ∀j = 2 : n, Aj(θ, v
∗) :=

j∏
k=1

θk − θj
j−1∏
p=0

v∗p

+

j−1∑
l=1

[
j∏

k=l+1

θk(v∗l − θl)
l−1∏
p=0

v∗p

]
.

We will now show, by recurrence, that, ∀j = 2 :
n, Aj(θ, v

∗) = 0. First, for j = 2, we have:

A2(θ, v∗) = θ1θ2 − θ2v∗1 +

2∏
k=2

θk(v∗1 − θ1)

0∏
p=0

v∗p

= θ [θ1 − v∗1 + (v∗1 − θ1)v∗0 ]

= 0 (because v∗0 = 1).

Then, suppose that Aj−1(θ, v∗) = 0; we have:

Aj(θ, v
∗)=

j∏
k=1

θk−θj
j−1∏
p=0

v∗p+θj(v
∗
j−1−θj−1)

j−2∏
p=0

v∗p

+

j−2∑
l=1

[
j∏

k=l+1

θk(v∗l − θl)
l−1∏
p=0

v∗p

]

= θj

( j−1∏
k=1

θk −
j−1∏
p=0

v∗p + v∗j−1

j−2∏
p=0

v∗p︸ ︷︷ ︸
=0

−θj−1
j−2∏
p=0

v∗p

)

+θj

j−2∑
l=1

[
j−1∏
k=l+1

θk(v∗l −θl)
l−1∏
p=0

v∗p

]
=θjAj−1(θ, v∗)=0.

So, finally, dWdt =
∑n
j=1(φj(ξ)+ψj(ξ)

∏j
p=1 v

∗
p) ∂V∂ξj 6 0

in Ω. As
{
ξ ∈ Ω such that dV

dt = 0
}

= {0}, we ob-
tain the first part of the lemma by application of
the Lasalle’s invariance theorem. By definition of
the control law dynamics (9), and because θj(0) ∈
(vj , vj), ∀j = 1 : n, we have θj(t) = vj(t) ∈ (vj , vj) for
all j = 1 : n and for all t > 0. �

Remark 1 Note that, contrary to lemma 1, the func-
tion V is not assumed to be radially unbounded in
lemma 2 and an invariant set Ω has been introduced.
This choice was made because of the example of ap-
plication presented in this paper. However, as for all
Lyapunov based control techniques, variations on this
result can easily be formulated.

Let us now consider a class of nonlinear cascade sys-
tems, composed of n sub-systems connected in series,
that is some systems of the form:

dxj
dt

= fj(xj , xj−1) + gj(xj , xj−1)uj , j = 1 : n (11)

with, for all j = 1 : n, xj ∈ Rnj , nj ∈ R, uj ∈ R, and
fj , gj : Rj×Rj−1 → Rj . We assume that the inputs of
the sub-systems are constrained in the following way:

u < un < un−1 < . . . < u1 < u, (12)

with u, u ∈ R. An example of such a system is given
in section 3.

Proposition 1 Consider the system (11). Let denote

x =
(
xT1 , . . . , x

T
n

)T
, u = (u1, . . . , un)

T
and Ω an in-

variant set of (11) to which belongs 0. Suppose that

there exist a constant control input u∗ = (u∗1, . . . , u
∗
n)
T

which fulfills the constraint (12), and a function V (x),
positive definite in Ω such that:

∀j = 1 : n, fj(0, 0) + gj(0, 0)u∗j = 0;

dV

dt
=

n∑
j=1

∂V

∂xj

[
fj(xj , xj−1) + gj(xj , xj−1)u∗j

]
60 in Ω;

and

{
x ∈ Ω such that

dV

dt
= 0

}
= {0} ,

with φj(x) = fj(xj , xj−1) + gj(xj , xj−1)u, (13)

ψj(x) = gj(xj , xj−1)(u− u). (14)

Then, there exists a dynamic control law, which does
not require the knowledge of u∗j , namely uj = (u −
u)
∏j
k=1 θk + u with σj(θj) = kj(θj − 1)θj and

dθn
dt

= σn(θn)
∂V

∂xn
ψn(x), (15)

dθj 6=n
dt

= σj(θj)
[ ∂V
∂xj

ψj(x)+

n∑
l=j+1

∂V

∂xl
ψl(x)

l∏
k=j+1

θk

]
,

with θj(0) ∈ (0, 1) and kj > 0, such that the closed loop
system (11)-(15) is asymptotically stable in the sense
of Lyapunov, the variable x converges to 0 whatever the
initial condition x(0) ∈ Ω and, along the trajectories of
the closed loop system, u(t) fulfills the constraint (12)
∀t > 0.

Proof. The result of proposition 1 is obtained by ap-
plication of lemma 2 to the cascade system (11), after
the following change of variables:

v1 =
u1 − u
u− u

; vj =
uj − u
uj−1 − u

, ∀j = 2 : n, (16)

which leads to uj = (u − u)
∏j
k=1 vk + u, ∀j = 1 : n.

�



3 EXAMPLE OF APPLICATION

3.1 Model of the system

Consider a system composed of n reactors connected
in series, in which some micro-organisms X (bacteria,
yeasts, etc.) grow on a given substrate S, with a yield
coefficient k:

S −→ kX. (17)

The output flow rate of each reactor is equal to its in-
put flow rate, in such way that the volumes νj , j =
1 : n of the reactors remain constant. The first reactor
is fed with a solution only containing some substrate.
The other reactors are fed from the output of the previ-
ous one without any external addition. The input flow
rate Qj , j = 1 : n of the reactors are controlled inde-
pendently by some piston pumps, the only constraint
(coming from the cascade structure of the device) be-
ing that the input flow rate Qj of the jth reactor has to
be lower than the output flow rate Qj−1 of the (j−1)th

reactor:

Qm < Qn < Qn−1 < . . . < Q2 < Q1 < QM , (18)

with Qm and QM the minimal and maximal flow rates
which can be applied. An example of such kind of
system can be found in [10, 11].
The classical model for such a system is given by, ∀j =
1 : n:

dXj

dt
= µ(Sj)Xj +Dj(Xj−1 −Xj) (19)

dSj
dt

= −kµ(Sj)Xj +Dj(Sj−1 − Sj), (20)

with Xj and Sj the biomass and substrate concentra-
tions in the jth reactor, X0(= 0) and S0 the biomass
and substrate concentrations of the medium feeding
the first reactor, Dj =

Qj

νj
the dilution rate of the jth

reactor, k the yield coefficient, and µ : S 7→ µ(S) the
growth function of the micro-organisms that we as-
sume to be increasing on R+, and more specifically of
the Monod form, that is:

µ(S) =
mS

a+ S
, with m, a > 0. (21)

We assume that, before applying the control law, the
system is at equilibrium, and we denote Q0

j the initial
constant input values which are such that:

Qm < Q0
n < Q0

n−1 < · · · < Q0
2 < Q0

1 < QM . (22)

If we look at the total amount of matter kXj + Sj in
the jth reactor, we note that:

k
dXj

dt
+
dSj
dt

= Dj

[
(kXj−1+Sj−1)−(kXj+Sj)

]
. (23)

At equilibrium, we therefore have ∀j, kX∗j + S∗j =
kX0+S0(= S0). Moreover, if kXj(0)+Sj(0) = S0, ∀j,
then, ∀t > 0, ∀j, kXj(t) + Sj(t) = S0 and system (19-
20) can be simplified in: ∀j = 1 : n, ∀t > 0,

dSj
dt

= −µ(Sj)(S0 − Sj) +Dj(Sj−1 − Sj). (24)

3.2 Stability analysis

System (24) has several properties which will be given
in the sequel without being proved, for lack of place.
First, we can show that

Ω := {S ∈]0, S0[n, such that Sj 6 Sj−1} (25)

is a positive invariant set for (24).
Because µ is an increasing function, we can also show
that, for any values

{
Q∗j
}
j=1:n

of {Qj}j=1:n which ful-

fills the constraint (18), there exists a unique equilib-
rium point S∗ = (S∗1 , ...S

∗
n)T ∈ Ω.

Let us now consider the functions Vj :]0, S0[7→ R+, j =
1 : n, defined as follows:

V1(S1) =

∫ S1

S∗
1

s− S∗1
(S0 − s)2

ds; (26)

∀j = 2 : n, Vj(Sj) =

∫ Sj

S∗
j

s− S∗j
S0 − s

ds. (27)

For all j = 1 : n, we can easily show that, ∀Sj ∈
]0, S0[\{S∗j }, Vj(Sj) > 0, and Vj(Sj) = 0 ⇔ Sj = S∗j .
After calculations, we obtain, ∀j = 2 : n, ∀S ∈ Ω and

with Dj = D∗j :=
Q∗

j

νj
:

dVj
dt

=− (µ(Sj)− µ(S∗j ))(Sj − S∗j )

−
D∗j (S0 − S∗j−1)

(S0 − Sj)(S0 − S∗j )
(Sj − S∗j )2

+
D∗j

S0 − Sj
(Sj−1 − S∗j−1)(Sj − S∗j ),

and
dV1
dt

=− (µ(S1)− µ(S∗1 ))(S1 − S∗1 )
1

S0 − S1
.

By use of the classical inequality verified for any a, b, γ:
ab < 1

2 (γ2a2 + 1
γ2 b

2), and because D∗j <
νj-1
νj
D∗j−1 and

Sj < Sj−1 which implies 1
S0−Sj

< 1
S0−Sj−1

, we then

get, for any γj , j = 1 : n:

dVj
dt
6

D∗j
S0 − Sj

(
1

2

1

γ2j
−
S0 − S∗j−1
S0 − S∗j

)
(Sj − S∗j )2

− (µ(Sj)− µ(S∗j ))(Sj − S∗j )

+
γ2j

νj−1

νj
D∗j−1

2(S0 − Sj−1)
(Sj−1 − S∗j−1)2.

Consider now the function V (S) =
∑n
j=1 αjVj(Sj)

with αj > 0. We have:

dV

dt
6
[α2γ

2
2D
∗
2

2
(S1−S∗1 )−α1(µ(S1)−µ(S∗1 ))

]S1−S∗1
S0−S1

−
n∑
j=2

αj (µ(Sj)−µ(S∗j ))(Sj−S∗j )︸ ︷︷ ︸
>0 because µ is increasing

+
n−1∑
j=2

[
αj

(
1

2γ2
j
− S0−S∗

j−1

S0−S∗
j

)
+
αj+1γ

2
j+1νj

2νj+1

]
D∗j (Sj−S∗j )2

S0−Sj

+
αnD

∗
n

S0 − Sn

(
1

2

1

γ2n
−
S0 − S∗n−1
S0 − S∗n

)
(Sn − S∗n)2



Let us consider the following parameters γj , j = 2 : n:

γ2j =
S0 − S∗j
S0 − S∗j−1

, ∀j = 2 : n, (28)

and αj , j = 1 : n, with Aj , j = 2 : n some given
positive constants:

αn = 2An
S0 − S∗n
S0 − S∗n−1

νnS0

Qm
, (29)

αi =
(

2Aj
νjS0

Qm
+
γ2j+1αj+1νj

νj+1

) S0 -S∗j
S0 -S∗j−1

, j=2:n, (30)

α1 =
(
A1S0 +

α2γ
2
2QM

2ν2

) (a+ S0)(a+ S∗1 )

ma
(31)

We then have, ∀j = 2 : n:

D∗j
S0−Sj

[
αj

(
1

2

1

γ2j
−
S0−S∗j−1
S0−S∗j

)
+
αj+1γ

2
j+1νj

2νj+1

]
6−Aj ,

[α2γ
2
2D
∗
2

2
−α1

(µ(S1)−µ(S∗1 ))

S1 − S∗1

] 1

S0−S1
6−A1,

and
αnD

∗
n

S0 − Sn

(
1

2

1

γ2n
−
S0 − S∗n−1
S0 − S∗n

)
6−An.

So, finally, we have:

dV

dt
6 −

n∑
j=2

αj(µ(Sj)−µ(S∗j ))(Sj−S∗j )−
n∑
j=1

Aj(Sj−S∗j )2,

that is, dVdt 6 0, ∀S ∈ Ω, and:{
S ∈ Ω such that

dV

dt
= 0

}
= {S∗} . (32)

3.3 Control design

The control law is obtained by application of proposi-
tion 1 to the system (24) with Ω given by (25) and V
defined by:

V (S) = α1

∫ S1

S∗
1

s− S∗1
(S0 − s)2

ds+

n∑
j=2

αj

∫ Sj

S∗
j

s− S∗j
S0 − s

ds.

This control law ensures the asymptotic stability of the
closed-loop system, the convergence of S to the set-
point S∗ (without the knowledge of the steady state
constant input values Q∗j ) and the fulfillment of the
constraint (18) all along the trajectories. It is ex-
pressed by:

Qj = (QM −Qm)

j∏
k=1

θk +Qm

with σj(θj) = kj(θj − 1)θj , θj(0) ∈ (0, 1), kj > 0 and:

dθn
dt

= σn(θn)
∂V

∂xn
ψn(x), (33)

dθj 6=n
dt

= σj(θj)
[ ∂V
∂xj

ψj(x)+

n∑
l=j+1

∂V

∂xl
ψl(x)

l∏
k=j+1

θk

]
,

with ∀j = 2 : n:

∂V

∂Sj
ψj(S) = αj

QM −Qm
νj

(Sj−1 − Sj)(Sj − S∗j )

S0 − Sj
,

(34)

and
∂V

∂S1
ψ1(S) = α1

QM −Qm
ν1

S1 − S∗1
S0 − S1

. (35)

3.4 Numerical simulation

For the numerical simulation, we have considered a
series of n = 4 reactors, as in the multi-stage continu-
ous fermentor presented in [10, 11]. The values of the
parameters of the model are given here after:

k = 0.0606 [−]; a = 1.57 [g.L−1]; m = 1.34 [0.9756];

X0 = 0 [g.L−1]; S0 = 0.425 [g.L−1].

These are the same values as the ones considered in
[11] for the modeling of the growth of the yeast on the
nitrogen during the wine fermentation.

The values of the volumes, of the initial and steady
state values of the input flow rates and of the chosen
set-point are given in table 1.

reactor Volume Input flow rate [L.h−1] Set-point
number [L] Initial Steady state [g.L−1]

i νi Q0
i Q∗

i S∗
i

1 1.0 0.230 0.235 0.3339
2 0.7 0.225 0.150 0.1768
3 0.5 0.130 0.125 0.0840
4 0.7 0.050 0.120 0.0286

Table 1: Volumes of the reactors, initial and steady-state
values of the input flow rates and substrate concentration
set-point of the numerical simulation.

Finally, the values of the parameters of the control law
are given here-after:

k1 = 5 10−4; k2 = 5 10−3; k3 = 2 10−1; k4 = 5;

QM = 0.25 [L.h−1]; Qm = 0.01 [L.h−1];

and Ai = 4, ∀i = 1 : 4.

For the numerical implementation of the control law,
the modification used in [1] has been applied, which
leads to the following practical control law:

dθj
dt

=


max (0, C(θ)) if θj ∈ [vj , vj + ε[

C(θ) if θj ∈ [vj + ε, vj − ε]
min (0, C(θ)) if θj ∈]vj − ε, vj ]

(36)
where C(θ) is the expression given in (33). The pa-
rameter ε has been chosen equal to 0.04.

The trajectories of the closed loop system (24-9) are
shown in figure 1. We can see that the substrate con-
centration in each of the 4 reactors reaches its set-point
value, and that the control inputs Qi fulfill the satu-
ration constraint (18) all along the trajectories.



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

reactor 1

reactor 2

reactor 3

reactor 4

Time [h]

Time [h]

S
u
b
st

ra
te

co
n
ce

n
tr

a
ti

o
n

[g
.L

−
1
]

In
p
u
t

fl
ow

ra
te

[L
.h

−
1
]

setpoint
state value

steady state value

control input value

Figure 1: Validation of the control strategy on an example
of a nonlinear cascade systems composed of 4 bioreactors
interconnected in series.

4 CONCLUSION

In this paper, the result that A.Antonelli and A.Astolfi
have presented in [1] has been extended to a class of
multi-input nonlinear systems. This result has then
been used for the control of a class of nonlinear cas-
cade systems with input-dependent saturation. The
particularity of these systems comes from the form of
the saturation which is a constraint of “order”: the
control input of one subsystem has to be smaller than
the control input of the preceding subsystem of the
cascade structure. The design of the control law has
been applied on the concrete example of a series of
interconnected continuous reactors. The control law
has then been validated on numerical simulations and
gives promising results. Nevertheless, a lot of work
still remain to do. In particular, the choice of the pa-
rameters values for the control law has to be studied.
Indeed, even if the parameters Ai are directly linked
to the convergence speed of the state to the set-point,

the parameters ki also have effect on the closed loop
behavior. The extension of the result to the case of
more general forms of interconnected systems is also
an interesting problem which will be addressed in the
future.
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