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Abstract. During the last decade, several clustering and association
rule mining techniques have been applied to highlight groups of co-
regulated genes in gene expression data. Nowadays, integrating these
data and biological knowledge into a single framework has become a ma-
jor challenge to improve the relevance of mined patterns and simplify
their interpretation by biologists. GenMiner was developed for mining
association rules from such integrated datasets. It combines a new no-
malized discretization method, called NorDi, and the Close algorithm
to extract minimal non-redundant association rules only. Experimental
results show that GenMiner requires less memory than Apriori based
approaches and that it improves the relevance of extracted rules. More-
over, association rules obtained revealed significant co-annotated and
co-expressed gene patterns showing important biological relationships
supported by recent biological literature.

1 Introduction

Gene expression technologies are powerful methods for studying biological pro-
cesses through a transcriptional viewpoint. Since many years these technologies
have produced vast amounts of data by measuring simultaneously expression lev-
els of thousands of genes under hundreds of biological conditions. The analysis
of these numerical datasets consists in giving meaning to changes in gene ex-
pression to increase our knowledge about cell behavior. In other words, we want
to interpret gene expression data via integration of gene expression profiles with
corresponding biological knowledge (gene annotations, literature, etc.) extracted
from biological databases. Consequently, the key task in the interpretation step
is to detect the present co-expressed (sharing similar expression profiles) and co-
annotated (sharing the same properties such as function, regulatory mechanism,
etc.) gene groups.

Several approaches dealing with the interpretation problem have recently
been reported. These approaches can be classified in three axes [15]: expression-
based approaches, knowledge-based approaches and co-clustering approaches. The
most currently used interpretation axis is the expression-based axis that gives
more weight to gene expression profiles. However, it presents many well-known
drawbacks. First, this approach cluster genes by similarity in expression pro-
files across all biological conditions. However, gene groups involved in a bio-
logical process might be only co-expressed in a small subset of conditions [2].
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Second, many genes have different biological roles in the cell, they may be con-
ditionally co-expressed with different groups of genes. Since almost all cluster-
ing methods used place each gene in a single cluster, that is a single group of
genes, his relationships with different groups of conditionally regulated genes
may remain undiscovered. Third, discovering biological relationships among co-
expressed genes is not a trivial task and requires a lot of additional work, even
when similar gene expression profiles are related to similar biological roles [20].

The use of association rule mining (ARM), that is another unsupervised data
mining technique, was proposed to overcome these drawbacks. ARM aims at dis-
covering relationships between sets of variable values, such as gene expression
levels or annotations, from very large datasets. Association rules identify groups
of variable values that frequently co-occur in data lines, establishing relation-
ships with the form: A ⇒ B between them. This rule means that when a data
line contains variable values in A it is also likely to contain variable values in B.
It has been shown in several research reports that ARM has several advantages.
First, ARs can contain genes that are co-expressed in a subset of the biological
conditions only. From this viewpoint, it and can be considered as a bi-clustering
technique. Second, a gene can appear in several AR, if its expression profile fulfills
the assignation criteria. That means, if a gene is involved in several co-expressed
gene groups, it will appear in each and every one of these groups. Third, asso-
ciation rules are orientated knowledge patterns with the form if condition then
consequent that describe directed relationships. This enables the discovery of
any type of relationships between gene expression measures and annotations as
they can be premisses or consequents of association rules. Fourth, since all types
of data are considered in the same manner with ARM, several heterogeneous
biological sources of information can be easily integrated in the dataset. These
features make ARM a technique that is complementary to clustering for gene
expression data analysis.

The GenMiner principle was introduced, with preliminary experimental re-
sults, in [16]. In this paper, we present a new Java implementation of GenMiner
and new experimental results on the biological significance of extracted rules,
the applicability and scalability of the algorithm and performance comparisons
with other ARM approaches. This paper is organized as follows. Section 2 and 3
present ARM basics and related works respectively. The GenMiner approach is
described in section 4 and the integrated dataset constituted for the experiments
is presented in section 5. Experimental results are presented in section 6 and the
paper ends with a discussion and conclusion in section 7.

2 Association rule mining

Association rules (ARs) express correlations between occurrences of variable val-
ues in the dataset as directed relationships between sets of variable values. In
the data mining literature, variable values are called items and sets of items
are called itemsets. For each AR, statistical measures assess the scope, or fre-
quency, and the precision of the rule in the dataset. The classical statistics for
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this are respectively the support and the confidence measures. For instance, an
AR Event(A), Event(B) ⇒ Event(C), support=20%, confidence=70% states that
when events A and B occur, event C also occurs in 70% of cases, and that all
three events occur together in 20% of all situations. This AR is extracted from
a dataset containing Event(A), Event(B) and Event(C) as items and data lines
of the dataset describe co-occurred events, that is known situations. Since all
ARs are not useful or relevant, depending on their frequency and precision, only
ARs with support and confidence exceeding some user defined minimum support
(minsupp) and minimum confidence (minconf) thresholds are extracted.

Extracting ARs is a challenging problem since the search space, i.e. the num-
ber of potential ARs, is exponential in the size of the set of items and several
dataset scans, that are time expensive, are required. Several studies have shown
that ARM is a NP-complete problem and that a trivial approach, considering
all potential ARs, is unfeasible for large datasets. The first efficient approach
proposed to extract ARs is the Apriori algorithm [1]. Several optimisations of
this approach have been proposed since, but all these algorithms give response
times of the same order of magnitude and have similar scalability properties.
Indeed, this approach was conceived for the analysis of sales data and is thus
efficient when data is weakly correlated and sparse but performances drastically
decrease when data are correlated or dense [5]. Moreover, with such data, a huge
number of ARs are extracted, even for high minsupp and minconf values, and a
majority of these rules are redundant, that is they cover the same information.
For instance, consider the following five rules that all have the same support and
confidence and the item annotation in the antecedent:

1. annotation ⇒ gene1↑ 4. annotation, gene1↑ ⇒ gene2↑
2. annotation ⇒ gene2↑ 5. annotation, gene2↑ ⇒ gene1↑
3. annotation ⇒ gene1↑, gene2↑

The most relevant rule from the user’s viewpoint is rule 3 since all other rules can
be deduced by inference from this one, including support and confidence (but the
reverse does not hold). Information brougth by all other rules are summed up
in rule 3, that is a non-redundant association rule with minimal antecedent and
maximal consequent, or minimal non-redundant ARs for short. This situation is
frequent when mining correlated or dense data, such as genomic data, and to
address this problem the GenMiner ARM approach uses the Close algorithm to
extract minimal non-redundant ARs only.

3 Related works

Several applications of ARM to the analysis of gene expression data have been
recently reported [7, 21, 11]. These applications aimed at discovering frequent
gene patterns among a subset of biological conditions. These patterns were rep-
resented as ARs such as: gene1↓ ⇒ gene2↑, gene3↓. This rule states that, in
a significant number of biological conditions, when gene1 is under-expresssed,
we also observe an over-expression of gene2 and an under-expression of gene3.
These applications successfully highlighted correlations between gene expression
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profiles, avoiding some drawbacks of classical clustering techniques [11]. How-
ever, in these applications, biological knowledge was not taken into account and
the task of discovering and interpreting biological similarities hidden within gene
groups was left to the expert.

Recently, an approach to integrate gene expression profiles and gene anno-
tations to extract rule with the form annotations ⇒ expression profiles was
proposed in [6]. However, this approach presents several weaknesses. First, it
uses the Apriori ARM algorithm [1] that is time and memory expensive in the
case of correlated data. Moreover, it generates a huge number of rules among
which many are redundant thus complexifying the interpretation of results. This
is a well-known major limitation of the Apriori algorithm for correlated data [6,
21]. Second, extracted rules are restricted to a single form: Annotations in the
left-hand-side and expression profiles in the right-hand-side. However, all rules
containing annotations and/or expression profiles, regardless of the side, bring
important information for the biologist. Third, it uses the two-fold change cut-
off method for discretizing expression measures in three intervals, a dangerous
simplification that presents several drawbacks [18].

Discretization, which is needed for most of ARM implementations, is a deli-
cate issue. According to the criteria used, there may be drastic changes on the
rules generated. A recent paper proposed a way around this problem by running
a biclustering algorithm over the gene expression matrix and then, by associ-
ating genes with the groups to which they belong [14]. The authors claim that
the main advantage of this approach is that it reduces drastically the number of
columns in the matrix and thus, that it simplify both the processing of the data
and the interpretation of the rules. However, this depends mainly on the number
of biclusters generated. In order to obtain very specific rules with low support,
one needs to generate a huge number of small biclusters. Thus, the use of an
efficient ARM algorithm is still needed and the interpretation of the resultant
rules will still be very difficult.

GenMiner was developed to address these weaknesses and fully exploit ARM
capabilities. It enables the integration of gene annotations and gene expression
profile data to discover intrinsic associations between them. We chose to keep ev-
ery colum from gene expression data but we use the novel NorDi method for dis-
cretizing gene expression measures. GenMiner takes advantage of the Close [19]
algorithm that can efficiently generate low support and high confidence non-
redundant association rules, thus reducing the number of ARs and facilitating
their interpretation by the biologist. With these features, GenMiner is an ARM
approach that is adequate to biologists requirements for genomic data analysis.

4 GenMiner approach

GenMiner follows the classical three steps of ARM approaches: (1) data selection
and preparation, (2) ARs extraction and (3) ARs interpretation. It uses the
NorDi algorithm for discretizing gene expression data during phase (1) and the
Close algorithm for extracting minimal non-redundant ARs during phase (2). It



Mining Association Rule Bases from Genomic Data and Annotations V

is a co-clustering approach that discovers co-expressed and co-annotated gene
groups at the same time according to co-ocurrences of gene expression profiles
and annotations. It is a bi-clustering approach that finds co-annotated and co-
expressed gene groups even in a small subset of biological conditions.

The whole process of GenMiner is deterministic and extracted ARs are not
constrained in their form and their size in order to ensure that all kinds of rela-
tionships between gene expression profiles and annotations are discovered. The
actual implementation of GenMiner does not integrate graphical visualization
tools and complementary programs must be used to manipulate the results.

4.1 NorDi algorithm

The Normal Discretization (NorDi) algorithm was developed to improve gene
expression measures discretization into items. This algorithm is based on sta-
tistical detection of outliers and the continuous application of normality tests
for transforming the initial sample distribution “almost normal” to a “more
normal” one. The term “almost” means that the sample distribution can be
normally distributed without the outlier’s presence.

Let us assume that the expression data measures are presented as an nXm
matrix: E with n genes (rows) and m samples or biological conditions (columns).
Each matrix entry, ei,j represents the gene expression measure of gene i in sam-
ple j where ei,j is continuous in all real numbers. Let’s suppose that the gene
expression matrix E accomplishes the following assumptions:

1. All data is well cleaned (minimal noise).
2. Number of genes is largely enough.
3. The samples of the matrix Sj for every j = 1, 2, ..., m are independent from

each other and they are “almost” normally distributed Sj ∼ N(µj , σj).
4. Missing values are no significant regarding the number of genes.

The NorDi algorithm is based on the observation that every sample of the
expression matrix Sj can be “more” normally distributed Sk

j ∼ N(µj , σj) if all
outliers of each sample are momentarily removed (that is keeping a list of the k
removed outliers for each sample, i.e. Lk

j ) by Grubbs outliers method [12]. Each
time an outlier k is removed, a Jaque-Bera normality test [3] has to be accom-
plished for the remaining sample Sk

j , where k is the number of removed outliers
at each step in sample Sj and k = 0, 1, 2, . . . , clean (k = clean means that there
are no more outliers in the sample according to the Grubbs criterium). So, for
every sample, we obtain the remaining sample Sclean

j that is “more normally”
distributed than the original sample Sj . To verify this assertion we compare
Sclean

j against Sj using the QQ-plot [17] and Lilliefors [13] normality tests. Then,
we calculate the over-expressed, Ot, and under-expressed, Ut, cutoff thresholds
using the z − score methodology [22] over the cleaned sample Sclean

j .

Supposing the four precedent assumptions with Sclean
j ∼N(µj, σj) normal

distributed and a 1−α predetermined confidence degree, the z−score threshold
cutoffs for three intervals are defined as:
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– Zj =
ei,j−µj

σj
≥ zα/2 = Ot ⇒ ei,j : over-expressed (↑),

– Zj =
ei,j−µj

σj
≤ zα/2 = Ut ⇒ ei,j : under-expressed (↓),

– Ut < ei,j > Ot ⇒ ei,j : unexpressed,

where zα/2 = Φ−1(1−α/2), if the cumulative distribution function is Φ(zα/2) =

P (Sclean
j ≤ zα/2) = 1− α/2.
It is important to notice that this procedure for computing the threshold

cutoffs is done over all the m cleaned samples Sclean
j contained in the expression

matrix E. Once the computation of threshold cutoffs is done, the k elements
in each sample’s outliers list Lk

j are integrated to the original sample Sj and
the discretization procedure is calculated for all values in Sj . The main reason
is that outliers values cannot be removed from the analysis because they may
contain relevant information of the biological experiment.

4.2 Close algorithm

Close is a frequent closed itemsets based approach [19] for extracting minimal
non-redundant AR defined as follows. An AR is redundant if it brings the same
or less general information than is brought by another rule with identical sup-
port and confidence [8]. Then, an AR R is a minimal non-redundant AR if there
is no AR R’ with same support and confidence, which antecedent is a subset
of the antecedent of R and which consequent is a superset of the consequent of
R. Close first extracts equivalence classes of itemsets, defined by generators and
frequent closed itemsets, and generates from them the Informative Basis contain-
ing only minimal non-redundant ARs. This basis (minimal set) is a generating
set for all ARs that captures all information brought by the set of all rules in a
minimal number of rules, without information loss [8]. Experiments conducted
on benchmark datasets show that the rule number reduction factor varies from
5 to 400 according to data density and correlation [19]. Moreover, when data
is dense or correlated, Close reduces extraction time and memory usage since
the search space of frequent closed itemsets based approaches is a subset of the
search space of Apriori based approaches. Several algorithms for extracting fre-
quent closed itemsets, using complex data structures to improve efficiency, have
been proposed since Close. However, they do not extract generators, precluding
the Informative Basis generation, and their response times, that depends mainly
on data density and correlation, are of the same order of magnitude.

5 Annotations enriched Eisen et al. dataset

To validate the GenMiner approach we applied it to the well-known genomic
dataset used by Eisen et al. [10]. This dataset contains expression measures
of 2 465 Saccharomyces cerevisiae genes under 79 biological conditions extracted
from a collection of four independent microarray studies during several biological
processes: Cell cycle, Sporulation, Temperature shock and Diauxic shift exper-
iments. Gene expression measures were discretized using NorDi algorithm at a
95% confidence level.
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Each yeast gene was annotated with its associated terms in Yeast GO Slim (a
yeast-specific cut-down version of Gene Ontology), its associations with research
papers, the KEGG pathways in which it is involved, its phenotypes and the
transcriptional regulators that bind its promoter regions.

The resulting dataset is a matrix of 2 465 lines representing yeast genes and
737 columns representing expression levels (discretized gene expression mea-
sures) over the 79 biological conditions and at most 658 gene annotations (24
GO annotations, 14 KEGG annotations, 25 transcriptional regulators, 14 pheno-
types and 581 pubmed keywords). On the whole, the dataset contains 9 839 items
(variable values). This dataset and the GenMiner implementation are available
on the GenMiner web site3.

6 Experimental results

We conducted several experiments to evaluate the biological significance of ex-
tracted ARs, to compare the applicability of GenMiner and Apriori based ap-
proaches and to evaluate the scalability of GenMiner when mining very large
dense biological datasets. For these experiments, the Java implementation of
GenMiner was applied to the annotations enriched Eisen et al. dataset. All types
of rules, containing gene annotations or gene expression levels either or both in
the antecedent and the consequent, were extracted for minsupp=0.003 (at least
7 lines) and minconf=30%.

6.1 Biological interpretation of extracted association rules

Table 1 to 3 show some examples of the different form of rules extracted by
GenMiner. In these tables, supports are given in number of transactions and
confidences are given in percentages; the prefixes go:, path:, pmid:, pr:, phenot:
are used to identify GO terms, KEGG pathways, Pubmed identifiers, promoters
and phenotypes respectively; the labels heat, diau and spo refer to the differ-
ent time points of the Heat shock, Diauxic shift and Sporulation experiments
respectively; ↑ denotes an over-expression while ↓ denotes an under-expression.

ARs with the form annotations ⇒ expression levels (Table 1) show groups
of genes associated with the same annotations that are over-expressed or under-
expressed in a set of biological conditions. Rules 1 and 2 highlight a general
reduction of transcription and protein synthesis following a heat shock, leading
to cellular damages. This is confirmed by rule 3 which shows that genes regulated
by RAP1 and FHL1, which are two key regulators of ribosomal protein genes,
are under-expressed in this experiment. This last rule reflects the known fact
that RAP1 recruits FHL1 to activate transcription [23]. A reduction of protein
synthesis in the last time point of the Diauxic shif experiment is highlighted
by rule 4. Additionally, rules 5 to 7 show that the genes involved in oxidative
phosphorylation, citrate cycle and glyoxylate and dicarboxylate metabolism were

3 http://bioinfo.unice.fr/publications/genminer_article.
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also mainly over-expressed at the last time points. These rules reflect the main
metabolic changes associated to the diauxic shift in yeast, manually identified
in [9]

Table 1. Associations annotations ⇒ expression levels.

Rule Antecedent Consequent supp. conf.

1 go:0006412 (translation) go:0005840 (ribosome) heat3↓ 103 51
2 go:0005840 (ribosome) go:0003723 (RNA binding) heat3↓ 12 57
3 pr:RAP1 pr:FHL1 heat3↓ 71 62
4 path:sce03010 (ribosome) diau7↓ 121 92
5 path:sce00190 (oxidative phosphorylation) diau7↑ 18 33
6 path:sce00020 (citrate cycle) diau6↑ diau7↑ 18 60
7 path:sce00630 (glyoxylate/dicarboxylate metabolism) diau7↑ 8 53

ARs with the form expression levels ⇒ annotations (Table 2) show groups of
genes that are over-expressed or under-expressed in a set of biological conditions
and have the corresponding gene annotations. Selected rules show information
related to the Sporulation experiment (rules 1 and 2), the Heat shock process
(rules 3 and 4) and the Diauxic shift process (rule 5) reported in the correspond-
ing biological literature.

Table 2. Associations expression levels ⇒ annotations.

Rule Antecedent Consequent supp. conf.

1 spo4↓ spo5↓ spo6↓ go:0005975 (carbohydrate metabolism) 12 52
2 spo3↓ spo4↓ spo5↓ path:sce00010 (Glycolysis) 13 52
3 heat3↓ heat4↓ heat5↓ go:0006412 (translation) 35 88
4 heat2↓ go:0042254 (ribosome biogenesis) 39 66
5 diauxic6↓ diauxic7↓ go:0006412 (translation) 21 66

ARs with the form annotations ⇒ annotations (Table 3) contain gene anno-
tations both in the antecedent and consequent. They highlight existent relation-
ships among gene annotations, independently from gene expression levelsRules
1 and 2 identify associations between annotations from different sources like the
relationship between the KEGG term cell cycle and the Gene Ontology term cell
cycle, or the less obvious one between the KEGG term purine metabolism and
the GO term cytoplasm. Rules 3 and 4 confirm the strong relationship between
promoters FHL1 and RAP1. Rule 5 highlight a relationship between genes cited
in a scientific article (which presents a review of the essential yeast genes) with
the phenotype inviable. Rules 6 and 7 are two examples of a special group of
rules that simply reflect the hierarchical structure of the bio-ontologies used.
They represent an important proportion of rules that either depict the hierar-
chical links or represent identical relationships at different levels of abstraction
corresponding to the hierarchically linked annotations. Such kind of rules can be
filtered during a post-processing phase without information loss.
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Table 3. Associations annotations ⇒ annotations.

Rule Antecedent Consequent supp. conf.

1 path:sce04111 (cell cycle) go:0007049 (cell cycle) 67 78
2 path:sce00190 (purine metabolism) go:0005737 (cytoplasm) 49 91
3 pr:FHL1 pr:RAP1 114 86
4 pr:RAP1 pr:FHL1 114 61
5 pmid:16155567 phenot:inviable 168 93
6 go:0016192 (vesicle transport) go:0006810 (transport) 171 100
7 go:0005739 (mitochondrion) go:0005737 (cytoplasm) 532 100

6.2 Execution times and memory usage

These experiments were conducted to assess the applicability of GenMiner to
very large dense biological datasets and to compare its results with Apriori
based approaches. They were performed on a PC with one Pentium IV pro-
cessor running at 2 GHz and 1 GB of RAM was allocated for the execution of
GenMiner and implementations of Apriori based approaches. We tested several
implementations of Apriori based approaches (Apriori, FP-Growth, Eclat, LCM,
DCI, etc.). Execution times presented in Table 4 are these of Borgelt’s imple-
mentation4 described in [4] that is globally the most efficient for mining ARs
(and not only frequent itemsets). We can see in this table that execution times
of GenMiner and the Apriori implementation are similar for minsupp between
0.02 (2%) and 0.007 (0.7%). However, executions of Apriori based approaches
for lower minsupp values were interrupted as they required more than 1GB of
RAM. GenMiner could be run for minsupp = 0.003, i.e. rules supported by at
least 7 data lines (genes), but the execution for minsupp = 0.002 was interrupted
as more than 1 GB of RAM was required.

Table 4. Execution times and number of rules (minconf=0.3).

GenMiner Apriori
minsupp (#) Time (s) Number of rules Time (s) Number of rules

0.020 (50) 10 10 028 5 65 312
0.015 (37) 21 28 492 16 325 482
0.010 (25) 72 110 989 76 3 605 486
0.009 (22) 101 147 966 110 6 115 366
0.008 (19) 187 230 255 182 12 138 561
0.007 (17) 289 315 090 264 21 507 415
0.006 (14) 673 542 746 Out of Memory -
0.005 (12) 1 415 824 518 Out of Memory -
0.004 (9) 5 353 1 675 811 Out of Memory -
0.003 (7) 18 424 2 883 710 Out of Memory -
0.002 (4) Out of Memory - Out of Memory -

4 Available at http://fimi.cs.helsinki.fi/.
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We can see that for minsupp between 0.02 (2%) and 0.007 (0.7%), the Infor-
mative Basis is from 6 to 68 times smaller than the set of all ARs, that contains
up to more than 21 millions of rules. However, the number of ARs in the In-
formative Basis is important for low minsupp values and it cannot be manually
explored without tools to select subsets of ARs.

6.3 GenMiner scalability

Experimental results presented in Table 5 were conducted to evaluate execution
times and memory usage of GenMiner when the minsupp and minconf thresholds
vary. Three series of executions were run for minconf equals to 0.9 (90%), 0.5
(50%) and 0.3 (30%). For each serie, minsupp was varied between 0.02 (2%) and
0.002 (0.2%). As in the previous experiment, GenMiner could not be run for
minsupp lower than 0.003, independently from the minconf value. We can also
see that the longest executions, for minsupp equals to 0.003, took from 4 to 5
hours depending on the minconf value.

Table 5. Execution times of GenMiner (in seconds).

minsupp (#) minconf = 0.9 minconf = 0.5 minconf = 0.3

0.020 (50) 9.18 10.40 10.88
0.015 (37) 16.47 19.58 21.21
0.010 (25) 47.50 63.47 72.63
0.009 (22) 65.10 87.68 101.49
0.008 (19) 118.78 162.17 187.33
0.007 (17) 182.27 249.60 289.41
0.006 (14) 435.41 595.23 673.27
0.005 (12) 974.14 1 274.57 1 415.38
0.004 (9) 4 065.05 4 937.74 5 353.63
0.003 (7) 14 163.02 17 412.65 18 424.72
0.002 (4) Out of Memory Out of Memory Out of Memory

7 Discussion and conclusion

GenMiner was developed for mining association rules from very large dense
datasets containing both gene expression data and annotations. Contrarily to
most approaches for gene expression interpretation, as well expression-based as
knowledge-based, in which biological information and gene expression profiles are
incorporated in an independent manner, with GenMiner both data sources are
integrated in a single framework.

GenMiner implements a new discretization algorithm, called NorDi, that was
designed for processing data generated by gene expression technologies in the
case of independent biological conditions. Experiments conducted on the Eisen
et al. dataset show that its results are relevant. However, the discretization issue
is delicate when using data mining methods such as ARM. We thus propose to
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use several discretization scenarios, analyzing the pertinence of obtained results
against expected results, to validate the discretization method. As pointed out in
[18]: “The robustness of biological conclusions made by using microarray analysis
should be routinely assessed by examining the validity of the conclusions by using
a range of threshold parameters issued from different discretization algorithms”.
Unfortunately, to our knowledge no discretization algorithm, specially designed
for time process data, can integrate the time variable without an important loss
of temporal information.

GenMiner also integrates the Close algorithm [19] developed to extract ARs
from dense and correlated data. Close is based on the frequent closed itemsets
framework that allows to reduces both the search space and the number of
dataset accesses, and thus the memory usage, for dense and correlated data. It
extracts a minimal set of non-redundant ARs called Informative Basis [19] in
order to reduce the number of extracted ARs and improve the result’s relevance.
In this basis, all information is summarized in a minimal number of ARs, each
rule bringing as much information as possible, without information loss.

To evaluate the efficiency and scalability of GenMiner, it was run on a
dataset combining the Eisen et al. gene expression data [10] and annotations
of these genes. Experimental results show that GenMiner can deal with such
large datasets and that its memory usage, as well as the number of ARs gener-
ated, are significantly smaller than these of Apriori based approaches. Moreover,
ARs extracted by GenMiner are not constrained in their form and can con-
tain both gene annotations and gene expression profiles in the antecedent and
the consequent. The analyze of these ARs has shown important relationships
supported by recent biological literature. These results show that GenMiner is
a promising tool for finding meaningful relationships between gene expression
patterns and gene annotations. Furthermore, it enables the integration of thou-
sands of gene annotations from heterogenous sources of information with related
gene expression data. This is an essential feature as the integration of different
types of biological information is indispensable to fully understand the underly-
ing biological processes. In addition, qualitative variables such as gender, tissue
and age could easily be integrated in order to extract ARs among these features
and gene expression patterns. In the future, we plan to integrate in GenMiner
tools to filter, select, compare and visualize ARs during the interpretation phase
to simplify these manipulations.
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