N
N

N

HAL

open science

BIBLE: a system for Design and Management of
Context-Controlled Documents

Claude Pasquier

» To cite this version:

Claude Pasquier. BIBLE: a system for Design and Management of Context-Controlled Documents.
First International Conference on Principles of Document Processing, 1992, Washington DC, United

States. hal-01154855v2

HAL Id: hal-01154855
https://hal.science/hal-01154855v2

Submitted on 21 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01154855v2
https://hal.archives-ouvertes.fr

BIBLE : a system for design and Management of
Context-controlled Documents

Claude Pasquier

Informatique CDC, Recherche Développement Techniques Avancées
4 rue Berthollet BP 16 - 94114 Arcueil Cedex, France.

I3S -CNRS - UNSA
Rue Albert Einstein - BP 145 - 06903 Sophia-Antipolis Cédex, France.

October 25, 1992

abstract: International standards for the representation of structured docu-
ments like ODA [1S08613 89] or SGML [ISO8679 86] are well adapted for the
design and the generation of long and sophisticated documents like books or
technical documentation. But, in the tertiary industry, most documents are
intended for clients. Their constitution depends on the client profile. For these
documents, the traditional document processing model (figure 1) is inappro-
priate, it is necessary to introduce an intermediate step between editing and
formatting. This step permits choice of content and structure based on the
client profile. We call this new phase the automatic design (figure 2). Between
this new phase and the editing process, we need a specific logical structure with
variable parts. We use the term context-controlled to express that the descrip-
tion of the document depends on external information coming from the client
profile. A structured document is described by a fixed indiscriminate logic of
subordination. To represent a variable subordination, a context-controlled doc-
ument also contains instructions on how to use variables from the client profile.
Some of these instructions are specific to one document, but other concern a
type of document. So, they can be specified in the document model. All mod-
els are gathered in a document database. Modularity allows us to create new
models by reusing existing modules. But, this concept doesn’t provide for mod-
ification of shared module neither does it introduce a sufficient structure for
modelling large numbers of models. We have resolved this roblem by using in-
heritance. This concept permits us to structure the document database in an
tree ike manner. Both the modelling of the document database and the working
of editors are described by using an object-oriented approach.

keywords: structured document, context-controlled document, variable doc-
ument, automatic design, client-selective mailing, inheritance, reusability.

Introduction

International standards for the representation of structured documents like ODA
[1S08613 89] or SGML [ISO8679 86] are well adapted for the design and the gen-
eration of long and sophisticated documents like books or technical documen-
tation. But, in the tertiary industry, most documents are intended for clients.
Their constitution depends on the client profile.

By the term client profile, we mean all information which may be used to
govern the choice of the structure, the content or the presentation of a document.
This information can refer either the recipient of the document, its writer or a
particular context like economic position.

For high volume client-selective documents, the traditional document pro-
cessing model (figure 1) is inappropriate. Volumes are such that cost prohibits
the creation of a specific document for each person who receives a mailing, yet
the same document may not be applicable for each targeted reader.

Moreover, current standards don’t include the concepts of reusability, mod-
ularity [Quint 89] or inheritance, even though they have an object-oriented
approach. But these concepts are necessary to modelize more than one kind of
document.

The group Caisse des Dépots et Consignations is especially concerned by
these problems since thousands of documents are produced every day. Therefore,
a project named BIBLE was launched in 1990, to define a new architecture for
the production of documents.

In the first section of this paper, we explain the differences between a tra-
ditional document processing model and the processing model used in BIBLE
which permits the semi-automatic design of documents. We introduce in this
section a new kind of document representation called context-controlled docu-
ment. In the second section we describe context-controlled documents. In the
third section, we discusse the creation and modification of document models
which are used to guide the editing and formatting of documents.. Finally, we
introduce in the fourth section, the concept of inheritance in order to provide
commun structure for all document models.

1 A new document processing model

In traditional systems for the manipulation of structured documents, a docu-
ment is represented by a logical structure created in accordance with specifica-
tions hold in a generic structure (called DTD in SGML). The layout structure
of the document is generated by a formatting process from the logical structure
and some presentation rules. The set of these rules is also called generic layout
structure. After that, an imaging process produces the final image of document
adapted to the output medium (figure 1).

To automate high-volume client selective mailing, it is necessary to introduce
an intermediate step between editing and formatting. This step permits choice
of content and structure based on the client profile. We call this new phase the
automatic design (figure 2).

Between this new phase and the editing process, we need a specific logical
structure with variable parts. The choice of document parts is governed by data
issuing from client profile. We use the term context-controlled to express that

Generic Generic
Logical Layout
Structure Structure

v v

Logical Editing Logical Formatting Layout Image of

Imagi
structure —> Process > structure ——>1 Process > structure ——>| Prog::slg —>> Document

Figure 1: A traditional document processing model

the description of the document depends on external information coming from
the client profile. Therefore the editing process must allow the user to work on
variable parts of the context-controlled logical structure. This structure is also
called a context-controlled document.

Generic Generic

Logical Layout
Structure Structure

External
Data

Cont.elzln. Ed Contelxltr Automatie

controlle iting controlle < Logical Formatting Layout Imaging Image of
Logical Process »Logical P:;fg:s structurd®| Process PPstructurd®| Process PPDocument
structure structure

Figure 2: The model of document processing in BIBLE

2 The context-controlled document

The tree-like structure of a document is represented by a list of expressions
describing the content of each object. For example,

Body = {Paragraph#l1 Paragraph#2 Paragraph#3}

Means that the object named Body contains the tree paragraphs between
the brackets.

In this representation, documents are described by a fixed indiscriminate
logic of subordination.

2.1 Variable subordination

A context-controlled document must also contain instructions on how to use
variables from the client profile in order to automatically design documents.
These instructions may be very complicated because the client profile is used in
different ways:

e it may be printed as is. For instance, the name and the address of the
recipient of a letter is simply copied from the database to the document,

e it may be used to choose content. For example, the form of polite address
is computed according to the sex and the family condition of the recipient,

e it may be used to govern both structure and content. For instance in
an insurance contract, some clauses or chapters can be determinated in
accordance with client characteristics.

2.2 Attaining variable subordination

The use of external data is denoted by $<war>. Like in the sentence :

We let you know that your banking account number $BankAccNumber is in
debit balance of $BankAccBalance ECUs.

In addition, to express control structures in the context-controlled document,
two other constructors are used:
The choice between several elements, denoted by CASE $<var> OF.

e.g.: FormOfAddress = CASE $sex OF {

"Male" . "Mrll

"Female" : CASE $married OF {
"Yes" : "Mrs"
o' i "Ms "
}

}

The repetition of an element, expressed by the construct LIST (<lowerLimit>,

<upperLimit>) OF. LowerLimit and upperLimit are either a constant or a vari-
able.

e.g.: BranchsReports <-- LIST (1 .. $nbBranch) OF BranchReport

2.3 Linking to the database

To generate structured documents from a context-controlled document, we need
to make a link between variables used in the document and data issuing from a
database. This is made with the command :

GENERATE < Context Controlled Document >
(<1list of variables used in documents >)
USING <list of variables from database >

In combination with a database language like SQL [ANSI 86], this allows us
to select the documents to produce. For instance, to send a follow-up letter to
all late-payers:

GENERATE LatePayerFollowupLetter ($name $address $date
$bankAccNumber $bankAccBalance)
USING SELECT c.name c.address p.date c.bankAccNumber
c.bankAccBalance
FROM (Client c, Parameters p)
WHERE c.bankAccBalance < 0O

3 The design of document models

Models are used in the editing process and the formatting process. They are
created and modified by a model editor.

3.1 The logical models

The control structures in context-controlled documents use the data from the
client profile. Some of these control structures are specific to one document.
They are mentioned by the user in the editing process. But other control struc-
tures concern a type of document. For instance, the determination of the polite
address is the same for all letters. So it can be specified in the letter model.
The same approach applies to the name and address of the receiver or the date.

When a document is created, control structures are simply transmitted from
the model to the document. In this way, the writer can focus his full attention
on the essential of adocument, its content:

Letter = {
Header = {
Name

Address = $address
Date = $date}
Body}
Body = {
LIST [1..%] OF
Paragraph = CHOICE {TEXT TABLE}
Signature = CHOICE {
$bigboss-signature
$staffManager-signature
$chiefAccountants-signaturel}}

Name = {
CASE $sex OF {
llMale" . Ierll
"Female" : CASE $married OF {
"Yes" : "Mrs"
"No" : "Ms"}
$name}

In this example, the structure of a document is expressed by the grammar
[Furuta 88] [Ingold 88] which uses the following constructors [Quint 88] :

e The aggregate, represented by a list of elements delimited with brackets.
e.g : Letter = {Header Body}

e The choice between several elements denoted by the keyword CHOICE.
e.g: Paragraph = CHOICE {TEXT GEOMETRICGRAPHIC}

e The repetition of an element, expressed by the construct LIST [<lowerLimit>
. <upperLimit>] OF.
e.g : Body = LIST [1..*] OF Paragraph
The star denotes an unspecified limit.

The absence of an element is represented by the NULL constant. The content
of some elements can also be specified in the grammar.

The document model of Letter is expressed in modules. Body and Name are
indeed described outside the model. In this way they constitute independants
structures which can be reused in the description of other documents.

3.2 The layout models

The image of a document is built up from the logical model, with the help of
presentation rules [Quint 88]. These rules can be associated with each logical
object, or better still, be described separately. With the latter solution, we can
have different presentations for the same logical model : a screen layout and a
paper layout for example.

From the layout point of view, a document is simply a gathering of boxes
[Knuth 86]. Each box contains its own properties, like height, width, border
size. The grammar of layout model specifies hierarchy between boxes.

The layout model of a document can be described in a modular way, like
the logical model. However, this is not sufficient to allow us to reuse boxes. We
must indeed take their position into account.

In the ODA standard, box position is specified in the box itself with the
attribute Position (ISO8613-2 p.65) which prohibits reuse of the box. To solve
this problem, we mention positions in the grammar, when boxes are used. In
this way, box are context independant and can be used in several documents at
different places.

This allows us easily to build layout models of documents by placing boxes
on the page.

The position and dimension of boxes is expressed either by fixed coordinates
or with a set of constraints [Franchi 89] such as separation from other boxes,
alignment, dimension suitable for content, etc. For instance, the layout model
of a letter can be described by :

Letter-lay = {
FirstPage = {

AT <POS > FirstPageHeaderBox = {
AT <P0OS >NameBox
AT <P0OS >AddressBox
AT <POS >DateBox
}
AT <POS >FirstPageBodyBox}
OtherPages = {
AT <POS >0therPagesHeaderBox = {

AT <POS >DateBox2}
AT <P0OS >0therPagesBodyBox}}

3.3 Linking logical models with layout models

In order to be complete, the description of a model must contain links between
its logical and layout aspects.

In the project BIBLE, we have chosen to express relations separately, in the
form of a set of links:

Name --> NameBox

Address --> AddressBox

Date —--> DateBox, DateBox2

Body --> FirstPageBodyBox:0therPagesBodyBox

This example shows the tree different possibilities:

e Address —> AddressBox means that the logical object Address must be
displayed in the box named AddressBox. If AddressBox can’t hold the
content of Address (after reshaping if the box dimension is variable) then
the content of Address is truncated.

e Date —> DateBox, DateBox2 means that the logical object Date must be
displayed in DateBox and in DateBox2. As for Address if a box can’t hold
the entire Date, it is truncated.

e Body —> FirstPageBodyBox:OtherPagesBodyBox means that the content
of Body is displayed in FirstPageBodyBox. If Body can’t fit in FirstPage-
BodyBox, then the rest of the content is displayed on OtherPagesBody-
Box.

4 The management of several models

All models are gathered in a document database. Modularity allows us to create
new models by reusing existing modules. But this concept doesn’t provide
for modification of shared modules in a document neither does it introduce a
sufficient structure for modelling large numbers of models.

4.1 The limits of reusability

In section 3.1 we said that modularity allows us to reuse structured objects.
This is true, but modularity has its limits.

Suppose that we want to create a new model of letter in which paragraphs
will be grouped in sections.

To create the structure of NewLetter we can reuse Header of Letter. For
describing the Body, we have two solutions : either we rewrite it entirely, or we
copy and modify Body from Letter.

In the two cases, the result is the same : Body of Letter and Body of
NewLetter are described in an independent way. We lack all advantages of
reusability. For instance, if we latter want to modify all letters in order to put
the writer’s name under his signature, we need to modify more than one model.

4.2 The use of inheritance

We have solved this problem by using inheritance. The structure of NewLetter
can indeed be expressed in terms of modifications of the model of Letter. In
this way, all modifications done within the structure Letter will be incorporated
automatically in the structure of Newletter. So to add the name of the writer
on all letters, we only have to modify a single model.

In BIBLE, we have chosen to generalize this concept by decreeing that each
document be created by specialization. BIBLE defines a single, root document

represented by an empty structure. Thus all documents are structured in an
tree like manner (Fig. 3).

Document
Note Report Letter
External Internal Article Letter NewlL
Note Note WithLogo eyvlietier

Figure 3: Example of a model hierarchy

4.3 Using an object-oriented approach

BIBLE uses the concepts, of instanciation and inheritance of object-oriented
programming field. Both the modelling of the document database and the
functioning of editors can be described by using an object-oriented approach.

The structure of each model can be gathered in a class. Thus the context-
controlled documents generated from models are described by instances of classes.
As in all object-oriented languages we describe the behaviour of instances in
classes and the behaviour of classes in metaclasses [Murata 89].

We describe the functions of our syntax-directed document editor in classes
and the working of our model editor in metaclasses.

Summary

This article is primarily concerned with the generation of documents from
context-controlled documents and the design of document models. The weak-
ness of this part is the use of a set of links to describe the matching between
the logical and the layout aspect of a document. We are trying to replace this
system by a dynamic matching between the two structures. We are also work-
ing on the definition of a new structure, that we’ll call context-controlled layout
structure, to allow a variable control of the document’s presentation

However the most innovative aspect of our project concerns the organization
of a set of models.

At the present time, we are defining and experimenting the concept of in-
heritance between structured objects. We are studying the possibility of using
multiple inheritance. For instance, creating a new model of a letter which inher-
its both the Logo defined in LetterWithLogo and the Section used in NewLetter
(see section 4.1 & 4.2).

5 Acknowledgements

I am grateful to the members of Reaseach Department of Informatique CDC
who kindly read primary versions of this paper and made many constructive
comments. I also wish to thanks Prof. Paul Franchi-Zannettacci for his valuable
advices and Mr. Kent Hudson for his help.

References

[ANSI 86] American National Standard for Information Systems, Database
Language SQL, ANSI X3.135-1986, October 1986.

[Franchi 89] P. Franchi-Zannettacci, Context-Sensitive Semantics as a Basis for
Processing Structured Documents, WOODMAN’89

[Furuta 88] R. Furuta, V. Quint, J. André, Interactively editing structured doc-
uments, Electronic Publishing, vol. 1, no 1, pages 19-44, April 1988.

[Ingold 88] R. Ingold, R. Bonvin, G. Coray, Structure recognition of printed
documents, in Document Manipulation and Typography, Proceedings of the
International Conference on Electronic Publishing, Nice, April 1988.

[ISO8613 89] ISO 8613, Information Processing - Text and Office Systems -
Office Document Architecture (ODA) and Interchange Format, 1989.

[ISO8879 86] ISO 8879, Text and Office Systems - Standard Generalized
Markup Language (SGML), 1986.

[Knuth 86] D. E. Knuth, The TEXbook, Addison-Wesley Publishing Company,
1986

[Murata 89] M. Murata, An object-oriented interpretation of ODA, WOOD-
MAN’S09.

[Quint 88] V. Quint, Systems for the manipulation of Structured Documents,
Cambridge University Press, in Structured Documents, pages 39-74, 1989.

[Quint 89] V. Quint, I. Vatton, Modularity in structured documents, WOOD-
MAN’S9.

