
HAL Id: hal-01154822
https://hal.science/hal-01154822v1

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Format Oracles on OpenPGP
Florian Maury, Jean-Rene Reinhard, Olivier Levillain, Henri Gilbert

To cite this version:
Florian Maury, Jean-Rene Reinhard, Olivier Levillain, Henri Gilbert. Format Oracles on OpenPGP.
The Cryptographer’s Track at the RSA (CT-RSA), Apr 2015, San Francisco, United States. pp.220-
236, �10.1007/978-3-319-16715-2_12�. �hal-01154822�

https://hal.science/hal-01154822v1
https://hal.archives-ouvertes.fr

Format Oracles on OpenPGP

Florian Maury, Jean-René Reinhard, Olivier Levillain, and Henri Gilbert?

ANSSI, France
{firstname.lastname}@ssi.gouv.fr

Abstract. The principle of padding oracle attacks has been known in
the cryptography research community since 1998. It has been general-
ized to exploit any property of decrypted ciphertexts, either stemming
from the encryption scheme, or the application data format. However,
this attack principle is being leveraged time and again against proposed
standards and real-world applications. This may be attributed to sev-
eral factors, e.g., the backward compatibility with standards selecting
oracle-prone mechanisms, the difficulty of safely implementing decryp-
tion operations, and the misuse of libraries by non cryptography-savvy
developers. In this article, we present several format oracles discovered
in applications and libraries implementing the OpenPGP message for-
mat, among which the popular GnuPG application. We show that, if the
oracles they implement are made available to an adversary, e.g., by a
front-end application, he can, by querying repeatedly these oracles, de-
crypt all OpenPGP symmetrically encrypted packets. The correspond-
ing asymptotic query complexities range from 2 to 28 oracle requests per
plaintext byte to recover.

Keywords: GnuPG, Authenticated Encryption, Chosen Ciphertext Attacks, Pad-

ding Oracle, Format Oracle, Implementation.

1 Introduction

As defined in [4], a padding oracle attack is a particular type of side-channel
attack where the attacker is assumed to have access to an oracle which returns
True only when a chosen ciphertext corresponds to a correctly padded plaintext
under a given scheme. Bleichenbacher [5] first applied this kind of attack to the
PKCS#1 version v1.5 asymmetric encryption scheme. Vaudenay [15] showed
that the same principle can be applied in the case of symmetric encryption
when structured padding schemes are used. The “padding” terminology was
introduced because the first attacks of this kind applied to specific padding
schemes. They can be generalized to any format constraint on the plaintext
providing redundancy, either imposed by the cryptographic scheme, or by the
application using encryption, as illustrated by Kĺıma and Rosa on the PKCS#7

? This work was partially supported by the French National Research Agency through
the BLOC project (contract ANR-11-INS-011)

format [10] and Mitchell [12]. We call this generalized form of oracle attacks
format oracle attacks.

This type of attacks initially stems from the misconception that encryption
mechanisms can provide a weak form of integrity through the following proce-
dure: a format containing redundancy, e.g., fixed byte values, or linear relations,
is applied to the plaintext before encryption. After decryption, it is checked
whether the result satisfies the redundancy. Due to the malleability of some en-
cryption schemes, and use of format properties that are satisfied with relatively
high probability by random messages, this opens the way to chosen-ciphertext
plaintext recovery attacks. Indeed, a format oracle leaks some information on
the decryption of the submitted request. If all submitted requests are related to
the same target ciphertext, its decryption may be obtained by aggregating the
corresponding information leakage.

Format oracle answers come in different flavours. They all rely on a vari-
ation of the behaviour of the decryption procedure related to some property
of the decrypted value: specific byte values expected at some positions or high-
level consistency constraints for example. The most explicit forms of information
leakage are characteristic error messages.Format oracles can also be obtained
by exploring logged information. Finally, more implicit oracles, relying on tim-
ing leaks, memory caching strategies, and other side-channels, are also possible.
Even though the principle of padding, and format, oracles has been known for
over 15 years, numerous publications [1, 7, 14, 4, 2, 13] attest that they are quite
pervasive, and may continue to be instantiated in modern applications.

A general countermeasure against these attacks consists in checking the in-
tegrity of ciphertexts before performing any decryption, thus eliminating any
chosen-ciphertext attack possibility by construction. Unfortunately, due to back-
ward compatibility issues, many standards still do not support proper authenti-
cated encryption. Moreover, this may require a two-pass authenticated decryp-
tion that may be impractical when large streams of data are processed. As a
consequence, a less satisfying fallback solution has been adopted in several con-
texts: ensuring implementations do not instantiate format oracles in order to
avoid the exploitation of these attacks. This sometimes leads to convoluted im-
plementations, since one has to ensure that no side-channel leaks information.
Another concern is the misuse of cryptographic toolkits and libraries. Such soft-
ware is developed by programmers proficient in cryptography. They strive to
make their implementation resistant against state-of-the-art attacks, by select-
ing robust cryptography, and by avoiding side-channel leakage. Yet, most pro-
grammers using cryptographic libraries are not expert cryptographic security
evaluators. They can legitimately expect them to behave as secure modules,
unless explicetely advised otherwise. Therefore, if sufficient warnings are not
made, they may incorrectly perceive some of their outputs, e.g., sensitive error
messages, as innocuous.

OpenPGP [9] is a message format used to preserve privacy by providing
encryption. It is notably implemented in the popular GnuPG toolkit. Recently,

two JavaScript libraries, OpenPGP.js and Google-backed End-to-End, have been
released.

Previous attacks against OpenPGP implementations leveraged the malleabil-
ity of the encryption mode used in OpenPGP to recover plaintexts. A first attack
[8], by Jallad, Katz and Schneier, achieves complete decryption of ciphertexts
but requires access to a decryption oracle, that may be implemented by an in-
advertent user transmitting random-looking decryption results to the adversary.
A second attack [11], by Mister and Zuccherato, takes advantage of a less pow-
erful oracle related to the CFB-mode variation used by OpenPGP to detect the
use of an erroneous decryption key and enables to recover two bytes from every
ciphertext block. This second attack is an example of a padding oracle attack.
Some mitigation measures have been adopted against these attacks, like remov-
ing the CFB-mode oracle when decryption relies on asymmetric cryptography,
or introducing encryption with integrity. However some implementations still
leak in certain use cases the information exploited by these attacks: the security
ultimately relies on the careful use of the application.

The main contribution of this article is the identification of several new for-
mat oracles in OpenPGP implementations. We show that many OpenPGP appli-
cations and libraries, e.g., GnuPG, OpenPGP.js, and End-to-End, actually leak
sensitive information in error messages raised during the decryption of OpenPGP
encrypted messages.If these error messages are mishandled, e.g., by a front-end
application, the identified oracles can be leveraged to fully decrypt any encrypted
message, thus demonstrating that the error messages are not innocuous with re-
gards to confidentiality. This leads us to believe that the handling of errors, e.g.,
decryption errors, is a part of the API of cryptographic libraries that should
receive more attention. To minimize the risk of implementation errors, crypto-
graphic library providers should prevent any unnecessary leakage of information,
and clearly identify the elements of the API that are sensitive.

Similarly to previously published padding oracle attacks, these attacks are
chosen-ciphertext attacks requiring interactions with a legitimate recipient of
the target message. The complexity of these format oracle attacks ranges from
2 to 28 queries to the format oracle per byte to decrypt, according to the lever-
aged oracle. We implemented these attacks against GnuPG and experimentally
confirmed their complexity.

We reported our findings to the developers of the mentioned OpenPGP im-
plementations. They took them into account by patching their implementations
to remove some possible oracles (cf Section 5 for details).

In Section 2, we give an overview of the OpenPGP message format and
its (authenticated) encryption mechanism. Section 3 presents format oracles,
which are implemented by GnuPG, OpenPGP.js, and End-to-End, when they
are viewed as libraries, and Section 4 how these format oracles can be leveraged
to decrypt ciphertexts. In Section 5, we discuss countermeasures to thwart them.

Notations. We denote E a block cipher and n its blocksize expressed in bytes.
EK denotes encryption under key K.

Let || denote the concatenation. Let P be a non-empty message P ∈ ({0, 1}8)∗.
Let |P | be its byte length. It can be decomposed into a sequence of blocks
P1||P2|| . . . ||Pm, where Pi is an n-byte block for i < m, and Pm is a non-empty,
possibly incomplete, block.1 Let ‖P‖ = m denote the number of blocks of P
in this decomposition. Furthermore, for j ∈ [1, |P |], let P [j] be the j-th byte of
message P . Pi[j] is the j-th byte of the i-th block of P . For j ∈ [1, |P |], P [−j] is
the j-th byte from the end: P [−j] = P [|P | + 1 − j]. Let P = P [−2]||P [−1] be
the concatenation of the last two bytes of P .

Explicit byte values are given in hexadecimal form, e.g., 0xD3. 0x00u denotes
the concatenation of u zero bytes.

2 OpenPGP Format Description

2.1 Packet Structure of OpenPGP Message Format

Overview. All values (data, keys, etc.) considered by OpenPGP are structured
and processed in packets. Well-formed OpenPGP messages follow a grammar
described in [9, section 11.3], which specifies a recursive composition of packets
and OpenPGP messages: an OpenPGP message is a concatenation of packets,
some of which may contain a processed form of an OpenPGP message. Each
packet is a sequence of bytes, with a (tag, length, value) structure.2 The first
byte, called the tag, encodes the type of information that the packet contains.
The length field encodes the length of the value field. The value contains the
payload of the packet, and its structure depends on the considered packet type.

Data Packet Structures. All user data is found either in literal, compressed,
or encrypted packets. Encrypted packets come in two flavours, one providing only
confidentiality, another providing both confidentiality and integrity protection.

Literal Packets. We denote T` the one-byte tag value of literal packets. The
literal packet LitPacket(D) stores data D in an unprocessed way, preceded by
a header containing some metadata, e.g., a file name or a date.

Compressed Packets. We denote Tc the one-byte tag value of compressed pack-
ets. The compressed packet CompPacketTa(Z) stores the value Z resulting from
the compression under algorithm Ta of an OpenPGP message. The payload of
compressed packets contains a byte Ta, encoding the compression algorithm,
followed by the compressed value Z.

Encrypted Packets. Let Te be the one-byte tag value of encrypted data packets.
The encrypted packet EncPacketEK(C) without integrity protection stores the
ciphertext resulting from an encryption. The payload is simply the ciphertext C
resulting from the encryption of an OpenPGP message using block cipher E
with key K. The encryption procedure is detailed in Section 2.2.

1 We abusively also refer to this part of the decomposition as a block.
2 This is an approximation, since the new length format introduced in the specifica-

tion [9] supports partial length values, but this does not affect our attacks.

Encrypted Integrity Protected Packets. We denote TE the one-byte tag value of
encrypted integrity protected data packets. The encrypted integrity protected
packet EncIntPacketEK(C) stores data after integrity protection and encryption
steps, detailed in Section 2.2. The payload of the packet contains a version
byte, set to 1, followed by the ciphertext C resulting from the encryption of an
OpenPGP message using block cipher E with key K.

plaintext packet(s)
random
block R R MDC packet0xD3 0x14 digest

Encryption

SHA-1

tag
Te/TE

1 encrypted data C

K

Fig. 1: Encrypted packets format and encryption procedures. The elements on gray
background only appear in encrypted integrity protected packets.

Key Packets. The generation/decryption of the ciphertext contained in an
encrypted packet, with or without integrity protection, involves a secret key K
that is securely stored in a key packet KeyPacketA(K,E), that is transmitted
along with the encrypted packet. This key packet also encodes the block cipher
primitive E selected by the sender. Only recipient A can extract the key from
the key packet, because he either shares a passphrase with the sender, or he owns
a given private key. The latter is the general use case, and is a form of hybrid
encryption, where asymmetric encryption protects a message key used to sym-
metrically encrypt data. In the following, we assume that the legitimate recipient
unlocks the message key, and focus on the symmetric encryption mechanism.

2.2 Encryption Procedures

Encryption with integrity protection uses a block cipher in CFB mode with
an all-zero IV. Initial encryption randomization is obtained by prepending to
the plaintext packet(s) a block R of n random bytes. The last two bytes of the
random block R = R[−2]||R[−1] are repeated as the first two bytes of the second
block. This redundancy provides an early way to detect the use of a wrong key
derived for example from an erroneous passphrase. This test was used in [11] to
recover 16 bits of plaintext per block.

A suffix starting with two fixed byte values, 0xD3||0x14 is appended. These
represent the header (tag and length) of an OpenPGP Modification Detection
Code (MDC) packet. Then, a SHA-1 digest is computed over the concatenation
of the prefix, the plaintext packet(s), and the header of the MDC packet. The re-
sulting 20 bytes are the payload of the MDC packet, which are further appended

in order to obtain the input P of the encryption. A graphical representation of
the encoding of P can be found in Figure 1. The CFB chaining equation is given
by the following formula3:

Ci = EK(Ci−1)⊕ Pi (1)

We comment briefly on the security of encryption with integrity protection
in OpenPGP in Appendix A.

Encryption without integrity protection presents only slight variations. First,
no suffix is appended after the plaintext. Second, the state of the CFB encryption
function is resynchronized after the encryption of the prefix. That is to say, the
first n + 2 bytes are encrypted using CFB mode, then the CFB state is set to
the last n bytes of the current ciphertext, i.e., starting from the third byte, and
the encryption of the plaintext in CFB mode resumes from this point.

3 Format Oracles

A format oracle describes a side-channel leaking information on the decrypted
values corresponding to given ciphertexts. Format oracles generalize padding or-
acles in two directions. Firstly, the test performed by the oracle is not restricted
to the padding of the plaintext, but can also take into account any constraint
of the (application-related) format of the plaintext. Secondly, the format ora-
cles may leak plaintext information faster than classical padding oracles. We
say a format oracle is boolean when its output is simply the result of some for-
mat verification on the decrypted ciphertext, and leaky if it provides additional
information.

As we shall see in the rest of this section, OpenPGP libraries leak through
their error messages partial information on the decrypted values corresponding
to submitted ciphertexts. For example, GnuPG generally emits non-fatal errors
on the standard error stream stderr if the result of decryption presents format
inconsistencies. Among these messages, it is worthwhile to distinguish so-called
status messages, that are specifically intended to provide information to appli-
cations using GnuPG as a backend. Thus, any leakage through status messages
is particularly worrisome.

Should the mentioned error messages be made available to an adversary by
an inadvertent application, a format oracle would be instantiated. In particular,
JavaScript libraries are expected to run in possibly hostile environment, where
exceptions and error messages should be sanitized.

It is difficult to formalize completely the oracle definitions, because they
rely on the format of OpenPGP messages. We shall see in the Section 4 that
for specially crafted ciphertexts, most of these oracles enable to test whether a
decrypted ciphertext byte takes a value in a specific set, possibly a singleton.

3 By convention C0 is the all-zero IV, and is not transmitted. Note also that in case
the last Pi is shorter than a block, the value of EK(Ci−1) is truncated accordingly.

The Invalid Identifier Oracles. An OpenPGP packet contains several con-
strained values. For example, the RFC specifies that the packet tag is a one-byte
value with its most significant bit (MSB) set to 1. Such constrained identifiers
are pervasive in the OpenPGP specification: packet tags, compression methods,
encryption algorithms, etc.

Definition 1. An invalid identifier oracle is a leaky oracle taking as input a
key packet KeyPacketA(K,E) containing a key K for an algorithm E, and a
symmetrically encrypted packet containing a ciphertext C. It tests whether, when
parsing the packets in the decrypted ciphertext, all bytes interpreted as some type
of identifiers respect the associated constraints. Furthermore, it leaks the values
of the bytes that do not satisfy this format.

The GnuPG error messages invalid packet (ctb=XX), where XX is an of-
fending packet tag, with MSB equal to 0, providean invalid tag oracle. The
OpenPGP.js exception messages Compression algorithm XX not implemented

provide an invalid compression method oracle leaking the offending compression
method XX. For End-to-End, the Unsupported id: XX exception messages pro-
vide an invalid algorithm identifier oracle.

The Double Literal Oracle. The OpenPGP specification [9] states that only
a single literal data packet may be found in any OpenPGP message. OpenPGP
implementations may check that only one such packet exists in a message or
otherwise emit a specific error message. This leads us to consider the following
format oracle:

Definition 2. The double literal oracle is a boolean format oracle that takes the
same input as the invalid identifier oracle. It tests whether the tags of any two
consecutive OpenPGP packets in the decrypted ciphertext are both literal packet
tags.

The GnuPG WARNING: multiple plaintexts seen error messages, and the
proc pkt.plaintext 89 BAD DATA status messages4 provide a double literal or-
acle. OpenPGP.js provides this oracle as well.

The MDC Packet Header Oracle. A potential format oracle can be found in
the encryption with integrity protection mechanism of OpenPGP. As described
in Section 2, the input of the encryption function during the encryption with
integrity protection process is infused with some format so that the plaintext is
the concatenation of an OpenPGP message followed by an MDC packet. Fur-
thermore, OpenPGP mandates the use of SHA-1 as the hash function for MDC
packets during encryption, and defines the header of these packets (tag and
length). Thus, for the decryption of a legitimate ciphertext, the 22nd and 21st
bytes counting from the end after decryption have prescribed values. This leads
us to consider the following format oracle:

4 These status message are emitted unless they are explicitely inhibited by the caller,
through setting the flag --allow-multiple-messages.

Definition 3. The MDC packet header oracle is a boolean format oracle that
takes as input a key packet KeyPacketA(K,E) containing a key K for an al-
gorithm E, and EncIntPacketEK(C), a symmetrically encrypted integrity pro-
tected packet. Denoting P the decrypted ciphertext, the oracle tests whether
P [−22] = 0xD3 and P [−21] = 0x14.

GnuPG mdc packet with invalid encoding error messages provide an MDC
packet header oracle, as well as its DECRYPTION FAILED status messages com-
bined with the absence of a BAD MDC status messages. Modification Detection

Code not properly formatted error messages, that can be returned by a low-
level function of the End-to-End library, provide the same oracle.

The definition of the MDC packet header oracle is a slight simplification of
the behaviour that can be found in OpenPGP libraries. More details are given
in Appendix B.

4 Plaintext Recovery Attacks

4.1 Overview of Format Oracle Attacks against OpenPGP

In the following, we consider an encrypted packet whose payload contains the
target ciphertext value C∗, and a corresponding key packet KeyPacketA(K,E).
Note that the attacker does not have access to the key K that protects the
target encrypted packet. Only user A can recover K from the key packet, using
a passphrase or a private key. The objective of the attacker is to recover the
decryption P ∗ of C∗ by leveraging a format oracle implemented by user A. The
attacker performs several requests to the oracle, with specially crafted, format
oracle specific, ciphertexts C = C(B, u, a), were B is the target block, u is the
target position in the block, and a is the tested value. The oracle answers leak
information allowing to decrypt ciphertext C∗ step by step.

OpenPGP symmetric encryption relies on variants of the CFB mode of op-
eration. Let us notice that in order to decrypt a CFB encrypted message, it is
sufficient to be able to recover the encrypted value of any block. Applying this
recovery procedure on block C∗i , we get EK(C∗i) which can be used to decrypt
C∗i+1 through Equation 1: P ∗i+1 = C∗i+1 ⊕ EK(C∗i).

The attacks presented enables to attack any type of encrypted data, be it
encrypted packets with/without integrity protection, or symmetrically encrypted
session key packets. More details are given in Appendix C.

A general attack overview is given in Algorithm 1. The attack complexities
are expressed in the maximal number of queries to the format oracle. The corre-
sponding average complexity is half the maximal complexity. We now describe,
for the format oracles described in Section 3 the structure of the submitted ci-
phertexts C(B, u, a). The presented query ciphertexts only contain the payload
specific to the studied oracle. If the decryption function enforces other con-
straints, e.g., checks the initial redundancy of OpenPGP plaintexts, the query
ciphertexts can be tweaked, as described in Appendix B.

Algorithm 1 Transforming a format oracle into an attack: overview

for all ciphertext blocks C∗
i do

for all (byte) positions 1 ≤ u ≤ n in the ciphertext block do
for all possible (byte) values a do

Submit ciphertext C(C∗
i , u, a) to the oracle

if oracle returns True then
deduce the value of EK(C∗

i) at position u from a

4.2 Plaintext Recovery using Tag Oracles

First we describe how to leverage an invalid tag oracle, that is a specific case of
an invalid identifier oracle, or a double literal oracle. The same principle can be
applied to leverage any invalid identifier oracle. In order to recover EK(B)[u],
we consider ciphertexts with the following format:

C(B, u, a) = T` ⊕ α||U ⊕ β||0x00n−2||B||0x00u−1||a,

where U is the byte whose value is 2n+ u− 3, and α and β are the bytes used
to decrypt the first two bytes of ciphertext. We can assume that these two bytes
can be predicted by an attacker from C∗ (cf Appendix B).

These ciphertexts are built so that the corresponding plaintexts contain a
first literal packet of length U = 2n + u − 3. The zero paddings ensure that B
starts at a block boundary, and that the tag of the second packet is located at
position u of the block following B. For the double literal oracle (resp. for the
invalid packet tag oracle), we let a (resp. the MSB of a) take all possible values.
After decryption, this lets the tag (resp. the MSB of the tag) of the second
packet take all possible values. The format oracle returns True if EK(B)[u]⊕ a
is a valid tag (resp. it leaks EK(B)[u]⊕ a if its MSB is 0). We give a graphical
representation of this procedure in Figure 2. The maximal number of requests
to recover this byte is approximatively 26 (resp. 2). Only about 26 requests are
needed instead of 28, because there are 5 possible tag values (cf [9]).

4.3 Plaintext Recovery using the MDC Packet Header Oracle

Basic Recovery of the Encrypted Value of a Block. To recover EK(B),
we consider the ciphertexts with the following format:

C(B, u, (a, b)) = B||0x00u−1||a||b||0x0020.

B is block aligned, 1 ≤ u ≤ n − 2 pads the ciphertext so that the target bytes
are located at position u and u+ 1 of the following block, and the final 20 zeros
ensures that a and b are considered as the MDC header.

Recovering EK(B)[u] and EK(B)[u + 1]. In order to recover two consecutive
bytes of EK(B), we let a and b take all possible 216 values. This lets the bytes
located at the MDC packet header position after decryption take all 216 possible

B
α
⊕
T`

β
⊕
U

0x00

· · ·
0x00

1 1 n− 2 n

0x00

· · ·
0x00

a

u− 1 1

U

EK EK

⊕ ⊕ ⊕

∗T` U ∗ ∗
x
⊕
a

d
ecry

p
tio

n

first packet tested by tag oracle

Fig. 2: Recovery procedure of x = EK(B)[u], using a tag oracle.

values. Thus the format oracle returns True for a unique pair a′, b′, and we have,
through Equation 1: EK(B)[u] = 0xD3⊕ a′, EK(B)[u+ 1] = 0x14⊕ b′. We give
a graphical representation of a special case of this procedure in Figure 3. The
maximal number of requests to recover these bytes is 216.

B
0x00

· · ·
0x00

a b

n− 2 1 1

0x00

· · ·
0x00

20

EK EK
. . .

⊕ ⊕ ⊕

∗ *

α[n− 1]
⊕
a

α[n]
⊕
b

∗

α

d
ecry

p
tio

n

= 0xD314?

Fig. 3: Recovery of the last two bytes of
EK(B).

B

0x00

· · ·
0x00

a
α
⊕

0x14

0x00

· · ·
0x00

u− 1 1 1 20

0x00

· · ·
0x00

EK EK
. . .

⊕ ⊕ ⊕

∗ *

x
⊕
a

0x14 * ∗

d
ecry

p
tio

n

= 0xD3?

Fig. 4: Recovery of x = EK(B)[u], knowing
α = EK(B)[u+ 1].

Recovering EK(B)[u] knowing EK(B)[u + 1]. We can use the knowledge of
EK(B)[u + 1] to speed up the recovery of EK(B)[u]. We fix b = EK(B)[u +
1]⊕0x14 and let byte a take all possible values. This fixes the second byte of the
MDC packet header after decryption to the 0x14 value and lets the first byte
of the header take all possible 28 values. Thus the format oracle returns True

for a unique value a′, and we have through Equation 1: EK(B)[u] = 0xD3⊕ a′.
We give a graphical representation of this procedure in Figure 4. The number of
requests to recover this byte is 28. It is straightforward to adapt this procedure
to recover EK(B)[u + 1] using the knowledge of EK(B)[u], 1 ≤ u ≤ n − 1, for
a cost of 28 requests. By incrementally applying these procedures after initially
recovering two consecutive bytes of the encrypted value of the block, we can
recover EK(B) with 216 + (n− 2)28 requests. Overall, we can decrypt the whole
ciphertext with ‖C∗‖(216 + (n− 2)28) requests.

Improved Recovery Procedure. It is possible to lower further the complexity
of these attacks to 28 requests per byte to decrypt for long messages. These
optimisations are detailed in Appendix D.

5 Security analysis

Mitigation. A basic way of preventing the attacks presented in section 4 would
be to remove all leakage through error messages produced by the application
during decryption. Adopting this measure for cryptographic libraries and appli-
cations that may be used as backend for other applications, ensures that the
leakage is not mishandled by calling applications. It can be seen as a misuse-
resistance property.

However this may not remove more implicit forms of format oracles. A sound
way to prevent format oracle attacks would be to thwart chosen-ciphertext at-
tacks by systematically using authenticated encryption and implementing a thor-
ough “Verify-then-Decrypt” paradigm during decryption, so that no check is
performed on the decryption result before the integrity of the ciphertext is cryp-
tographically verified. Such a paradigm cannot be implemented in the case of
OpenPGP, since the ciphertext needs to be decrypted before the integrity can be
verified. However, it is still possible to obtain a safe implementation by adopt-
ing a “Verify-then-Release” paradigm, i.e., the decryption result is buffered, and
any processing of the decryption result is deferred until the integrity has been
verified. Note that for this solution to be effective, serious compatibility issues
can be raised. Indeed, in the case of OpenPGP, this solution would require to
deprecate the decryption of messages encrypted without integrity protection.
Indeed, if this operation leaks information, it can be used to attack packets en-
crypted with integrity protection through a downgrade attack, as detailed in
Appendix C.

Note also that this cannot be reduced to the choice of the authenticated
encryption mode: the implementation of the decryption procedure is crucial to
the security of authenticated encryption. In the case of GnuPG implementation
of OpenPGP encryption with integrity protection, decryption and MAC com-
putations are performed in parallel, and the decryption result is interpreted on
the fly before MAC verification. This behaviour is at odds with the security
models under which authenticated encryption modes are evaluated. Even an im-
plementation of the “Encrypt-then-MAC” paradigm, mode that is perceived to
be generally safe, can be implemented in this way, and may thus be vulnerable
to oracle attacks.

When relying on authenticated encryption to prevent format oracles is not an
option, cryptographic toolkits/libraries have to settle for establishing a safe API,
that is resistant against misuse by a non cryptography-savvy developer. This can
be done by eliminating as much as possible potential leakage of information, by
providing a high-level API free of such leakage, and/or explicitly advertising the
sensitive information leaked by the API. Errors raised by the exported functions
are part of the API and should be considered when studying the leakage channels.

Future Perspective: State-of-the-Art Authenticated Encryption. The
international competition CAESAR, which aims at identifying good authen-
ticated encryption schemes, has seen the formalisation of security properties
related to the security of the decryption procedure, e.g., the definition of the Re-
lease of Unverified Plaintext setting [3]. Some of the CAESAR candidates may
turn out to provide a solution suitable in the context of OpenPGP, and resistance
against chosen-ciphertexts attacks even if the decrypted value is processed on-
the-fly. Another interesting venue of research that can be followed is to consider
the decryption errors into the security model used to study the authenticated
encryption mode, following [6]. In both cases however, it is not easily achievable
for existing applications to adopt an authenticated encryption mode satisfying
stronger security notions. In the case of OpenPGP, it would require an update
of the OpenPGP specifications and may entail interoperability issues.

Disclosure. We reported our findings to the developers of three OpenPGP
applications/libraries: GnuPG, End-to-End and OpenPGP.js.

GnuPG developers acknowledged that unattended usages of their library
leaked information via the standard error stream. However, they consider that
GnuPG is not at fault, and that it is the responsibility of the users and integra-
tors not to mishandle the leaked warnings and error messages. A patch partially
removing the MDC packet header oracle has been integrated in GnuPG 1.4.17
and GnuPG 2.0.23. The inclusion in GnuPG documentation of a security dis-
claimer warning against padding/format oracles was also discussed.

Google End-to-End developers stated that ”the API contract [they] should
try to follow is that users of [the high-level API of the library] should be safe to
print to an untrusted adversary the errors it throws” and that information leaks
conveying useful information should be considered as security bugs. As a result,
they tracked every unhandled exceptions in End-to-End. They also removed the
MDC packet header leak. OpenPGP.js developers followed a similar approach.

6 Conclusion

We highlighted potential format oracles in the OpenPGP message format. If the
error messages of the three OpenPGP applications/libraries we studied, GnuPG,
OpenPGP.js, and End-to-End, are mishandled, the format oracles are imple-
mented, and they can be used to decrypt data encrypted using OpenPGP.

Modern cryptographic standards should provide strong integrity guarantees,
by using only authenticated encryption. Cryptographic application and library
providers should be aware of the presented attacks, and develop their products
with the following idea in mind: while decrypting a message, no information
should be leaked about the plaintext until the integrity has been checked. In
particular, this includes format constraint checks and timing info leaks. The
safest way to meet this requirement is to forbid any processing of the plaintext
until the integrity has been checked. Library developers should at least strive to
specify high-level API free of format oracles, and document the outputs of their
libraries that are susceptible to leak sensitive information.

References

1. Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext Re-
covery Attacks against SSH. In IEEE Symposium on Security and Privacy, pages
16–26. IEEE Computer Society, 2009.

2. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen: Breaking the
TLS and DTLS Record Protocols. In IEEE Symposium on Security and Privacy,
pages 526–540. IEEE Computer Society, 2013.

3. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to Securely Release Unverified Plaintext in Authenticated
Encryption. Cryptology ePrint Archive, Report 2014/144, 2014. http://eprint.

iacr.org/.
4. Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Gra-

ham Steel, and Joe-Kai Tsay. Efficient Padding Oracle Attacks on Cryptographic
Hardware. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 608–625. Springer, 2012.

5. Daniel Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO,
volume 1462 of Lecture Notes in Computer Science, pages 1–12. Springer, 1998.

6. Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. On Symmetric Encryption with Distinguishable Decryption Failures. In
Shiho Moriai, editor, Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of
Lecture Notes in Computer Science, pages 367–390. Springer, 2013.

7. Tibor Jager and Juraj Somorovsky. How to break XML encryption. In Yan Chen,
George Danezis, and Vitaly Shmatikov, editors, ACM Conference on Computer
and Communications Security, pages 413–422. ACM, 2011.

8. Kahil Jallad, Jonathan Katz, and Bruce Schneier. Implementation of Chosen-
Ciphertext Attacks against PGP and GnuPG. In Agnes Hui Chan and Virgil D.
Gligor, editors, ISC, volume 2433 of Lecture Notes in Computer Science, pages
90–101. Springer, 2002.

9. J.Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP Message
Format. RFC 4880 (Proposed Standard), November 2007.

10. Vlastimil Kĺıma and Tomas Rosa. Side Channel Attacks on CBC Encrypted Mes-
sages in the PKCS#7 Format. Cryptology ePrint Archive, Report 2003/098, 2003.
http://eprint.iacr.org/.

11. Serge Mister and Robert J. Zuccherato. An Attack on CFB Mode Encryption
as Used by OpenPGP. In Bart Preneel and Stafford E. Tavares, editors, Selected
Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages
82–94. Springer, 2005.

12. Chris J. Mitchell. Error oracle attacks on CBC mode: Is there a future for CBC
mode encryption? In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao,
editors, Information Security, 8th International Conference, ISC 2005, Singapore,
September 20-23, 2005, Proceedings, volume 3650 of Lecture Notes in Computer
Science, pages 244–258. Springer, 2005.

13. B. Möller, T. Duong, and K. Kotowicz. Google Security Advisory: This POO-
DLE Bites: Exploiting The SSL 3.0 Fallback. https://www.openssl.org/~bodo/

ssl-poodle.pdf, 2014.
14. Kenneth G. Paterson and Nadhem J. AlFardan. Plaintext-Recovery Attacks

Against Datagram TLS. In NDSS. The Internet Society, 2012.

15. Serge Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS ... In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of
Lecture Notes in Computer Science, pages 534–546. Springer, 2002.

A Discussion on OpenPGP Authenticated Encryption
Scheme

OpenPGP provides encryption with integrity protection, claiming to use the
Hash-then-Encrypt paradigm ([9, section 5.13], “An MDC is intentionally not a
MAC”). This paradigm is known not to satisfy state-of-the-art integrity require-
ments. However, the first random block R that is prepended to the plaintext
before encryption and hash computation acts as a MAC session key, for a MAC
of the form H(K||M).5 Thus, OpenPGP actually seems to implement a form of
the MAC-then-Encrypt paradigm. The complete security analysis of this mode
is not the object of this paper and is left as an open question.

B Adapting Crafted Ciphertexts to the Format Oracle

The access to the MDC packet header format oracle may be subject to some
conditions on the decrypted ciphertext. We found that it was easy to tweak the
submitted ciphertext to accommodate the conditions we encountered.

Guessing C∗2 [3] and C∗2 [4]. The first real plaintext bytes, C∗2 [3] and C∗2 [4], are
part of the tag header. In practice, two cases may arise, depending on the pref-
erences included in the recipient’s key:

– the data is compressed, which corresponds to a Tc tag, followed by the com-
pression algorithm Ta, thus C∗2 [3] = Tc and C∗2 [4] = Ta ;

– the data is simply a litteral, which leads to a C∗2 [3] = T`, with the following
bytes encoding the litteral length. This length (and therefore C∗2 [4]) can be
deduced from the overall encrypted packet size.

Random Prefix Redundancy. As seen in section 2, prior encryption, a random
prefix with basic redundancy is prepended to the payload. The check on the
redundancy at the beginning of decryption is meant to get an early detection
method that a wrong key is used to decrypt. In case the key is derived from
a passphrase, this enables to detect erroneous passphrase inputs. [11] used this
check to instantiate a format oracle that led to the ability to decrypt the first
16 bit of any ciphertext block. This redundancy check may still be present and
a failure may suppress the “MDC packet header” oracle. In order to ensure that
the random prefix redundancy check is always satisfied, it is sufficient to prefix
any ciphertext considered in our attacks with the first two blocks of the target
ciphertext: instead of submitting C, the attacker submits C∗1 ||C∗2 ||C. In the case
of tag format oracles, only the first two bytes of C∗2 are used, with the payload
ciphertext immediately following.

5 This MAC is known to be vulnerable to classical extension attacks, but they seem
to be irrelevant in the OpenPGP context, since the MAC value is encrypted.

Compression. Some implementations, as GnuPG, process in parallel decryption
and decompression, and abort decryption if a decompression error is detected.
In order to ensure no compression error occurs, the attacker can tweak the
submitted ciphertext to trick the implementation into considering the content
as a literal packet. This is relatively easy, since it only depends on the third byte
of the second block of the encryption input. If the target ciphertext corresponds
to a compressed packet, we have C∗2 [3] ⊕ EK(C∗1)[3] = Tc. If we consider the
block C# = C∗2 ⊕ (0x002||T` ⊕ Tc||0x00n−3), the decryption of ciphertexts of
the form C∗1 ||C#||C verifies the redundancy of the prefix and the plaintext first
packet will be considered a literal packet.

C Attacking Any Encrypted Packet Types

We show in this section that the malleability of packet tags allows for masquerad-
ing a given packet as a packet of a different type. In particular, it allows us to use
the MDC packet header oracle to decrypt any symmetrically encrypted packet.
The same conclusion holds for the other format oracles: it is thus possible to
use a format oracle present in the encryption-only part of a library to attack an
encrypted packet with integrity protection.

Encrypted Packets without Integrity Protection. It is worthwhile to note that
encrypted packets without integrity protection can also be decrypted by using
the MDC packet header oracle. Indeed, the target key packet can be used in-
differently for encryption with or without integrity protection. Furthermore, the
encryption procedure of encrypted packets without integrity protection is also
based on CFB mode, with an all-zero IV and a random prefix composed of a
random block of n bytes followed by the repetition of the last two bytes of the
random block. The variation introduced by the CFB state resynchronization
does not modify the attack principle, it only introduces a slight shift in the
splitting of the ciphertext into blocks. In order to decrypt EncPacketEK(C∗), an
encrypted data packet without integrity protection, containing ciphertext C∗,
it is enough to recover the encryption of the blocks of the truncated ciphertext
obtained by removing the first two bytes of C∗. The random prefix redundancy
constraints and compression constraints can be satisfied in the same manner as
for encrypted integrity protected packets.

Note that, considering only the MDC packet header oracle, this leads to
the non-intuitive result that the implementation of an authenticated encryption
scheme weakens the security of the encryption scheme without integrity.

Symmetrically Encrypted Session Key Packets. We give additional details on
symmetrically encrypted key packets. The protection of the key stored by these
packets relies on a passphrase. The key packet contains the information necessary
to derive a key Kp from the passphrase. If the key packet contains an encrypted
key, it can be decrypted into K using Kp with the appropriate block cipher in
CFB mode, with an all zero IV. Otherwise, Kp is used directly to process data,
K = Kp.

The attacks can also be applied to the decryption of symmetrically encrypted
session key packets, when they contain an encrypted key. Indeed, the same en-
cryption algorithm, CFB with an all-zero IV is used. Furthermore, by removing
the encrypted session key from the target encrypted session key packet, one gets
a session key packet for the key derived from the passphrase, that can be used to
mount the attack. Contrary to the cases of encrypted data packets, no ciphertext
blocks corresponding to a plaintext satisfying the random prefix redundancy are
available. However, by performing 216 requests, with an identical first block, and
all possible values for the first two bytes of the second block, such a pair of
ciphertext block can be found, if necessary. Attacking session key packets may
be preferable to attacking the data packets they protect, since they are usually
shorter, and thus their decryption requires less requests.

By the way, the fact that truncating a session key packet gives a valid key
packet that can be used to attack the confidentiality of the initial packet is an
undesirable property of the symmetrically encrypted session key packet format.
It would have been better to build the format of these packets around a key
wrap mechanism, providing both confidentiality and integrity of the session key
and its metadata.

D Details of the Improved Recovery Procedure using the
MDC Packet Header Oracle

The cost of the basic recovery procedure described in the previous section can
be decomposed, for each block, into an expensive first step that recovers initial
knowledge on an encrypted block, followed by several cheaper steps that recover
the rest of the encrypted block. Starting from the information leaked by the
target ciphertext C∗, it would be tempting to apply only the cheaper steps, for
a cost of 28 requests per byte to decrypt. But a direct approach fails because
of the behaviour of decryption at block boundaries. We describe two procedures
enabling to recover initial knowledge on EK(B) for about 28 requests. We then
discuss the cost of decrypting C∗ as a function of its length.

Type I procedure. This procedure enables to test whether EK(B)[n] = a⊕ 0xD3

for one request, provided a test block T satisfying T [n] = a and EK(T)[1] is
known. The format of the request ciphertext is B||T ||(EK(T)[1]⊕0x14)||0x0020.
A graphical representation is given in Figure 5.

Type II procedure. This procedure enables to recover EK(B)[1] for 28 requests,
provided B[n] = a and a test block T satisfying EK(T)[n] = a ⊕ 0xD3. The
format of the request ciphertexts is T ||B||b||0x0020, with b a byte taking all
possible values. A graphical representation is given in Figure 5.

Decryption Strategy. Note that each of the previous procedures can be applied
to any block to recover a first byte of its encrypted value for a cost of 28 once
a collection of 28 test blocks, presenting all variations of a, has been obtained.

B T a

n− 1 1

β[1]
⊕

0x14

0x00

· · ·
0x00

1 20

EK EK
. . .

⊕ ⊕ ⊕

∗ *

α[n]
⊕
a

0x14 *

α β

d
ecry

p
tio

n= 0xD3?

T B a

n− 1 1

b

0x00

· · ·
0x00

1 20

EK EK
. . .

⊕ ⊕ ⊕

∗ * 0xD3

b
⊕
α[1]

*

β

β[n] = 0xD3 ⊕ a

α

= 0x14?

Fig. 5: Type I (left) and type II (right) byte recovery procedures

In order to decrypt the target ciphertext C∗, one starts by recovering the block
corresponding to the position of the MDC header. Every time a block is re-
covered, it may provide a new test block that may help to start recovering the
remaining ones. Type II and type I procedures are applied as much as possible
to start recovering blocks, and the incremental basic procedure is used to finish
the encrypted block recovery. If type I and type II procedures cannot be applied,
we either apply directly the basic block recovery procedure, or apply type I and
type II procedures to extra (pseudo-)ciphertext blocks.

Decryption Complexity. We performed simulations to identify the best strategy,
with regards to the ciphertext length. If the number of ciphertext block is small,
‖C‖ ≤ 25, it is best to apply the basic recovery procedure when the type I
and type II procedures cannot be applied. If the number of block is medium
26 ≤ ‖C‖ ≤ 267, the best strategy is to artificially add random ciphertext
blocks to have 267 blocks. The message is longer, but it is cheaper to decrypt
because the type I and II procedures are applied more often. For long messages,
‖C‖ > 267, it is not necessary to add random blocks, since the cost of decrypting
additional block exceeds the cost benefit. In the rare cases were type I and II
procedures are not sufficient, one resorts to the basic procedure. Furthermore,
for very long messages, the decryption cost is effectively 28 requests per byte.
Assuming a 128-bit block cipher, 25 (resp. 267) blocks translate into 400B (resp.
4KB). The results are summarized in Figure 6.

5 10 15 20 25 30

2

4

6

8

Length of ciphertext (kB)

N
u
m

b
er

o
f

re
q
u
es

ts
(1

0
6
)

Fig. 6: Number of requests to decrypt a ciphertext as a function of its byte length,
assuming 128-bit blocks. When ciphertexts are long enough, the complexity is linear,
equal to 28 requests per byte.

