N
N

N

HAL

open science

GenMiner: mining informative association rules from

genomic data

Ricardo Martinez, Claude Pasquier, Nicolas Pasquier

» To cite this version:

Ricardo Martinez, Claude Pasquier, Nicolas Pasquier. GenMiner: mining informative association rules
from genomic data. IEEE International Conference on Bioinformatics and Biomedicine (BIBM’07),

Nov 2007, Fremont, United States. 10.1109/BIBM.2007.49 . hal-01154856

HAL Id: hal-01154856
https://hal.science/hal-01154856

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01154856
https://hal.archives-ouvertes.fr

GENMINER : Mining Informative Association Rules from Genomic Data

Ricardo Martinez Claude Pasquier Nicolas Pasquier
I3S Laboratory ISDBC I3S Laboratory
UNSA/CNRS UMR-6070 UNSA/CNRS UMR-6543 UNSA/CNRS UMR-6070
2000 route des Lucioles Parc Valrose 2000 route des Lucioles
06903 Valbonne, France 06108 Nice, France 06903 Valbonne, France
rmartine@i3s.unice.fr claude.pasquier@unice.fr pasquier@i3s.unice.fr
Abstract related specific sources (KEGG, OMIM, etc.). This impor-

tant increase in data volume leads to several problems: How

GENMINER is a smart adaptation of closed itemsets to integrate these data with gene expression data? How to
based association rules extraction to genomic data. Itgake efficiently analyze such amounts of data? How to detect the
advantage of the novéllorDI discretization method and  most relevant information patterns among the results?
of the CLOSE [27] algorithm to efficiently generate min- Existing approaches dealing with the interpretation prob-
imal non-redundant association rule§GENMINER facili- lem can be classified in three axes [21Expression-
tates the integration of numerous sources of biological in- based approachesuch as Thea [26] or Generator [29],
formation such as gene expressions and annotations, andknowledge-based approachesich as Page [16] or CGGA
can tacitly integrate qualitative information on biologic ~ [22], andco-clustering approachesuch as Co-Cluster [14]
conditions (age, sex, etc.). We validated this approach ana or BiCluster [20]. Theexpression-basedxis, that gives
lyzing the microarray datasets used by Eis¢al.[10] with more weight to gene expression profiles than the other two
several sources of biological annotations. Extracted asso interpretation axis, is the most currently used. However, a
ciations revealed significant co-annotated and co-exgess proaches in this axis present many well-known drawbacks.
gene patterns, showing important biological relationship First, genes are clustered if they have similar expression
between genes and their features. Several of these relationprofiles across all biological conditions, but gene invdlve
ships are supported by recent biological literature. in the same biological process might be co-expressed in
only a subset of conditions [2]. Second, genes may be con-
ditionally co-expressed with different sets of genes, otfle
ing the different biological roles that genes can play in the
cell. Most of the commonly used clustering methods group
genes into single clusters only, masking more complex re-

One of the main goals of gene expression analysis is tolationships between different sets of conditionally reged
discover information about biological processes that gove genes [11]. Third, even when similar expression profiles are
cell behavior. An important task in this goal is the inter- related to similar biological roles, discovering theseldyio
pretation of gene expression profiles in the light of biologi  gical connections among co-expressed genes is not a trivial
cal knowledge represented as gene annotations in biologicatask and requires a lot of additional work [30].
databases. This task consists in detecting gene groups that To overcome these drawbacks, we propose the use of as-
are both co-expressed, i.e. sharing similar expression pro sociation rule discovery (ARD). ARD is an unsupervised
files, and co-annotated, i.e. sharing the same annotationslata mining technique used to discover links among sets of
such as function, regulatory mechanism, etc. items(variable values) such as gene expression profiles or

The volume of biological knowledge is rapidly increas- 9ene annotations from very large data relations. Associa-
ing in gene expression databases (GEO, Arrayexpress, etc.}ion rules identify groups of items that frequently co-occu
information on microarray experiments (spotted probes, in data lines, establishing relationships between therh wit
data processing protocols, etc.), molecular databases (Ge the form: A = B which means that whed occurs it is
Bank, Embl, Unigene, etc.), semantic sources as thesaurudikely that B occurs. ARD has the following advantages:
ontologies or semantic networks (UMLS, GO, etc.), biblio- 1. ARD can generate rules containing genes that are co-
graphical databases (Medline, Biosis, etc.) and genefiorot expressed only in a subset of the biological conditions.

1. Introduction



databases or gene expression databases for instances It use

2. Any gene can be assigned to any number of associa-2 novel method, called &RDI , for discretizing gene ex-
tion rules as long as its expression profile fulfills the Pression measures and generate gene expression profiles.
assignation criteria. This means that a gene involved ~GENMINER takes advantage of theLGSse [27] ARD
in many co-expressed groups will appear in each andalgorithm to efficiently generate low support and high confi-
every one of those groups, without limitation. dence non-redundant association rules. When data is dense
3. ARD generates orientated knowledge pattéfreon- or corr_elate_d, such as genomic data,0SE reduces both _
dition then consequentdescribing directed relation-  €Xecution times and memory space usage compared with
ships. Thus, any type of relationship between expres-Apr'Or" thL.JS' enabling the analysis of huge datasets. . Fur-
sion measures and gene annotations can be discoveredl€more, it improves the result's relevance by extracting

. . . . minimal set of rules containing only non-redundant rules,
4. ARD facilitates the integration of various heteroge- . e -
) . . . hence reducing the number of rules and facilitating their in
neous biological sources of information.

terpretation by the biologists. These features malka-G

In the past years, ARD has been used for analysing 9en§,\er an ARD approach adequate to biologists require-
expression data in order to discover frequent gene patterng . nts for genomic data analysis

amtqng a ls;ubset of bt'oéog'cf‘rll conditions: [ﬁ’ 3L, lZ].fAF]ss?-l ARD basics, the MRDI method and the GNMINER ap-
clation rules generated by these approaches are of the 0'proach are presented in section 2. The extended Eisen

lowing form: gene g1 = gene g2, gene g3, meaning dataset used to validate the approach and experimental re-

that in a significant number Of t_)lol_og|ca| conditions, when sults are presented in section 3 and 4 respectively. A brief
genegl is under-expresssed, it is likely to observe an over- discussion in section 5 concludes the paper

expression of geng2 and an under-expression of gegie
This technique has been successfully applied for clugierin Lo .
gene expression profiles, avoiding some drawbacks of stan2- Association rules extraction
dard clustering techniques [12]. However, these algorithm
use exclusively gene expression measures without taking Association rules are knowledge patterns expressing cor-
into account biological knowledge. The task of discovering relations between occurrences of attribute values astdulec
and interpreting biological similarities hidden withinrge relationships betwedtemsetgsets of items). For eachrule,
groups is thus left to the expert. the supportandconfidencestatistics measure the scope and
Recently, Carmona et al. [5] proposed to integrate genethe precision of the rule respectively. For instance, an-ass
expression profiles and gene annotations to extract ruleciation ruleEvent(A) Event(B)= Event(C) support=20%
with the form : annotation= C1[|], C2[] meaning  confidence=70%states that when even#s and B occur,
that a group of genes annotated dynotationis likely to eventC also occurs in 70% of cases, and that all three events
be under-expressed in biological conditi6H and over- occur together in 20% of all situations. In this context,
expressed in conditiofi’2. However, this approach presents Event(A) Event(B)and Event(C)are items and situations
several weaknesses. First, it uses the Apriori ARD algo- are data objects, i.e. the lines of the dataset, descrilwng c
rithm [1] that is time and memory-consuming in the case of occurring events. To extract only statistically signifitas-
correlated data. Moreover, it generates a huge number ofsociations, extraction is restricted to rules with suppord
rules among which many are redundant thus complexifying confidence exceeding some user defined minimum support
results interpretation. This is a well-known major limitat minsuppand minimum confidencainconfthresholds.
of the Apriori algorithm for correlated data [5, 31]. Second Association rules are extracted from a dataset that is a
extracted rules are restricted to a single form: Annotation tripletD = {0, Z, R}, where © andZ are finite sets of ob-
in the left-hand-side and expression profiles in the right- jects (lines) and items (columns) respectively, &d- O
hand-side. However, all rules containing annotations@nd/ x Z is a binary relation. Each item represents an attribute
expression profiles, regardless of the side, bring impoértan value or a set of attribute values and each couplé € R
information for the biologist. Third, it uses the two-fold denotes the fact that the objext O is related to the item
change cut-off method for discretizing expression measure i € I. When the attribute is numeric and continuous, each
in three intervals, a dangerous simplification that present item represents an interval of values. If an obe® in re-
several drawbacks [25]. lation with all items of an itemsétwe say thab contains |
The GENMINER approach was developed to address Thesupportof an itemset is the proportion of objects con-
these weaknesses and fully exploit ARD capabilities. ltena tainingl and an itemset ifrequentif its support is greater
bles the integration of gene annotations and gene expreser equal tominsupp
sion data to discover intrinsic associations between them. The natural decomposition of the ARD problem is:
Gene annotations can be integrated from any source of bio{1) Extract frequent itemsets and their supports from the
logical information, such as semantic sources, bibiogaph dataset; (2) Generate all valid association rules from fre-



guent itemsets and their supports. The first phase is the mostjuent closed itemse¥are minimal (by inclusion) itemsets
computationally expensive part of the process, since thewhich closure isX. The frequent closed itemsets constitute
number of potential frequent itemsets is exponengélY agenerating setfor all frequent itemsets and thus for all as-
in the size of the set of items and several dataset scans, thatociation rules [27]. This relies on the following propest
are time-consuming, are required. () The support of a frequent itemset is equal to the sup-
Levelwise algorithms for extracting frequentitemsets ~ port of its closure; ) The maximal frequent itemsets are
iterative algorithms that consider all itemsets of a giviees ~ maximal frequent closed itemsets. Using these properties,
at a time. They are based on the following propertigp: (@ new approach for mining association rules was proposed:
all supersets of an infrequent itemset are infrequenta(l (1) Extract frequent closed itemsets and their suppors; (2
subsets of a frequent itemset are frequent. These properDerive frequentitemsets and their supports; (3) Genethte a
ties enable the use of previous iteration results to reduee t Valid association rules. The search space of the first phase
search space of the next iteration, and the total number ofis then reduced to the closed itemsets. The first algorithm
iterations, that is the number of dataset scans, is equal td>ased on this approach ia Gse [27]. Several algorithms
the size of the largest frequent itemsets. This approach wagdor extracting frequent closed itemsets, using complea dat
proposed in the well-known Apriori [1] algorithm. Several structures to improve efficiency, have been proposed. How-
optimisations have been proposed to improve the extractionever, they do not extract generators and their responss time
efficiency, by avoiding several dataset scans, but they alldepending mainly of data density and correlation, are of the
give response times of the same order of magnitude, de-same order of magnitude.
pending mainly on data correlation. An association rule issdundantf it brings the same or
These algorithms are efficient when data is weakly corre- less general information than is brought by another rulé wit
lated and sparse, such as sales data, but performance draiglentical support and confidence [7, 28]. Then, an associa-
tically decrease when data is correlated or dense, such agon rule Ris a minimal non-redundant association rules if
census data [4]. Moreover, with such data, a huge numbeithere is no association ru with same support and confi-
of association rules are extracted, even for ighsuppand dence, which antecedent is a subset of the antecedéht of
minconfvalues, and a majority of these rules are redundantand which consequent is a superset of the consequétt of
(bring the same information). For instance, consider the Using generators and frequent closed itemset®)sE can
nine rules presented below that all have the same supporgéenerate a basis (a minimal set) for association rules con-
and confidence and the iteamnotationlin the antecedent:  taining only non-redundant minimal rules. This basis con-

1. annotationl=- gene g1 tains: (1) Exact association rul€s = ~(G) \ G between

2. annotationl=- gene g1, gene g2 a generatoiG and its closurey(G) such thaty(G) # G;

3. annotation1l= gene g1, gene g3 (2) Approximate association rul&=- v(H) \ G between a

4. annotationl=- gene g1, gene g2, gene g3 generatoG and a closure/(H) that is a superset of the clo-

5. annotationlgene g2 = gene g1 surey(G). This basis callethformativeor Min-max basiss

6. annotationlgene g2 = gene g1, gene g3 a generating set for all association rules [28]. It captaiks

7. annotationlgene g3 = gene g1 the information brought by the set of all rules in a minimal
8. annotationlgene g3 = gene g1, gene g2 number of rules, without information loss [7]. Experiments
9. annotation]gene g2, gene g3 = gene g1 conducted on benchmark datasets show that the reduction

The most relevant rule from the user’s viewpoint is rule 4 factor varies from 5 to 400 according to data density and

since all other rules can be deduced from this one, inclu- correlation [28].

ding support and confidence (but the reverse does not hold).

Information brougth by all other rules are summed up in GenMINER approach GENMINER is a co-clustering

rule 4, that is anon-redundant association rule with mini- - 534 pj-clustering approach that integrates gene annota-

mal antecedent and maximal consequeniminimal non-  tjons and gene expressions to discover intrinsic assooti

redundant rulefor short. among both data sources based on co-ocurrence patterns. It
is a co-clustering approach that integrates co-expressid a

CLosE algorithm The frequent closed itemsets based CoO-annotated gene groups at the same time. Furthermore, it

approach[27] is based on the closure operator of the Ga- is a bi-clustering approach that finds co-annotated and co-

lois connection. This operatarassociates with an itemset expressed gene groups even in a small subset of biological

X the maximal set of items common to all the objects con- conditions.

taining X, i.e. the intersection of these objectSrequent GENMINER follows the four steps of the ARD process:

closed itemsetare frequent itemsets with(X) = X. An data selection and pretreatment, frequent itemsets extrac

itemsetX is a frequent closed itemset if no other itém X tion, association rules generation and interpretationxef e

is common to all objects containing Generatorof a fre- tracted rules. It uses thed®kpi algorithm for gene expres-



sion data discretization and tha. @se algorithm for mini-
mal non-redundant rules extraction.

NoRDI algorithm The Normal Discretization(NORDI)

Itis important to notice that this procedure for computing
the threshold cutoffs is done over all thecleaned samples
Sj‘f’lw" contained in the expression matkx Once the com-
putation of threshold cutoffs is done, thelements in each

algorithm was developed to improve gene expression mea-gample’s outliers lisL% are integrated to the original sam-
sures discretization into items. This phase is essential top|e S; and the discretization procedure is calculated for all

extract relevant association rules. This algorithm is Hase
on statistical detection of outliers and the continuoudiapp
cation of normality tests for transforming the initial salep
distribution "almost normal” to a "more normal" one. The
term "almost" means that the sample distribution can be nor-
mally distributed without the outlier’s presence.

values inS;. The main reason is that outliers values can-
not be removed from the analysis because they may contain
relevant information of the biological experiment.

3. Presentation of the dataset

Let us assume that the expression data measures are pre-

sented as anX'm matrix: E with n. genes (rows) anch
samples or biological conditions (columns). Each matrix

To validate the GNMINER approach we applied it to the
well-known Eisen et al. genomic dataset [10]. This dataset

entry, e; ; represents the gene expression measure of gen&ontains expression measures of 2465 yeast genes under 79

i in samplej wheree; ; is continuous in all real numbers.
Let's suppose that the gene expression mdixaccom-
plishes the following assumptions:

1. All data is well cleaned (minimal noise).

2. Number of genes is largely enough.

3. The samples of the matri; for everyj =1,2,...,m
are independent from each other and they are "almost"
normally distributedS; ~ N (u;, ;).

4. Missing values are no significant in relation to the

number of genes.

The NoRDI algorithm states that every sample of the
expression matrixS; can be "more” normally distributed
Sk ~ N(uj,0;) if all outliers of each sample are momen-
tarily removed (that is keeping a list of theremoved out-
liers for each sample, i.eL;? ) by Grubbs outliers method
[13]. Each time an outliek is removed, a Jaque-Bera
normality test [3] has to be accomplished for the remain-
ing sampleS”, wherek is the number of removed out-
liers at each step in samplg andk = 0,1,2,...,clean
(k = clean means that there are no more outliers in the
sample according to the Grubbs criterium). So, for eve-
ry sample, we obtain the remaining sam;ﬂﬁe“" that is
"more normally" distributed than the original samfg.

To verify this assertion we compa.%“""'" againstS; using
the QQ-plot [24] and Lilliefors [18] normality tests. Then,
we calculate the over-expresséd,, and under-expressed,
U't, cutoff thresholds using the— score methodology [32]
over the cleaned sampfg’".

Supposing the four precedent assumptions with
Sstean~N (u;,0;) normal distributed and a certain degree
of predetermined confidende- «, thez — score threshold
cutoffs for three intervals are defined as:

o Z;= % > Zq/2 = Ot = ¢; ; : over-expressed |
0 Zj = B < 245 = Ut = e;;  under-expressed)
e Ut < e; ;> Ot=e;;: unexpressed

wherez, » = (1 — «/2), if the cumulative distribution
functionis®(z,2) = P(S§“" < z4/2) = 1— /2.

biological conditions extracted from a collection of four
independent microarray studies about ®&ccharomyces
cerevisiaeduring several biological processes: cell cycle
experiments, sporulation experiments, temperature shock
experiments, and diauxic shift.

Gene expression measures The Eisen dataset was pre-
treated by taking thévgs ratios (to consider cellular induc-
tions and repressions in a numerically equal way) and ap-
plying the imputation algorithm of k-nearest neighbors|[19
in order to treat the missing values (1.9% of the total). This
dataset was discretized using theibi algorithm at a 95%
confidence level.

Geneannotations S. cerevisiagenes were annotated us-
ing five sources of biological information:

e Gene Ontology (GO) annotations, describing molecu-
lar fonctions, biological process and locations of gene
products,
bibliographic annotations, representing associations
between research papers and genes (data manually cu-
rated from the literature baccharomyces cerevisiae
databas€SGD) staff),
pathway annotations from Kyoto Encyclopedia
of Genes and Genomes (KEGG), identifying the
metabolic pathways in which each gene is involved,

phenotypic annotations, describing visible traits or
characteristics of genes (extracted from SGD'’s file),
transcriptional regulators (TR) annotations, identify-
ing protein that bind to promoter regions in order to
either increase or decrease the transcription of genes
(the data result from a study of Lee et al. [17], by us-
ing ap-valuethreshold of 0.0005).

All gene annotations were taken as boolean variables, i.e.
i € {0,1}, indicating if an annotation pertains,= 1, or
not,i = 0, to a given gene. The prefixg®:, path:, pmid:,
pr: are used to identify Gene Ontology terms, KEGG path-
ways, Pubmed identifiers and promoters respectively.



Rule Antecedent Consequent  Supp. (#)  Conf. (path:sce0301@bosome pathway or cellular organi-
51

; ggfgggggig' ggfgggg?gg Eggg 19%3 os  zafion (go:0005198tructural molecule activity and
3 90;0042254: 90;0005840’ heatd 15 52 g0:0006996rganelle organization_and bi_ogeneﬁiand
g0:0005198 as consequent, an under-expression at time points 3 and
4 90188856;135. go:0006996,  heat3 30 64 4. This highlight a general reduction of protein synthesis
go: . . .
5 pathisce03010 hedita 69 53 and cell malntenancg followmg a heat shock, I.eadmg to
6  prRAPL, prFHLL heatB 71 62 cellular damages. This is confirmed by rule 6 which shows
7 pmid:5542014, heat3 12 100 that genes regulated by RAP1 and FHL1 promoters are
pm@df9649613, under-expressed at time point 3. This reflects the known
pmid:3533916 fact that RAP1 recruits FHL1 to activate transcription [33]
8 path:sce00190 dxX6 dx71 14 26 . . .
9 path:sce00020 d¥6 dx7] 8 32 Rule 7 in Table 1 shows that all the genes cited in three
10 path:sce00630 dx7 6 55 different articles (which are all about the study of ribosom
1 Per':EFL&’ p“iﬁmb 2010 dx7 17 50 inyeast) are under-expressed at time point 3.
Pr:RAP1, path:sce Examining results relative to the the yeast diauxic shift
Table 1. Associations Annotations= Expressions process only (labels dx1 to dx7), we have found almost all

the rules presented by Carmona et al. [5]. The differences

concern only the support and confidence measures, because
Dataset The resulting dataset is a matrix of 2465 lines, Eisen data contains only a selection of 2465 genes of the
each one corresponding to a yeast gene, and 177 column£199 genes used in DeRisi data. However, the same biolog-
each one corresponding to an expression level or an annoical interpretation of the results can be drawn.
tation. Each line contains expression profiles over the 79 Rules 8 and 9 in Table 1 revealed marked altera-
biological conditions (values discretized byRDI ) and at tions at biological condition®©xidative phosphorylation
most 98 gene annotations (24 GO annotations, 15 KEGG(path:sce00190) an@itrate cycle(path:sce00020), which
annotations, 25 transcriptional regulators, 14 phenatype is in agreement with the curve of glucose concentration re-
and 20 pubmed keywords). ported in the original paper [9].

Additionally, rule 10 shows that the genes involved in
glyoxylate and dicarboxylate metaboligipath:sce00630)
were also mainly over-expressed at the last time point which
. reflects the main metabolic changes associated to the di-

To explore the full potential of the BNMINER ap-  gyxic shift in yeast, manually identified by DeRisi [9].
proach, we applied it to the extended Eisen datasetintegrat Ryle 11 shows that ribosomal genes (annotated with
ing gene expression profiles and collected sources of bio'path:sceOSOlO) whose promoter regions were bound by
logical information. Furthermore, we considered all pos- GAT3, FHL1 and RAP1 presented an inhibition pattern in
sible types of rules, having either gene annotations or gengesponse to nutrient starvation. These associations were
expression measures either or both in the antecedent and thgytracted with relatively high support values and suggest
consequent. We have selected and described meaningful biz -onnection among GAT3, FHL1 and RAP1 and the de-
ological rules, emphasizing the form of the rule in order to ¢rgase in ribosomal gene transcription in response to glu-
show the potentials of the &IMINER approach. cose depletion. The connection among RAP1 and riboso-

mal gene transcription is well-known [23].

4 Experimental results

4.1 Associations Annotations= Expressions

. . . 4.2 Associations Expressions=- Annotations
Association rules with the forngene annotations=

gene expression profilasean that a group of gene asso- Rules with the formgene expression profiles- gene
ciated with a specific set of annotations is likely to be over- annotationsmean that when a group of genes is over-
expressed or under-expressed in a set of biological condi-expressed or under-expressed in a set of biological condi-
tions. This type of association rules corresponds to the typ tions, these genes are likely to have the corresponding gene
of rules searched by Carmorad al. [5]. Selected associ- annotations. Selected association rules extracted weith-G
ation rules extracted with B\MINER are presented in Ta- MINER are presented in Table 2. The antecedent of the rule
ble 1. Supports are given in number of transactions and contains the over-expression or under-expression in afset o
confidences are percentages. biological conditions and the consequent is composed by
Rules on the heat shock experiment (labels heatl totheir corresponding gene annotations.

heat6) have as antecedent various terms related to protein Concerning the elutriation process (labels elul to elul4)
synthesis (go:000641t2anslation go:0042254ibosome  that is part of the cell cycle experiment, we have found
biogenesis and assemblygo:000584@Gibosome and (rules 1-3 from Table 2) an over-expression of the responsi-



Rule  Antecedent Consequent Supp (#) Conf(%) Rule Antecedent Consequent Supp. (#) Conf. (%)

1 elus| eluél elu7t g0:0006412 26 87 1 path:sce00190 g0:0005737 52 96
2 elu4 elu5) elu6l g0:0006412 18 86 2 pr:FHL1 pr:RAP1 114 86

3 elu2| g0:0006996 12 55 3 pr:RAPL, pr:FHL1  go:0005737, 93 82
4 Spo4 spoiy spof, g0:0005975 12 52 g0:0006412,

5 spoZ spo3 g0:0006412 27 57 g0:0005840

6 spo3 spo4 spos path:sce00010 13 52 4 pmid:16155567 phenot:inviable 96 94
7 heat3 heat4 heat§  go0:0006412 35 88 5 g0:0005739 g0:0005737 503 100
8 heatg g0:0006996 41 69 6 g0:0005740 g0:0005737, 167 100
9 heat2 g0:0042254 39 66 g0:0005739

10 heat2 heat3 heat§  go:0006950 15 52

11 dx5rdx71 go:0006091 24 52 Table 3. Associations Annotations=- Annotations

12 dx6| dx7] g0:0006412 21 66

Table 2. Associations Expressionss Annotations with a high support of 114 and a confidence of 86% (rule

2 of Table 3) indicates that the genes activatedfldy L1
) ) _ are also activated by AP1 This information is already
ble genes of the protein synthesis (go:0006&a8slation  ynown and was described in many articles. For example
and an under-expression of the genes responsible of the celypn 40 et al. [33] state that?AP1 binding is essential for
Iu_Iar orga_nization (90:0006996rganelle organization and  the recruitment ofF HL1", and they explain the associa-
biogenesis _ _ tion between them in the following phrase: "based on re-
In the sporulation experiments (rules 4-6 from Table 2), cent work, a simple model for the transcription of RP (ribo-
we note an under-expression of the genes intervening in theggm g proteins) genes is thAA P1 recruitsF H L1, which
sugar formation (go:000597&rbohydrate metabolic pro- iy tyrn recruits the transcriptional activatéf"H1". The
ces$ and the protein synthesis (go:00064i&nslation. |ast phrase confirms the results obtained in rule 3 of Ta-
This claim is confirmed by the under-expression of the pe 3 where the promotefgA P1 andF H L1 are closely re-
genes belonging to the process of sugar transformation intoj5ied to the Gene Ontology terms go:000578t@plasn),
energy (path:sce0001Blycolysis / Gluconeogenegis g0:0006412tfanslation) and go:000584Qriposomd. The
In the Heat Shock process (rules 7-10 from Table 2), g |ast terms are closely related to protein synthesis and
we note an under-expression of the genes responsible fofne cytoplasm activity shows us the transcriptional catiul

the protein synthesis (go:00064translation), the cellular  activity while RAP1 and FH L1 transcription factors are
organization (go:0006996rganelle organization and bio-  gctivated.

genesiy, the ribosomal organization (go:004226dosome
biogenesis and assembplgnd an over-expression of the
genes related to stress response (go:00088&tonse to

stress. genes and a confidence of 94%. The PubMed article

Concerning t_he diauxic shift process (rules 11-12 from 1615567 'The synthetic genetic interaction spectrum of es-
Table 2), there is an over-expression of the genes respon-

) . ] . sential genes’ [8] presents a review of the essential yeast
S'fble for the enetrgg Igteneratlcci)n (go.OOOCEiSO;Hneratclion genes. These genes are for the majority annotated as in-
of precursor metabolites an .ene)g)an an unaer viable, i.e. the organism does not survive when the corre-
expression of the genes responsible for the protein syisthes

. sponding gene is removed.
0:0006412Zranslation. . o .
(9 lory When analyzed data represent a hierarchy, it is possi-

ble, by examining the obtained rules, to reconstitute the
original hierarchy. For example, rule 4 of Table 3, i.e.
Independently from the gene expression levels, it is also90:0005739= go:0005737with a support of 503 and a
possible to highlight existent relationships among gene an confidence of 100% means that there are 503 genes anno-
notations. Selected association rules extracted wighi-G ~ tated by go:0005739 and also by go:0005737. go:0005739
MINER are presented in Table 3. Both antecedents and con{mitochondrion is either a sub-term of go:000573ay(o-
sequents of these rules contain gene annotations. plasm) or it represents exactly the same concept. In Eisen
We identify associations between annotations from dif- data set, we have more than 1500 genes annotated with
ferent sources like the relationship between the KEGG g0:0005737. Therefore, go:0005739 is a sub-term or child
term sce00190 purine metabolisin and the GO term  of the parental term go:0005737.
g0:0005737¢ytoplasn (rule 1 of Table 3). The rule 6 of Table 3, i.eg0:0005740= g0:0005737,
Concerning the transcriptional regulators, extractedsul go:0005739with a support of 167 and a confidence of
enable to state strong relationship between promoters100%, means that the terms annotated go:0005740 are also
FHL1andRAP1. Forexampletherulé'HL1 = RAP1 annotated by go:0005737 and go:0005739. Thus, we con-

We also detected rules which relate scientific arti-
cles with phenotypes as the rule 4 of Table 3 where
pmid:16155567=- phenot:inviablewith a support of 96

4.3 Associations Annotations= Annotations



tinue the unfolding of the hierarchy go:0005740ifochon- propose the use of several discretization scenarios, znaly

drial envelopg is a sub-term of go:0005739nftochon- ing the pertinence of obtained results against expected re-

drion) containing 167 genes. sults, to validate the discretization method. In a recemkywo
Pan et al. [25] suggested that "the robustness of biological

5 Discussion and conclusion conclusions made by using microarray analysis should be

routinely assessed by examining the validity of the conclu-

- sions by using a range of threshold parameters issued from
We presented the &IMINER ARD approach fulfilling different discretization algorithms". Unfortunately, ¢ar

:hehreqluw_eme_lrjrtf of data (r)]pt?lnedtfrom gene eXpr_ess'onknowledge no discretization algorithm, specially desijne
echnologies. This approach Integrales gene expresenpr ¢, j,q process data, can integrate the time variable with-
files with gene annotations to discover intrinsic assoaieti out an important loss of temporal information

among both data sources; it is thus a co-clustering tech- . , , . . .
Another delicate issue in association rules discovery is

nique. It is also a bi-clustering technique that can find pat- he thresholds f loct anificati |
terns of genes that are co-expressed in subsets of biological® thresholds for selecting significative rules. Suppod a

conditions. In opposition to most gene expression interpre confidence are co_mputed while rules are extracted from th_e
tation approaches, as welkpression-baseasknowledge- date}set, and are, in many cases, the only ones used to point
basedin which biological information and gene expression OUt ItS rélevance. For genomic data, the minimum support
profiles are incorporated in an independent manner, our ap_threshold must.be set low since |_f only a small set of genes
proach integrates both data sources in a single framework, '€ annotated into a very specific category, the support of
GENMINER takes advantage of theLGSE algorithm rules containing this annotation will be quite low. Never-
[27] that was specifically designed for extracting associa- theless, if these rules have a high confidence value, they

tion rules from highly correlated data. With such data, ARD "€V€al that this specific biological property is highly asso
execution time and memory space usage are high [4], limit- ated with an expression pattern of another gene annotation

ing capabilities of classical algorithms, such as Apridi [ that appears in the consequent. However, an associat®n rul

to extract only associations concerning important grodps o with high support and confidence can be useless, if the con-

genes. CosEaddresses this problem by limiting the search sequ_ent itemset of_the rule is highly freq_uent in the dataset
space and the number of dataset scans to reduce executio"fﬁnd Is thus a_lss_,omated to many other itemsets. In other
ords, associations among weakly correlated elements can

times and memory space usage. Moreover, the number oi‘t’)\' d using th fid f K
association rules extracted from correlated data is mest of °€ generated using the support-confidence framework [15].

ten very important and many of these rules bring the same CENMINER is based on the support-confidence framework,
information, and are thus redundant [7, 28]. This is an im- but other statistical measures to evaluate correlatioim¢or
portant drawback for rules interpretation by the analyts. depend(_ence) _between cons_equents and ar_1teceden_ts of rules
address this problem L©SE extracts a basis for association €21 €asily be integrated during the calculation phasiser th
rules that is a minimal set of non-redundant rules; All ifor Nt€rpretation phasis, to filter rules between weakly corre
mation is summarized in a minimal number of rules, each 'at€d gene patterns and order other rules.
rule bringing as much information as possible, to improve  The analysis of the well-known gene expression datasets
the results relevance. from Eisen [10] has demonstrated the capacity &NG
Gene expression technologies data, where several gen® INER to extract meaningful associations among gene ex-
groups are expressed together in different biological éond Pression profiles and gene annotations. Furthermore, we
tions, are highly correlated data. Using thed3E algo- have shown the potential of this approach to integrate sev-
rithm, GENMINER can deal with very large datasets of ge- €ral heterogeneous sources of information such as GO,
nomic data and experiments show that its execution timesKEGG, phenotype information, transcriptional regulators
and memory usage are significantly smaller than those ofinformation and information of selected articles with gene
the Carmona et al. [5] Apriori-based approach. Further- €xpression profiles. This is only an example oEIG
more, it enables the use of several heterogenous sources d¥lINER possibilities, that can easily integrate any kind of
annotations, including thousands of annotations related t gene annotations obtained from any source of biological in-
studied genes. formation. Therefore, the integration of different types o
GENMINER also imp|ements a new discretization a|go_ biOlOgical information is an essential consideration tﬂyfu
rithm, called NoRrDI , specially designed for discretizing Understand the underlying biological processes. In autuliti
data issued from gene expression technologies in the case diualitative variables (gender, tissue, age, etc.) coutlyea
independent biological conditions. Experiments condiicte be added to the analysis in order to extract associatios rule
on the Eisen dataset show thabRbi algorithm results ~ @mong these features and gene expression patterns.
are relevant. However, the discretization issue is a deli- Another important feature of NMINER is its capacity
cate step when using data mining methods as ARD and weto extract association rules containing itemsets composed



of both gene annotations and gene expression patterns if17] T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-Joseph,
the antecedent and/or the consequent. Analysing associa-
tion rules generated by &IMINER , we have found impor-
tant relationships supported by recent biological literat
These results show thatEGIM INER is a promising tool for

finding meaningful relationships between gene expression

patterns and gene annotations.
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