N
N

N

HAL

open science

Frequent Pattern Mining in Attributed Trees:
algorithms and applications

Claude Pasquier, Jérémy Sanhes, Frédéric Flouvat, Nazha Selmaoui-Folcher

» To cite this version:

Claude Pasquier, Jérémy Sanhes, Frédéric Flouvat, Nazha Selmaoui-Folcher. Frequent Pattern Mining
in Attributed Trees: algorithms and applications. Knowledge and Information Systems (KAIS), 2015,

46 (3), pp-491-514. 10.1007/s10115-015-0831-x . hal-01154854

HAL Id: hal-01154854
https://hal.science/hal-01154854

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01154854
https://hal.archives-ouvertes.fr

Frequent Pattern Mining in Attributed
Trees: Algorithms and applications

Claude Pasquier!?, Jérémy Sanhes?

Frédéric Flouvat? and Nazha Selmaoui-Folcher?

1Univ. Nice Sophia Antipolis, I3S, UMR 7271, 06900 Sophia Antipolis, France
CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

2Multidisciplinary research team on material and environment (PPME),
University of New Caledonia, 98851, Nouméa, New Caledonia

Abstract. Frequent pattern mining is an important data mining task with a broad
range of applications. Initially focused on the discovery of frequent itemsets, studies
were extended to mine structural forms like sequences, trees or graphs. In this paper, we
introduce a new domain of patterns, attributed trees (atrees), and a method to extract
these patterns in a forest of atrees. Attributed trees are trees in which vertices are as-
sociated with itemsets. Mining this type of patterns (called asubtrees), which combines
tree mining and itemset mining, requires the exploration of a huge search space. To
make our approach scalable, we investigate the mining of condensed representations.
For attributed trees, the classical concept of closure involves both itemset closure and
structural closure. We present three algorithms for mining all patterns, closed patterns
w.r.t. itemsets (content) and/or structure in attributed trees. We show that, for low
support values, mining content-closed attributed trees is a good compromise between
non redundancy of solutions and execution time.

Keywords: Tree mining; Frequent pattern mining; Attributed tree; Condensed repre-
sentation

1. Introduction

Frequent pattern mining plays an important and essential role in the field of
data mining. These patterns allow to describe the data with association rules,
correlations or other interesting relationships. In addition they show their use-
fulness in classification tasks (Deshpande, Kuramochi and Karypis, 2003; Gay,
Selmaoui-Folcher and Boulicaut, 2010), indexing (Yan, Yu and Han, 2004), clus-
tering (Pensa and Boulicaut, 2005) and other data mining tasks. Initially focused
on the discovery of frequent itemsets (Agrawal, Imieliiski and Swami, 1993),
studies were extended to mine sequences (Agrawal and Srikant, 1995) and struc-
tural forms like trees (Chi, Muntz, Nijssen and Kok, 2004) or graphs (Washio and

2 C. Pasquier et al

Motoda, 2003). While itemset mining seeks frequent combinations of items in a
set of transactions, structural mining seeks frequent substructures. Most existing
studies focus only on one kind of problem (itemset mining or structural mining).
However, in order to represent richer information, it seems natural to consider
itemsets that are organized in complex structures. In this paper, we are inter-
ested in discovering complex patterns in attributed trees, that are tree structures
in which each vertex is associated with an itemset. We introduce a new kind of
pattern that captures both structural trends and attribute evolution. Combining
structural enumeration with itemset enumeration is still an open problem.

For example, an epidemic of dengue fever is characterized by a set of interact-
ing factors, causing the spread of the disease in space and time. In this situation,
it is important to know which factors have an effect on dengue epidemiology,
and how. Even if the global influence of environmental factors (water points,
nearby mangrove, rainfall, humidity etc.) is known, the impact of all the factors
together with their interactions is still an open problem. Indeed, the spread of a
vector-borne disease in a city (e.g., the Dengue fever) can be represented in an
attributed structure in which vertices represent city districts at a given times-
tamp, vertex attributes are characteristics of the districts and edges represent
spatial or temporal neighboring between vertices.

Another illustration of the use of attributed trees can be found in Weblog
analysis. In this kind of applications, it is common to represent user browsing in
tree-like data where each page is identified with a unique id (Zaki, 2005). How-
ever, one can more pertinently characterize browsed pages with lists of keywords
related to their content. This approach allows to capture the browsing habits of
users even when the web site is reshuffled.

Other applications can be imagined in various areas such as retweet tree min-
ing, spatio-temporal data mining, phylogenetic tree mining and XML document
mining.

The key contributions of our work are the following:

1. We present the problem of mining ordered and unordered substructures in a
collection of attributed trees.

2. We define canonical forms for attributed trees.

3. We propose a method for attributed tree enumeration that is based on two
operations: itemset extension and tree extension.

4. We present an efficient algorithm IMIT for extracting frequent substructures
in a set of attributed trees.

5. We perform extensive experiments on several synthetic and real datasets.

The rest of this paper is organized as follows. Section 2 presents basic con-
cepts and defines the problem. Section 3 proposes a brief overview of related
works, particularly a few studies that mix itemset mining and structure mining.
Section 4 describes our proposed method to explore the search space, to compute
frequency and to prune candidates. Section 5 reports several applications of the
algorithms to mine both synthetic and real datasets. Finally, section 6 concludes
the paper and presents possible extensions of the current work.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 3
2. Basic concepts and problem statement

In this section, we give basic concepts and definitions then, we introduce the
problem of attributed tree mining.

2.1. Preliminaries

Let Z = {i1,12,..,i,} be a set of items. An itemset is a subset P of Z (P C 7).
The size of an itemset is the number of items. The items belonging to an itemset
are sorted by lexicographical order and are accessed by their index. The ith item
of P is denoted by P[i].

A tree S = (V, E) is a directed, acyclic and connected graph where V' is a set
of vertices (nodes) and E = {(u,v)|u,v € V} is a set of edges. A distinguished
node r € V is considered as the root, and for any other node = € V, there is a
unique path from r to x. If there is a path from a vertex u to v in S = (V, E),
then w is called an ancestor of v (v is called a descendant of u). If (u,v) € E (i.e.
u is an immediate ancestor of v), then wu is the parent of v (v is a child of u).
An ordered tree has a left-to-right ordering among the siblings. In this paper,
we consider that all trees are unordered unless otherwise specified.

An attributed tree, or (atree) is a triple T' = (V, E, X) where (V, E) is the
underlying tree and A : V' — pow(Z) is a function which associates an itemset
A(v) € T to each vertex v € V. pow(Z) denotes the power set of Z. The size of
an attributed tree is the number of items associated with its vertices. A k-atree
is an atree of size k.

Attributed trees can be seen as itemsets organized in a tree structure. As
such, attributed tree inclusion can be defined w.r.t. itemset inclusion and
structural inclusion. For itemset inclusion, we say that atree T} is contained in
atree T if both atrees have the same structure and for each vertex of Ti, the
associated itemset is contained in the itemset of the corresponding vertex in T5.

Definition 1 (Itemset/content inclusion). 77 = (Vi, E1, A1) is contained
inT, = (VQ,EQ,)\Q), and is denoted by T Ty, Zf Vi =V, and E; = E5 and
Vx € Vl,)\l(a?) -)\2(1‘)

Structural inclusion is represented by the classical concept of subtree (Balcazar,
Bifet and Lozano, 2010; Chi, Muntz, Nijssen and Kok, 2004; Hido and Kawano,
2005; Nijssen and Kok, 2003; Termier, Rousset and Sebag, 2004; Xiao, Yao, Li
and Dunham, 2003; Zaki, 2002). Thus, we generalize the notion of asubtree in
the following way to include both content and structural inclusion.

Definition 2 (Structural and content inclusion). T} = (Vi, E1, A1) is an
asubtree of an atree T = (Va, Eo, A2) and is denoted Ty T T» if T is an
isomorphic asubtree of Tb, i.e. there exists a mapping ¢ : V4 — V5 such that i)
Ty # Ts, ii) Y(u,v) € E1, 3(p(u), p(v)) € Ey and iii) Yo € Vi, A1(x) C A2(p(x)).

If Ty is an asubtree of Ts, we say that T5 is an asupertree of T;. The two
kinds of inclusion are illustrated in Fig. 1.

Three subtypes of inclusion relationships are usually studied in tree mining;:
induced, embedded and embedded with gaps.

Definition 3 (Induced asubtrees). T; is called an induced asubtree of T,
iff Ty is an isomorphic asubtree of To and ¢ preserves the parent-child relation-
ships.

4 C. Pasquier et al

a a a
/\ /\ /\
cde c ce ¢ ce ¢
/\ /\ |
ab a a a a
T T T
original tree T T T
but To iZ; T

Fig. 1. Illustation of the different types of inclusion.

Input database (D) Common asubtrees
a a a

/\ / N\ | a a a a a
ab cde ¢ cde cde ‘ | | /\ |
/\ /\ cde e c ab ¢ a

ab a abc ¢
T1 T2 T3 T4 T5 Té T7 T8
—— —

gap-0 asubtrees gap-1 asubtrees

Fig. 2. Example of an atree database with some common asubtrees.

Definition 4 (Embedded asubtrees). T is called an embedded asubtree
of Ty iff T1 is an isomorphic asubtree of T and ¢ preserves the ancestor-
descendant relationships.

Definition 5 (Gap-i asubtrees). T} = (4, E1, A1) is called a gap-i asubtree
of Ty = (Va, Ea, A2) 4ff T1 is an isomorphic asubtree of T» and ¢ preserves the
ancestor-descendant relationships with the following constraint: V(u,v) € Ej,
d(p(u), o(v)) < i+1in Ty, where d(z,y) represents the number of edges between
x and y in the atree.

A gap-0 asubtree is synonym to induced asubtree as it designates an asubtree
where each descendant is separated from its ancestor by a distance of 1, i.e. each
descendant is a child. A gap-free asubtree is equivalent to an embedded asubtree.

Fig. 2 shows an example of an atree database (D) composed of three different
atrees with two (incomplete) sets of common asubtrees using maximum gaps of
0 and 1.

2.2. Problem statement

2.2.1. Frequent atree mining

Given a database B of atrees and an atree T, the per-tree frequency of T
is defined as the number of asupertrees of T in B. An atree is frequent if its

per-tree support is greater than or equal to a minimum threshold value. The
problem consists in enumerating all frequent patterns in a given forest of atrees.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 5
2.2.2. Mining closed atrees

The problem with frequent atree mining is that the number of frequent patterns
is often huge. In real applications, generating all solutions can be very expensive
or even impossible. Moreover, many of those frequent atrees contain redundant
information. In Fig. 2, for example, the atree T'5 is present in all input atrees but
this pattern is already contained in the atree T4. The atree T'8 is also redundant
w.r.t. T'7 since it is an asubtree of this pattern and it occurs in the same input
atrees.

Since the proposal of Manilla et al. (Mannila and Toivonen, 1996) huge efforts
have been made to design condensed representations that are able to summa-
rize solutions in smaller sets. A set of closed patterns is an example of such a
condensed representation (Pasquier, Bastide, Taouil and Lakhal, 1999). We say
that an atree T is a closed atree if none of its proper asupertrees has the same
support as T'.

However, mining frequent closed atrees could also be very expensive. We
propose then to relax the closure property on atrees and to mine only atrees
which are closed w.r.t. their content (i.e. itemsets associated to vertices). This
condensed representation, called the set of c-closed atrees (content closed), is
a superset of the set of closed atrees (and a subset of the set of atrees).

Definition 6. We say that an atree T is a c-closed atree if there is no pat-
tern with the same structure, the same support, and the same supersets in the
corresponding vertices (”contained in” relationship previously defined).

3. Related works

Most of earlier frequent tree mining algorithms are derived from the well-known
Apriori strategy (Agrawal et al., 1993): a succession of candidate generation
and pruning (in which support computation is done) steps. Two strategies are
possible for candidate generation: extension and join. With extension, a new
candidate tree is generated by adding a node to a frequent tree (Asai, Abe,
Kawasoe, Arimura, Sakamoto and Arikawa, 2002; Nijssen and Kok, 2003). With
join, a new candidate is created by combining two frequent trees (Hido and
Kawano, 2005; Zaki, 2004). Combination of the two principles has also been
studied (Chi, Yang and Muntz, 2004).

The extension principle is a simple method suitable to mine induced trees
because the number of nodes that can be used to extend a given subtree is often
lower than the number of frequent subtrees.

Other tree mining algorithms are derived from the FP-growth approach (Han,
Pei and Yin, 2000). These algorithms adopt the divide-and-conquer pattern-
growth principle, which avoids the costly process of candidate generation. How-
ever, pattern-growth approach cannot be extended simply to tackle the frequent
tree pattern mining problem. Existing implementations are limited w.r.t. the type
of trees they can handle: induced unordered trees with no duplicate labels in each
node’s children (Xiao et al., 2003), ordered trees (Wang, Hong, Pei, Zhou, Wang
and Shi, 2004) or embedded ordered trees (Zou, Lu, Zhang and Hu, 2006) are
some kind of trees that were successfully mined with pattern-growth approaches.

Finding condensed representations of frequent patterns is a natural extension
of frequent tree mining. For itemset mining, the notion of closure is a classical

6 C. Pasquier et al

property (Pasquier et al., 1999). Several works have explored this topic in the
context of tree mining and have proposed mining methods as well as various
implementations (Chi, Yang, Xia and Muntz, 2004; Termier et al., 2004; Termier,
Rousset, Sebag, Ohara, Washio and Motoda, 2008). To the best of our knowledge,
no method has been proposed for the general case of attributed trees.

Recently interest has grown in mining itemsets organized in structures. Sev-
eral studies (Fukuzaki, Seki, Kashima and Sese, 2010; Moser, Colak, Rafiey and
Ester, 2009; Mougel, Rigotti and Gandrillon, 2012) deal with attributed graphs.
However, they focus on a specific problem dedicated to the finding of dense
subgraphs with vertices sharing similar features. In our work, we are not con-
cerned with the density of the subgraphs. We adhere to the domain of Frequent
Subgraph Mining (FSM), as defined by Jiang, Coenen and Zito (2013), whose
objective is to extract all the frequent subgraphs in a given data set.

Closest to our work, Miyoshi et al. (Miyoshi, Ozaki and Ohkawa, 2009) study
the mining of labeled graphs with quantitative attributes associated with ver-
tices. However, the kind of structure they are using allows to solve the problem
by combining a ”classical” subgraph mining algorithm for the labeled graph with
an existing itemset mining algorithm for quantitative itemsets in each vertex.

We have developed recently several algorithms to mine induced and embedded
attributed trees (Pasquier, Sanhes, Flouvat and Selmaoui-Folcher, 2013). The
current paper describes in more details the method with some improvments
(such as, for example the processing of gap-i asubtrees) and present various
applications of the algorithm.

4. Mining frequent atrees

We are mainly interested in identifying induced ordered and unordered asub-
trees. Depending on applications, some patterns including gaps in the ancestor-
descendant relationship can also be considered. However, in order to collect only
interesting patterns, the gap used should remain small. Otherwise, the relation-
ship between a node and its descendants is not really meaningful. Although we
focus on induced asubtrees, we design a general method that can mine asub-
trees with any gap value, including embedded asubtrees. However, because of
our primary objective, our method works better for induced asubtree mining
and performances decrease as gap parameter increases.

4.1. Theoretical framework
4.1.1. String encoding for attributed trees

Choosing an appropriate pattern encoding has an important impact on the per-
formance of the mining process. Many algorithms represent trees with preorder
strings (Luccio and Pagli, 1995; Luccio, Enriquez, Rieumont and Pagli, 2001; Chi,
Yang and Muntz, 2003; Chi, Yang and Muntz, 2004; Zaki, 2005) or equivalent
encodings like depth sequences (Asai, Arimura, Uno and Nakano, 2003; Nijssen
and Kok, 2003). In this paper, we extend the string encoding defined by M.J.
Zaki (Zaki, 2004) for labeled trees to the case of attributed trees.

The string encoding for an atree T' is generated by enumerating the nodes
of T in a depth-first preorder traversal and adding a special symbol $ when

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 7

a a a a
/\ /\ /\ /\
cde ¢ cde ¢ ¢ cde ¢ cde
/\ /\ /\ /\
a ab ab a ab a a ab

N———
canonical form

Fig. 3. Canonical form of isomorphic attributed trees.

backtracking from a child to its direct parent. The string representation of a
node is generated by listing all the items present in the associated itemset in
lexicographical order. For example, the string representation of atree 75 in Fig. 2
is”a ¢ $ cde ab $ a”. In the paper, for simplicity, we omit the last backtracks

(i.e. 9).
4.1.2. Canonical atrees

All tree mining algorithms dealing with unordered trees have to face the isomor-
phism problem. To avoid the redundant generation of equivalent solutions, one
tree is chosen as the canonical form and other alternative forms are discarded
(Asai et al., 2002; Chi, Yang and Muntz, 2004; Nijssen and Kok, 2003; Xiao
et al., 2003; Zaki, 2004). For labeled trees, canonical forms are based on a lexi-
cographical order on node labels. In our work, we define a new order based on
node associated itemsets.

Definition 7. Given two itemsets P and Q, we say that P < Q iff:

1. Vi € [1,min(|P],|Q])] : Pli] < Q[i], and
2. if Vi € [1,min(|P],|Q))] : Pli] = Qli], then [P| > |Q).

From the definition above, an order among atrees can be defined recursively.

Definition 8. Let X and Y be two attributed trees, r, and r, denote the root
nodes of X and Y and let ¢}*,...,c" and c}",...,c;’ denote the ordered list of

subtrees of r,, and 7, respectively. Then, X <Y iff either:

1. A(rz) < A(ry), or
2. AM(rz) = A(ry) and either:

(a) m >nand Vi € [1,n],cl* =c.” (i.e. Y is a prefix of X), or

3

(b) 3j € [1,min(m,n)], such that c;* < c;y and c[* = ¢} for all i < j.

With this order, the smallest attributed tree in a set of isomorphic atrees is
choosen as the canonical form (Chi, Muntz, Nijssen and Kok, 2004).

Fig. 3 shows examples of isomorphic trees. The second attributed tree is
choosen as the canonical form because its encoding, namely "a cde ab$a $ $ ¢”,
is the smallest one.

4.2. Atree enumeration

Rymon’s generic set-enumeration tree is often used to illustrate how itemsets are
(completely) enumerated by itemset mining algorithms (Rymon, 1992; Bayardo,

8 C. Pasquier et al

Attributed Tree Embedded asubtree T
Al a
b &

A /\ |
ac @Cd@%>9 b i ae

Fig. 4. Example of an attributed tree and one of its embedded attributed subtree
T displayed in canonical form. Framed elements highlight the position of 7" in
the attributed tree on the left.

1998). An enumeration tree is generated in the following way: The root node of
the tree is at the top level and labeled with @) (i.e. empty atree). Then, for each
node, children (candidate atrees) are generated either by tree extension or by
itemset extension. Note that frequency computation is done during candidate
generation and thus does not require to access the input atree database (see 4.3).

4.2.1. Tree extension

For tree extension, we use a variation of the well-known rightmost path extension
method (Asai et al., 2002; Nijssen and Kok, 2003). Let T be an atree of size k. T'
can be extended to generate new atrees in two different ways. In the first way, a
new child node N is added to the rightmost node of T' (right node extension).
In the second way, a new sibling N is added to a node in the rightmost path of
T (right path extension) (Chehreghani, 2011). In both cases, N becomes the
rightmost node of the generated k + 1-atree.

In the existing approaches, the extension node N represents every valid node
from the input database. In our approach, a new extension node N can be
created from every item occurring in a valid node @ of the input database. In
other words, given a valid node @ from the input database, we can extend the
atree T with every node of {N;,i € [1, | A(Q)]] | M(N;) = AMQ)][i]}.

4.2.2. Right node extension

For right node extension, we use a classical approach, which has been shown to
be complete as well as non-redundant (Asai et al., 2002; Asai et al., 2003).

Fig 4 shows an attributed tree with one of its embedded attributed subtree T
T is represented in canonical form: ”a b $ ¢ ae”. From the candidate T, right node
extension is used to generate new candidates by adding children to its rightmost
node. Two nodes, in the input tree, can be used to perform the extension: node
”ab” and node ” f”. Using the method described previously, node "ab” is used
to extend T with nodes "a” and ”b” while node ” f” allows to extend T with
node ” f”. Right node extension leads to the generation of three new candidates:
"ab$caea’,’ab$caed’ and "a b$ cae f7. Fig 5 shows the attributed trees
obtained by performing a right node extension on pattern 7" from Fig.4.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 9

a a a
/\ /\ /\
b ¢ b ¢ b ¢
| | |

ae ae ae

\ \

! g f

Fig. 5. Attributed trees generated by right node extension of pattern T
from Fig.4.

/\ /\ JINC /N
b ¢ b ¢ b
/\ /\ | |

ae g ae C ae ae

Fig. 6. Attributed trees generated by right path extension of pattern T
from Fig.4.

4.2.3. Right path extension

Right path extension in ordered atree mining For ordered tree mining,
candidate nodes are added in the order of appearance in the initial trees. This
is a commonly used approach (detailed in (Asai et al., 2002)) which is complete
and non-redundant.

Right path extension in unordered atree mining The way to perform
right path extension in unordered mining differs from previous approaches. Nodes
that can be used for right path extension of an unordered candidate atrees are
those greater or equal than any of their siblings. As candidate atrees subject to
extension are in canonical form, the test has only to be done against nodes in
the right hand path.

In Fig 4, right path extension is used to add new siblings after nodes belonging
to the right-hand path of T, namely node "ae” (by adding a new child to node
¢) and node ”¢” (by adding a new child to node a). Nodes that can be used
to generate siblings of node ”ae” are nodes "ac” and ”g”. Node ”¢” is used to
right path extend T with a new node "¢g” and node ”ac” allows to extend T
with node ”¢” which is the only node that is greater than ”ce” w.r.t. the order
previously defined (section 2). This operation generates two candidate atrees:
"abcae g’ and’ab$ cae$. The only node that can be used to generate
siblings of node ”¢” is node "bcd”. Node ”de” is not a valid candidate as it is an
ancestor of node ”b” already present in the candidate atree. Node ”bed” is used
to right path extend T" with nodes ”¢” and ”d” (adding node ”b” is not an option
because b < ¢). This generates two new attributed trees: "a b $ c ae § $ ¢’ and
"ab$ cae$$d. Fig 6 illustrates the attributed trees generated by preforming
right path extensions on pattern 7' from Fig.4.

This method can generate redundant patterns in the form of isomorphic at-
tributed trees. Duplicate candidates are detected and discarded before the can-
didate extension process by performing a canonical check. Note that because of

10 C. Pasquier et al

aei aej

Fig. 7. Attributed trees generated by itemset extension of pattern T" from Fig.4.

a . a candidate
1temset ext. .
/\ with ¢ /\ not in
b b b be canonical form
= discarded
T right path ext. /a\
be with b be b

Fig. 8. Illustation of the generation of two isomorphic attributed trees by using
different extension paths.

the way nodes are selected for tree extension, candidates are mostly in canonical
form. Using the node ordering instead of the order of appearance of nodes does
not alter the completeness of the atree enumeration process.

4.2.4. Itemset extension

Our itemset extension method is a variation of the method presented by Ayres
et al. (Ayres, Flannick, Gehrke and Yiu, 2002). In this variation, a new item I is
added to the itemset associated with the rightmost node of the candidate atree
T. Items used for itemset extension are derived from the itemsets associated
with this node in the input database. The constraint is that the new item ¢ must
be greater than any item associated with the rightmost node of T. After the
extension, ¢ (the last item of the itemset associated with the righmost node of
the generated k + l-atree) becomes the rightmost element of T'.

For example, in Fig 4, the items that can be used for itemset extension of T'
are ”¢” and ”j”. This operation generates two new candidates atrees: "a b $ c aei”
and”a b $ caej”. Fig 7 shows the attributed trees obtained by performing itemset
extensions on pattern 7' from Fig.4.

4.2.5. Filtering non canonical patterns.

In the case of unordered atree mining, the combination of right path extension
and itemset extension may lead to the generation of redundant patterns. For
example, two isomorphic attributed trees for ”a bc $ b” are generated either by
adding item ”¢” to the rightmost node of ”a b $ b” or by adding node ”b” as a
sibbling of node ”bc¢” in ”a be”. As explained before, candidates that are not in
canonical forms (in our example, "a b $ b¢”) are discarded (see Fig 8).

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 11
4.2.6. Completeness of atree enumeration.

Proposition 1. If the set of candidates of size |T| is complete, then the set of
candidates of size |T'| + 1 is also complete.

Proof. Let T be the set of candidates obtained by extending a candidate atree
T using right-node extension, right-path extension or itemset extension. Every
T € T, of size |T|+1 differs from T only by its last element (w.r.t. the canonical
form). T is the prefix of T7”. This last element is either a node associated with
an item added to the end of the candidate tree, or an item added to the itemset
associated with the rightmost node of the candidate tree. As there is no other
possibility to extend T, T represents the complete set of candidates of size |T|+1
having T as prefix. We can easily deduce that, from a complete set of candidates
of size |T|, it is possible, by applying all possible extensions, to generate a set of
candidates of size |T'| + 1 which is also complete. [

Candidates at depth 1 of the enumeration tree (representing the search space)
are atrees of size 1, i.e. atrees with one node associated with an itemset of size 1
(i.e. an item). The set of size-1 candidates is built by scanning the input database
and collecting all items. This set is complete and our previous proposition states
that every set of candidates of size i is also complete (by mathematical induction).

For unordered tree mining, we stop the extension of candidates that are not
in canonical forms. To prove the completeness of the enumeration we need to be
certain that every candidate in canonical form can be obtained by the extension
of a candidate which is also in canonical form.

Proposition 2. If T is in canonical form, then every prefix of T is also in
canonical form.

Proof. The proposition has been proved in the case of labeled trees (Nijssen and
Kok, 2003). Thus, for attributed trees, the proposition is true if the last element
of T' is a node associated with an itemset of size 1.

Suppose now that the last element of T' is an itemset. Let T be a candidate in
canonical form and x be its last element (the last item in the itemset associated
with the rightmost node of T'). Removing x from T allows to obtain candidate
U which is a prefix of T. We have A(T') = A(U) U {z}, i.e. A(U) is a prefix of
A(T). With the order previously defined (see section 4.1.2), A(U) > A(T") (case 2
of the definition). Then, the order of nodes in the prefix tree is not changed and
the prefix is also in canonical form. []

4.3. Frequency computation

A data structure is used to store all information needed for the mining process.
Our structure is an extension of the vertical representation of trees introduced
by Zaki (Zaki, 2002; Zaki, 2004). Briefly, each candidate asubtree is associated
with its pattern and several data allowing to pinpoint all its occurrences in
the database. The first candidates, composed of a unique node associated with
one item, are generated by scanning the input database. Using only this unique
structure, it is easy to compute the number of occurrences of each pattern. In
addition, this same structure is sufficient to generate all possible extensions of a
given pattern. When a pattern of size k is processed, all occurrences are extended

12 C. Pasquier et al

with tree extension and itemset extension methods described above to generate
new (k + 1)-candidates that are themselves stored in the structure.

4.4. Candidate pruning

Rules as the ones specified by Agrawal and Srikant twenty years ago (Agrawal
et al., 1993), can be applied to the case of atrees: i) any sub-pattern of a frequent
pattern is frequent, and ii) any super-pattern of an infrequent pattern is non
frequent. As the frequency count is an anti-monotonic function (extending a
pattern cannot lead to a new pattern with a greater frequency), it is possible
to stop the exploration of a branch of the search space when the frequency of
a candidate is less than the minimum support. For example, in Fig. 2, when
we examined pattern "a ¢ a” and found that its frequency was lower than the
minimum support, we did not generate candidates obtained by extending "a ¢ a”
(eg."acab’,”acalb’,”’aca$$).

In addition, in the case of unordered tree mining, extension of a candidate is
stopped if it is not in canonical form.

4.5. Mining algorithms

We have developed and evaluated three different algorithms. IMIT is used to
enumerate all frequent attributed subtrees while the algorithms IMIT_CLOSED
and IMIT_CONTENT_CLOSED are designed to mine closed atrees and c-closed

atrees respectively.

4.5.1. IMIT

Fig. 9 shows the high level structure of the IMIT algorithm. The algorithm takes
in parameter a database (D) and a minimum support (minSup). First (line 1), a
set C containing all asubtrees of size 1 is built by scanning D. Then, a loop allows
to process every candidate in the set. The function GetFirst returns the smallest
candidate in the set according to the order relation defined in section 4.1.2. In line
4, the algorithm does a canonical test (function isCanonical) and a frequency
test (f: is a fonction that returns the per-tree frequency of an atree). A frequent
candidate (which is in canonical form) is added to S, the list of solutions (line
7). The frequent candidate is also extended (line 5) to generate new candidates
in the next iteration (line 6). The processing of a candidate finishes by removing
it from the candidate list (line 9).

This algorithm is sufficient to enumerate all solutions but it has a huge search
space.

4.5.2. IMIT_CLOSED

Only enumerating closed atrees (i.e. atrees that are not attributed subtrees
of another atree with the same support) drastically reduces the search space.
It involves the storage of every frequent pattern found with their associated
per-tree frequency and their total number of occurrences in the database (the
occurrence-match frequency). We define a new functions: f, which returns
the occurrence-match frequency of an atree.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 13

IMIT(D, minSup)
1: C < {all asubtrees of size 1 in D}
2: while C # () do
3: T <« getFirst(C)
if isCanonical(T) and f:(T) > minSup then
X « extend(T)
C+~CuXx
S+ Su{T}
end if
C+C\{T}
10: end while
11: printSolutions(S)

©

Fig. 9. IMIT Algorithm

Definition 9 (Closure test). Let T be the candidate atree currently processed,
S be the set of all previously identified frequent atrees and X be the set of candi-
dates generated by extension of T. We say that T is a closed atree if AT € SUX
such that T C 7" and f:(T") = f:(T).

However, finding an itemset extension of 7" with the same per-tree frequency
as T does not allow to stop the exploration of other candidates in X. The fol-
lowing additional conditions must also be satisfied:

Definition 10 (Pruning test). Let T be the candidate atree currently pro-
cessed, S be the set of all previously identified frequent atrees and X be the set of
candidates generated by extension of T. If 377 € X : T C T" and f,(T") = fo(T),
then T can be pruned from X.

In Fig. 2, for example, the first candidate to be examined is "a” with a per-
tree frequency of 3. By extension, we generate, among others, candidate ”ab”
which has a per-tree frequency of 3, therefore, candidate ”a” is not c-closed as

” 7

a” C "ab”. However, pattern ”a” appears 7 times in the database while the total
number of occurrences of candidate "ab” is 3. The 4 times where "a” occurs in
an itemset which does not contain ”b” may lead to the generation of other closed
patterns. This is the case in Fig. 2 where a right node extension of pattern ”a”
generates candidate "a e’ with a per-tree frequency of 3.

The IMIT_CLOSED algorithm, which is used to mine closed asubtrees is
presented in Fig. 10. The structure of the algorithm is similar to IMIT’s structure.
The instructions at the beginning (first 5 lines) and at the end (last 4 lines) are
identical. The insertion of the set of extensions X in the set of candidates C
remains (line 7) but in IMIT_CLOSED, this operation is only performed if the
test allowing to end the exploration of X (X pruning test) fails. The insertion
of the current candidate T in the set of solutions is performed (line 10) only if
the candidate is canonical (success of canonical test). The new loop in lines 12
to 14 is added to remove from the list of solutions the attributed trees that are
not closed anymore (i.e. all atrees that are asubtrees of T' with the same per-tree
frequency).

These added lines require one to perform several subtree isomorphism checks
that are costly operations.

As illustrated in section 5, the algorithm is costly when the set of results is
large and it cannot be used to mine large input databases with low support.

14 C. Pasquier et al

IMIT_ CLOSED(D, minSup)
1: C < {all asubtrees of size 1 in D}
2: while C # () do
3: T <« getFirst(C)

4: if isCanonical(T) and fi(T) > minSup then

5 X « extend(T)

6: if AT e X: T C T and f,(T") = f,(T) then

7 C+CuXx

8: end if

9. if AT'eSUX :TC T and f,(T') = f,(T) then
10: S+ Su{T}

11: end if

12: for all 77 € S such that 7" C T and f,(T') = f.(T") do
13: S+ S\{T'}

14: end for

15: end if

16: C+ C\{T}
17: end while
18: printSolutions(S)

Fig. 10. IMIT_CLOSED Algorithm

IMIT CONTENT _CLOSED(D, minSup)

1: C < {all asubtrees of size 1 in D}
2: while C # () do
3: T <« getFirst(C)
if isCanonical(T) and f:(T) > minSup then
X+ extend;(T) ; Xg + extendg(T)
if AT e X2:TC; T and f,(T') = fo(T) then
C+—CUXzUXs
end if
if AT' € SUX;:T ;T and f,(T') = f,(T) then
10: S+ Su{T}
11: end if
12: end if
132 C+ C\{T}
14: end while
15: printSolutions(S)

Fig. 11. IMIT_.CONTENT_CLOSED Algorithm

4.5.8. IMIT_.CONTENT_-CLOSED

For this algorithm, we introduce two subsets of X'. X} is the set of atrees gener-
ated by itemset extension of 7" and X is composed of tree extensions of T'. These
sets are obtained by applying the functions extend; and extendg respectively.

Definition 11. T is a c-closed atree if AT’ € SUX| such that T =; T’ and
fe(T7) = fo(T).

The extension of T’ can be ended if 377 € Xz : T C T" and f,(T") = f,(T).
The IMIT_.CONTENT_CLOSED algorithm for mining c-closed asubtrees is

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 15

presented in Fig. 11. This algorithm differs from IMIT_CLOSED algorithm in
the following way:

— In lines 6 and 9, CC is replaced by C; and X by X7. This allows to only perform
itemset inclusion tests that are less costly than subtree isomorphism checks.

— The search in the set of solutions previously found (those that are asubtree
of the current candidate) is not needed anymore for the extraction of c-closed
patterns.

Experiments presented in section 5 show that this third algorithm is a good
compromise between non redundancy of solutions and execution time.

5. Experimental results

Our algorithms were implemented in C++ using the Standard Template Library
(STL). Experiments were performed on a computer with an Intel (© Core™ i5-
2400 @ 3.10GHz and 16 Gb main memory. Performance evaluation was based
on total execution time, including all preprocessing and result output.

Multiple datasets were used to test our algorithms: several synthetic datasets
and two real databases.

5.1. Synthetic datasets

We modified the synthetic data generation program proposed by M.J. Zaki (Zaki,
2002) for labeled trees in order to generate atrees with itemsets of different sizes.
We added two new parameters controlling the minimum and maximum itemset
sizes.

From the D10 dataset presented in (Zaki, 2002), we generated nine datasets
by varying the size of the itemsets from two to ten. We named these dataset
D10 — x, where = represents the itemset size. Thus, in D10 — 5, the topologies
of attributed trees are similar as those in the D10 dataset but every node is
associated to an itemset of size 5.

The comparison with existing work on labeled tree mining was performed
using the D10 dataset (100,000 subtrees), the T1M dataset (1,000,000 subtrees)
defined by M.J. Zaki (Zaki, 2002) and a new dataset that we called T10M with
a number of subtrees T sets to 10,000,000.

5.2. Weblog dataset

We built a dataset based on logs given by our university following the method
described by Zaki (Zaki, 2002). However, instead of labeling nodes with URLs
of the browsed pages, we associated them with itemsets representing keywords
of their content. For each visited page, we collected the ten most frequent words
(except common words like prepositions) and used them as items characterizing
the page. Finally, we obtained a set of attributed trees whose nodes identify vis-
ited URLs, their itemsets are keywords associated to pages, and edges represent
the ancestor-descendant relationships on the website tree structure. The dataset
is composed of 126,396 attributed trees with itemsets of size 10 (10 keywords by

page).

16 C. Pasquier et al
5.3. Dengue dataset

Dengue is an infectious tropical disease. The virus is transmitted to humans
by the bite of an infected mosquito. The Aedes aegypti mosquito is the most
important transmitter or vector of the dengue virus.

Our real dataset represents the weekly evolution of dengue infection in Nouméa
and suburbs from February 1998 to September 2004. The city is divided into 32
districts and each district is characterized by 15 epidemic and environmental
attributes (e.g. number of dengue cases, temperature, precipitation, wind speed,
Aedes density level, etc).

Attributes that are normally distributed are discretized into three classes:

— One class, labeled as ”"NORMAL?”, gathers normal values representing 60% of
all measures centered around the mean,

— One class, labeled as "LOW?” | includes the smallest values representing 20%
of all measures,

— One class, labeled as "HIGH”, includes the largest values representing 20% of
all measures.

The attributes that are discretized by this way are Breteau Indice (number of
positive containers per 100 houses inspected), IPA indice (number of A. aegypti in
late pre-imaginal stages per inspected house), House (premise) index (percentage
of houses infested with A. aegypti larvae and/or pupae), IHRE (number of A.
aegypti in late pre-imaginal stages per infested house), Precipitation (the level of
rainfall in milimeters), Average and Maximum wind speed, Minimum, Average
and Maximum temperature, Average humidity, Atmospheric pressure and Solar
irradiance (in J/cm? between 2AM and 2PM and between 2PM and 2AM).

The only exception is the attribute Maximum wind direction that is dis-
cretized in NORTH, EAST, SOUTH and WEST.

From this dataset, we incrementally constructed a data tree forest, where
the vertices of the trees represented the evolution of neighboring areas in space
and time. The principle of our approach is detailed in (Selmaoui-Folcher and
Flouvat, 2011).

We were interested in factors that could highlight the beginnings of an epi-
demic phase. As a consequence, we decided that, for every time point, each
district in which four or more cases of dengue had been reported, represented
the root of an attributed tree. Each root node was associated with a set of items
which represented the characteristics of an ”infected” zone at a given time point.
These trees composed of only one node were then extended to reflect the evo-
lution of neighboring zones before the report of dengue cases in the ”infected”
zone (represented by the root of the tree). We recursively generated for each leaf
of a tree (that contained the characteristics of a zone at a time point t), several
edges that linked to nodes representing the characteristics of neighbor zones at
time ¢ — 1 (see table 1).

Our dataset was built using five time points. Therefore, each tree represented
the four-week evolution of the characteristics associated to zones that leads to
the occurence of dengue cases.

The dataset was composed of 181 attributed trees with each node being as-
sociated with 15 attributes. The idea was that frequent patterns in this dataset
might give some hints concerning the evolution of data in the few weeks pre-
ceeding the begining of multiple dengue cases. To filter out common patterns

Frequent Pattern Mining in Attributed Trees: Algorithms and applications

Table 1. Creating a database of attributed trees from the dengue dataset

The city is divided in districts characterized
by 15 epidemic and environmental attributes.

The situation at each time point

is represented by an attributed graph.

The whode dataset is represented
by a succession of attributed graphs.

INFECTED

The roots of attributed trees
correspond to infected districts.

INFECTED

Nodes that are just below a root
correspond to neighbor zones at time ¢t — 1.

INFECTED

Nodes at nt" level below a root

17

represent neighbor districts at time ¢ — n.

18 C. Pasquier et al

10,000 —————— : : — 100,000,000
[0 number of patterns -
’g execut?on t?me of HybridTreeMiner _/' 110,000,000 g
= execution time of IMIT gy [
o 1,000 - — DA B
5] 1 ®
= I o
- T ”/1 -{ 1,000,000 S
S N I u
5 100| =
4 -{ 100,000 5
10 | ! ! ! ! | ! ! | ! | | 107000
100 50 10 5 2

Support (absolute value)

Fig. 12. Performance comparison of IMIT and HybridTreeMiner for mining
T10M dataset.

that were not related to the apparition of dengue cases, we constructed another
dataset composed of attributed trees for which roots were associated with zones
where no dengue case had been reported. This second dataset, that we called
no-dengue dataset, was composed of 9087 attributed trees. Both datasets were
used to search distinguishable features, i.e. patterns that are frequently present
before the report of several dengue cases, but rares in the absence of dengue.

5.4. Performance evaluation on labeled trees

To position our algorithm w.r.t. existing works, we compare its execution time
to mine labeled trees against HybridTreeMiner (Chi, Yang and Muntz, 2004),
the best performing algorithm in the literature for mining unordered trees.

Both algorithms successfully mined all datasets with a minimum support
as low as 2. For T10M, the largest dataset, composed of ten millions labeled
trees, this represents a relative support of 0.00002%. With such a low support,
more than 35 million frequent patterns were returned. With a support of 2,
HybridTreeMiner mined the dataset in 15 minutes and it took IMIT four times
longer to do it (one hour). Fig. 12 shows the performances comparison of IMIT
and HybridTreeMiner for mining T10M.

On the other datasets, the performance of the two algorithms is in the same
order of magnitude. HybridTreeMiner clearly outperforms IMIT on all datasets
and for all support values by a factor varying from 2 to 4. It is perfectly nor-
mal that our algorithm, designed to mine attributed tree, is less efficient than
algorithms specifically dedicated to mine labeled trees. As such, it is normal to
perform worst on mining labeled trees than dedicated implementations.

In light of these experiments, we can state that, for both algorithms, the
increase in the number of trees has a moderate impact on processing time. For
example, for the smallest support of 2, the processing time doubles for each
tenfold increase in the dataset size.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 19

— D10 -2 D10-3- - D10—-4 D10 -5 =—— D10—-6
DI0—T7T= = D10 —8«xrr:- D10 -9 —e— D10 - 10

107000_\\\\\\\\
1,000 -

100

10 -

Execution time (sec)

50 10 5 1 0.5 0.1 0.05

Support (%)

Fig. 13. Execution time of IMIT_CONTENT_CLOSED for mining c-closed sets
of induced unordered patterns on 9 synthetic datasets.

5.5. Performance evaluation on attributed trees

Fig. 13 shows the execution time for mining content-closed patterns. We can see
that the increase in the size of itemsets associated to nodes has a huge impact
on performance.

For comparison, the mining of D10 dataset in which one item is associated
with each node is performed in less than 1.6 seconds at 1% support. With two
items associated to nodes, the processsing takes 6.43 seconds. With itemsets
of size 4, it takes 48 seconds and 1hl5mn with itemsets of size 7. This shows
that mining attributed trees is extremely more computing intensive than mining
labeled trees and the difference is widely underestimated because only content-
closed patterns were mined.

Fig. 14 shows the execution time and the number of patterns found by the
3 versions of IMIT for mining induced unordered patterns on D10-3 dataset. As
one can see in the figure, mining all patterns generates a huge number of solutions
and takes a long time, e.g. mining the D10 — 3 dataset with a minimum support
of 5% outputs half a million patterns in 3 hours with the basic IMIT algorithm.

Mining content-closed atrees allows to reduce both the number of patterns
and the execution time. Thus, with the same dataset, at 5% minimum support,
104 content-closed patterns are found in 8 seconds.

As shown in the same figures, the search for closed patterns allows to fur-
ther reduce the number of patterns. At 5% minimum support, for example, the
number of patterns drops to 56 while the execution time remains the same.
However, because of the costly subtree isomorphism checks, in return, perfor-
mance collapses when patterns become numerous. At 0.5% minimum support,
for example, 4,530 content-closed patterns are found in 40 seconds but it takes
338 seconds to mine the 1,085 closed patterns. The difference in computation
time increases as the minimum support decreases. At 0.2% minimum support,
it takes 3 hours to mine the 2,870 closed patterns while it only takes 8 min-
utes to enumerate the 17,097 content-closed patterns. In addition, the mining of

20 — IMIT —— IMIT.CLOSED —— IMIT_CONTENT_CLOSED [squier et al

10,000\\\\\\\\\\\\\ TT T T T T T T] 170007000\\\\‘\\\‘\\\\‘\\\‘\\\\‘\\\‘

— ,,100,000

Q

g 1,000 | £

p £ 10,000 |-

£ S

= 100 s 1,000

8 5

B = 100

S 10 2

H 10
T A O AT | L T Y AT
100 50 10 5 1 05 0.1 100 50 10 5 1 05 01

Support (%) Support (%)

Fig. 14. Execution time (left plot) and number of patterns found (right plot) by
the different versions of IMIT for mining induced unordered patterns on D10 —3
dataset.

= IMIT = IMIT_CLOSED =—— IMIT_CONTENT_CLOSED
107000\\\\\\\\\\\\\\\\\\\\\\\ TTT 1007000\\\\\\\\\\\\\\\\\\\\\\\\\\\
o 1%}
g -
2 1,000 | g 1000
o -
E £ 1,000 |
= 100 1 ©
S 5 100 .
E E
g 10 | E
10 -
& z
T T A A T TR 4 T Y
100 50 10 5 1 0.5 0.1 100 50 10 5 1 0.5 0.1
Support (%) Support (%)

Fig. 15. Execution time (left plot) and number of patterns found (right plot) by
the different versions of IMIT for mining induced unordered patterns on D10—5
dataset.

content-closed patterns can be pursued further to a minimum support of 0.09%.
Using this minimum support, the algorithm generates 61,844 patterns in 1 hour
and 45 minutes.

Fig. 15 shows the execution time and the number of patterns found by the
3 versions of IMIT for mining induced unordered patterns on D10 — 5 dataset.

The behavior of the three algorithms are very similar to what was found on the
D10 — 3 dataset.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 21

25000 ————————————— 400
—~ 20000 | [0 number of closed patterns 1350
g execution time of IMIT_CONTENT_CLOSED 300 £
e execution time of IMIT_CLOSED 5 2
£ 15000 |- 1250 §
= {200 5
o [
£ 10000 - -1 150 ié
O
% 100 2
H 5000 z
iy
0 M e 17T 0

50 45 40 35 30 25 20 15 10 9 8 7 6

Support (%)

Fig. 16. Performances of IMIT_CLOSED and IMIT_CONTENT_CLOSED for
mining induced unordered patterns on the weblog dataset.

5.6. Mining the weblog dataset

The weblog dataset contains fewer attributed trees than the synthetic datasets
used before, but as more items are associated with each node, the dataset be-
comes more difficult to mine.

With a minimum support of 40%, IMIT extracted 3069 frequent patterns in
41 minutes. However, at 35% minimum support, this algorithm did not succeed
to extract all frequent patterns in less than 10 hours.

In comparison, with a minimum support sets at 40%, both IMIT_CLOSED
and IMIT_CONTENT_CLOSED extracted 18 patterns in 85 and 83 seconds
respectively. By lowering the minimum support to 35%, the computation took
10 times more time to output 57 patterns.

Detailed results are presented in Fig. 16. On the weblog dataset, the closed
patterns and content-closed patterns found were identical for all support values
between 6% and 50%. Mining the weblog dataset with a minimum support of
6% lasted 6 hours and returned 360 patterns. It was not possible to get results
with smaller support values.

At 6% minimum support, the patterns extracted were shared by more than
7,000 logs. So, they represented very general features and it was not possible to
extract any useful information from them.

5.7. Mining the dengue dataset

The dengue dataset contains few attributed trees but, as more items are as-
sociated with each node, this dataset is intractable for small support values.
Fortunately, we were not trying to extract patterns with small support values as
we were interested in identifying global trends in the dataset.

We decided to mine the dataset using a minimum support of 70%. With
IMIT, 127 patterns were identified in 19 minutes and 7 seconds. The number
of extracted patterns was reduced to 112 by using IMIT_CONTENT_CLOSED
at the price of a slight increase of the processing time to 19 minutes and 34
seconds. IMIT_CLOSED proved to be the best choice to process this dataset, as

22 C. Pasquier et al

Table 2. Legend of items used in table 3

id description

1 IHRE = HIGH

2 Precipitation = LOW

3 Maximum wind direction = EAST
4 Average temperature = HIGH

5 Minimum temperature = HIGH

6 Solar irradiance 2AM-2PM = HIGH
7 Solar irradiance 2PM-2AM = LOW
10 Average humidity = NORMAL

14 Average humidity = HIGH

15 Solar irradiance 2AM-2PM = LOW

it reduced the number of patterns to 98 and the processing time to 18 minutes
and 37 seconds.

These 98 induced patterns that occurred frequently before the report of sev-
eral dengue cases could not be considered as indicators of dengue occurrence as
they might also have occurred in a situation where no dengue case were reported.
Unfortunately, all frequent patterns in the dengue dataset were also frequent in
the no-dengue dataset. The only exception was a pattern that highlighted the
fact that before the occurrence of several dengue cases in a district, a high hu-
midity was measured while a moderate humidity level had been measured the
week before in several neighboring districts. Using the legend in table 2, the pat-
tern was 714 10 $ 10 $ 10”. It was present in 80.11% of the dengue case and in
only 27.28% of the no-dengue dataset.

Mining embedded patterns allows to catch successions of events with time
gaps. Unfortunately the mining of embedded patterns at 70% minimum support
failed with IMIT and IMIT_CLOSED. Only IMIT_.CONTENT_CLOSED was ca-
pable to process the dataset. The algorithm extracted 9,265 patterns in 19 hours.
As for induced pattern mining, we collected the patterns that were frequent in
the dengue dataset but rare in the no-dengue dataset. From the 9,265 closed
patterns found in more that 70% of the trees in the dengue dataset, only 8 of
them were present in the no-dengue dataset with a support below 30%.

Table 3 shows the list of these patterns using the legend given in table 2. The
frequency of the patterns is given in the dengue dataset and in the no-dengue
dataset.

The patterns listed confirmed some background knowledge in the domain. For
example, dengue is preceded by a high temperature associated with a high IHRE
index followed by a high humidity; a high IHRE index with a high temperature
followed by east wind; or also a low solar irradiance followed by high humidity.
A combination of the following factors is also indicative of dengue: High THRE,
low precipitation, high temperature and high solar irradiance from 2 AM to 2
PM.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 23

Table 3. Frequent patterns in the dengue dataset

freq. in freq. in
Patterns dengue no-dengue

dataset dataset
1:2:4 79.33 28.93
1:2:4:6 73.74 23.61
1:3:4 79.89 24.87
14 1:4:5 8 1 75.14 18.55
14 1:4:5 $ 4:5 74.86 18.40
141%4 75.46 20.27
1471587 78.21 26.55
31481 69.27 20.59

6. Conclusion and perspectives

In this paper, we introduced the problem of mining attributed trees. We inves-
tigated three types of attributed trees: atrees, closed atrees and c-closed atrees.
We proposed three algorithms to mine these patterns. C-closed atrees are a new
condensed representation of frequent atrees that is defined w.r.t. itemset inclu-
sion only. As shown by our experiments, mining c-closed atrees provides a good
compromise between performances and succinctness. Indeed, mining all frequent
atrees returns a huge number of patterns, and mining only closed ones is time
consuming due to the cost of subtree isomorphism tests. The efficiency of the pro-
posed algorithm, IMIT_CONTENT_CLOSED, has been demonstrated on large
synthetic datasets. It was also used to mine weblog data and a dengue dataset.
Concerning the dengue dataset, we show that some patterns, although already
known, were characteristics of dengue events.

One of our future direction of work is to extend the proposed algorithm to
effectively mine frequent closed patterns. Another direction consists in developing
similar methods for mining more complex structures such as attributed graphs.

References

Agrawal, R., Imielinski, T. and Swami, A. (1993), ‘Mining association rules between sets of
items in large databases’, SIGMOD Rec. 22(2), 207-216.

Agrawal, R. and Srikant, R. (1995), Mining sequential patterns, in ‘ICDE’, 95, pp. 3-14.

Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H. and Arikawa, S. (2002), Efficient
substructure discovery from large semi-structured data, in ‘SDM’.

Asai, T., Arimura, H., Uno, T. and Nakano, S.-I. (2003), Discovering frequent substructures in
large unordered trees, in ‘the 6th International Conference on Discovery Science’, Springer-
Verlag, pp. 47-61.

Ayres, J., Flannick, J., Gehrke, J. and Yiu, T. (2002), Sequential pattern mining using a bitmap
representation, in ‘KDD’, pp. 429-435.

Balcézar, J. L., Bifet, A. and Lozano, A. (2010), ‘Mining frequent closed rooted trees’, Mach.
Learn. 78(1-2), 1-33.

Bayardo, R. J. (1998), Efficiently Mining Long Patterns from Databases, in ‘ACM SIGMOD
International Conference on Management of Data SIGMOD ’98’, pp. 85-93.

Chehreghani, M. H. (2011), Efficiently mining unordered trees, in ‘ICDM’, pp. 111-120.

24 C. Pasquier et al

Chi, Y., Muntz, R. R., Nijssen, S. and Kok, J. N. (2004), ‘Frequent subtree mining - an
overview’, Fundam. Inf. 66(1-2), 161-198.

Chi, Y., Yang, Y. and Muntz, R. R. (2003), Indexing and mining free trees, in ‘Proceedings of
the 2003 IEEE International Conference on Data Mining (ICDM’03)’.

Chi, Y., Yang, Y. and Muntz, R. R. (2004), Hybridtreeminer: An efficient algorithm for mining
frequent rooted trees and free trees using canonical form, in ‘Scientific and Statistical
Database Management, 2004. Proceedings. 16th International Conference on’, pp. 11-20.

Chi, Y., Yang, Y., Xia, Y. and Muntz, R. R. (2004), Cmtreeminer: Mining both closed and
maximal frequent subtrees, in ‘PAKDD’, pp. 63-73.

Deshpande, M., Kuramochi, M. and Karypis, G. (2003), Frequent sub-structure-based ap-
proaches for classifying chemical compounds, in ‘Third IEEE International Conference on
Data Mining’, IEEE Comput. Soc, pp. 35-42.

Fukuzaki, M., Seki, M., Kashima, H. and Sese, J. (2010), Finding itemset-sharing patterns in
a large itemset-associated graph, in ‘PAKDD’, pp. 147-159.

Gay, D., Selmaoui-Folcher, N. and Boulicaut, J.-F. (2010), ‘Application-independent feature
construction based on almost-closedness properties’, Knowledge and Information Systems
30(1), 87-111.

Han, J., Pei, J. and Yin, Y. (2000), ‘Mining frequent patterns without candidate generation’,
SIGMOD Rec. 29(2), 1-12.

Hido, S. and Kawano, H. (2005), Amiot: Induced ordered tree mining in tree-structured
databases, in ‘ICDM’, pp. 170-177.

Jiang, C., Coenen, F. and Zito, M. (2013), ‘A survey of frequent subgraph mining algorithms’,
Knowledge Eng. Review 28, 75-105.

Luccio, F., Enriquez, A. M., Rieumont, P. O. and Pagli, L. (2001), ‘Exact rooted subtree
matching in sublinear time’, Universita Di Pisa Technical Report TR-01 14.

Luccio, F. and Pagli, L. (1995), ‘Approximate matching for 2 families of trees’, Information
and Computation 123(1), 111 — 120.

Mannila, H. and Toivonen, H. (1996), Multiple uses of frequent sets and condensed represen-
tations, in ‘KDD’, pp. 189-194.

Miyoshi, Y., Ozaki, T. and Ohkawa, T. (2009), Frequent pattern discovery from a single graph
with quantitative itemsets, in ‘ICDM Workshops’, pp. 527-532.

Moser, F., Colak, R., Rafiey, A. and Ester, M. (2009), Mining cohesive patterns from graphs
with feature vectors, in ‘SDM’, pp. 593-604.

Mougel, P.-N., Rigotti, C. and Gandrillon, O. (2012), Finding collections of k-clique percolated
components in attributed graphs, in ‘PAKDD’, pp. 181-192.

Nijssen, S. and Kok, J. N. (2003), Efficient discovery of frequent unordered trees, in ‘First
International Workshop on Mining Graphs, Trees and Sequences (MGTS)’.

Pasquier, C., Sanhes, J., Flouvat, F. and Selmaoui-Folcher, N. (2013), Frequent Pattern Mining
in Attributed trees, in ‘proceedings of the 17th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD’13).”, Gold Coast Australia, pp. 26-37.

Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L. (1999), Discovering frequent closed itemsets
for association rules, in ‘ICDT’, pp. 398-416.

Pensa, R. G. and Boulicaut, J.-F. (2005), From local pattern mining to relevant bi-cluster
characterization, in ‘6th International Symposium on Intelligent Data Analysis (IDA 2005)’,
pp. 293-304.

Rymon, R. (1992), Search through systematic set enumeration, in ‘Proceedings of the 3rd Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR’92)’,
pp- 539-550.

Selmaoui-Folcher, N. and Flouvat, F. (2011), How to use ”classical” tree mining algorithms to
find complex spatio-temporal patterns?, in ‘DEXA (2)’, pp. 107-117.

Termier, A., Rousset, M.-C. and Sebag, M. (2004), Dryade: A new approach for discovering
closed frequent trees in heterogeneous tree databases, in ‘ICDM’, pp. 543-546.

Termier, A., Rousset, M.-C., Sebag, M., Ohara, K., Washio, T. and Motoda, H. (2008), ‘Dryade-
parent, an efficient and robust closed attribute tree mining algorithm’, IEEE Trans. on
Knowl. and Data Eng. 20(3), 300-320.

Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W. and Shi, B. (2004), Efficient pattern-growth
methods for frequent tree pattern mining., in ‘PAKDD’, pp. 441-451.

Washio, T. and Motoda, H. (2003), ‘State of the art of graph-based data mining’, SIGKDD
Explor. Newsl. 5(1), 59-68.

Xiao, Y., Yao, J.-F., Li, Z. and Dunham, M. H. (2003), Efficient data mining for maximal
frequent subtrees, in ‘ICDM’, pp. 379-386.

Frequent Pattern Mining in Attributed Trees: Algorithms and applications 25

Yan, X., Yu, P. S. and Han, J. (2004), Graph Indexing: A Frequent Structure-based Approach,
in ‘SIGMOD Conference’, pp. 335-346.

Zaki, M. J. (2002), Efficiently mining frequent trees in a forest, in ‘KDD’, pp. 71-80.

Zaki, M. J. (2004), ‘Efficiently mining frequent embedded unordered trees’, Fundam. Inf. 66(1-

2), 33-52.

Zaki, M. J. (2005), ‘Efficiently mining frequent trees in a forest: algorithms and applications’,
IEEE Transactions on Knowledge and Data Engineering 17(8), 1021-1035.

Zou, L., Lu, Y., Zhang, H. and Hu, R. (2006), Prefixtreeespan: a pattern growth algorithm for
mining embedded subtrees, in ‘WISE’, pp. 499-505.

Author Biographies

Claude Pasquier received a PhD degree in Computer Science from
the University of Nice - Sophia Antipolis, France, in 1994. During his
thesis, he explored the use of software engineering paradigms in the
field of structured document manipulation. Subsequently, he was a
postdoctoral researcher at the Biophysics and Bioinformatics Labora-
tory of the University of Athens, Greece where he conducted research
on protein structure prediction. He held positions at the French Na-
tional Institute for Research in Computer Science and Control (IN-
RIA) and with Schlumberger, Smart Cards & Terminals division (now
Gemalto) where he worked on language-based systems. He is presently
a researcher at the french National Center for Scientific Research
(CNRS). His current research interests include data mining, bioin-
formatics and Knowledge-based systems.

Jérémy Sanhes is a PhD student at the University of New Caledonia
and INSA Lyon (France). His thesis deals with spatio-temporal data
mining issues.

Frédéric Flouvat is an Associate Professor at the University of New
Caledonia (Nouméa, New Caledonia), where he is teaching Algorith-
mic and Databases. He is also a member of a multidisciplinary research
team on material and environment. This laboratory brings together
geologists, physicists and computer scientists to address both funda-
mental and applied questions related to the concepts of risk and sus-
tainable development. His research interests are spatio-temporal data
mining and its application to environmental sciences.

26

C. Pasquier et al

Nazha Selmaoui-Folcher is an Associate Professor (HDR) at the
University of New Caledonia since 1998. She is the leader of a multidis-
ciplinary laboratory on material and environment since 2012 (PPME
EA 3325). She is teaching Computer Sciences and Mathematics. She
is the coordinator for the FOSTER national projects dedicated to
Knowledge Discovery on Spatio-temporal Databases and Application
to Soil Erosion. She received her PhD degree in 1992 from the ”In-
stitut National des Sciences Appliquées” at Lyon (France) and her
Habilitation degree in 2012 from the University of Lyon I. Her current
research interests are data mining of time series of satellite images
analysis and spatio-temporal data and its application to environmen-
tal sciences. She is involved in the program committees of many data
mining conferences.

Correspondence and offprint requests to: Claude Pasquier, Laboratoire d’Informatique, Signaux
et Systemes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS. Les Templiers, 930 route des
Colles, BP 145, 06903 Sophia Antipolis - France. Email: claude.pasquier@unice.fr

