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Abstract

In machine learning problems, the availability of several classifiers trained on
different data or features makes the combination of pattern classifiers of great
interest. To combine distinct sources of information, it is necessary to represent
the outputs of classifiers in a common space via a transformation called calibra-
tion. The most classical way is to use class membership probabilities. However,
using a single probability measure may be insufficient to model the uncertainty
induced by the calibration step, especially in the case of few training data. In
this paper, we extend classical probabilistic calibration methods to the eviden-
tial framework. Experimental results from the calibration of SVM classifiers
show the interest of using belief functions in classification problems.

Keywords: Classifier calibration, theory of belief functions, Dempster-Shafer
theory, evidence theory, support vector machine

1. Introduction

The combination of pattern classifiers is an important issue in machine learn-
ing [25]. In many applications, the availability of several sources of information,
coming from different sensors, training data, models or human experts, makes
the use of combination techniques very attractive. Indeed, an ensemble of di-
verse classifiers often gives better results than do any of single one.

The combination strategies can generally be separated into two kinds: train-
able and non-trainable combiners [18, 34]. In the first case, the outputs of each
classifier are used as inputs in a new round of training. A simple way is to con-
catenate the initial outputs into a feature vector and learn a new classifier using
classical machine learning techniques. Using trainable approaches is appealing
as they may be asymptotically optimal [18]. In some cases, as in the bagging [4]
and boosting [20] algorithms, the base classifiers are especially designed to be
used in such learning schemes. However, one drawback of such methods is the
additional training step. Not only do they need to have a training set common
to all base classifiers, but new classifiers can hardly be added afterward. In
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many practical situations, new sensors can be included in the system and new
sources of information or training data can become available after the classifiers
have been trained. In such cases, we may not wish to train the whole combiner
again every time.

The non-trainable approaches consist in combining directly the outputs of
the base classifiers, using a pre-defined combination rule. The simplest way
is the majority vote. It is one of the few cases where no particular attention
has to be paid to the outputs of the base classifiers. Otherwise, the various
outputs have to be made comparable beforehand. For this purpose, they are
often transformed into class membership posterior probabilities [28, 37, 38].
This step is called calibration.

In this paper, we address the latter kind of combinations. In this context,
the performance of each base classifier is not of primary importance, instead the
calibration step becomes the major issue [7, 3]. One of the main difficulties in
calibration is to avoid over-fitting, and this is especially critical when dealing
with few training data. Classical probability theory can manage over-fitting only
to a certain degree. However, more general theories [24] have been developed
over the last decades to better handle cases with little information available.
The theory of belief functions, also known as the Dempster-Shafer theory [30]
or evidence theory, is a popular one in the information fusion community.

Many probabilistic learning algorithms such as naive Bayes, k-nearest neigh-
bors, neural networks or decision trees have their evidential counterparts [10,
11, 33, 15, 19]. For kernel based methods, getting probabilistic outputs is more
challenging. In the particular case of support vector machines (SVM), Bartlett
and Tewari [2] showed that sparsity is lost if the posterior probabilities are to
be estimated for all SVM scores. An additional training step, called calibration,
as proposed by Platt [28], can give probabilistic outputs while retaining the
sparseness of the SVM.

In this paper, we investigate the calibration of binary classifiers using belief
functions. We extend three existing probabilistic calibration methods to the
evidential framework and apply them to calibrate SVM classifiers. The rest of
this paper is organized as follows. In Section 2, we review existing probabilistic
calibration methods and discuss their limitations. An introduction to the theory
of belief functions is given in Section 3. Evidential extensions of probabilistic
calibration methods are then addressed in Section 4. Finally, some experimental
results about the calibration of binary SVM classifiers are presented in Section 5.

2. Probabilistic calibration

Let X = {(x1, y1), . . . , (xn, yn)} be some training data in a binary classifi-
cation problem, where xi ∈ R is the score returned by a pre-trained classifier
for the i-th training sample with label yi ∈ {0, 1}. Given a test sample of score
s ∈ R and unknown label y ∈ {0, 1}, the aim of calibration is to estimate the
posterior class probability P (y = 1|s). Several calibration methods can be found
in the literature. Binning [37], isotonic regression [38] and logistic regression [28]
are the most commonly used.
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Figure 1: SVM scores calibration on the Australian dataset.

Binning [37] is a rather simple way to perform calibration by partitioning
the score space into bins. For the j-th bin, which is an interval [sj , sj ], we count
the number of positive examples kj over all the nj training examples whose
score falls into this particular bin. Given a test sample of score s ∈ [sj , sj ]

and unknown label y ∈ {0, 1}, the posterior probability P
(
y = 1|s ∈ [sj , sj ]

)
is

simply approximated by the empirical proportion τ̂j = kj/nj .
Figure 1 illustrates the calibration results of an SVM classifier on the UCI2

Australian dataset. This dataset concerns consumer credit applications. A
set of 690 cases are described by 15 attributes. In our setting, the data are
divided into a training set of size 390 and a test set of size 400. The white
dots represent the outputs of a binning calibration with the following bins:
(−3,−2], (−2,−1], . . . , (+2,+3]. Calibration methods using the binning ap-
proach do not use any prior knowledge about the shape of the posterior prob-
ability with respect to the score. However, in many practical situations, the
scores are seen as confidence measures. This implies that the transformation
from a score to a probability measure should be done using a non-decreasing
function. This assumption is strong, but it is often reasonable in practice.

An alternative to binning that incorporates such prior constraint is isotonic
regression [38]. It consists in fitting a stepwise-constant, non-decreasing, i.e.,
isotonic, function g : R → [0, 1] to the training data by minimizing the mean-

2http://archive.ics.uci.edu/ml.
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squared error

MSE(g,X ) =
1

n

n∑
i=1

[g (xi)− yi]2 . (1)

The optimal function ĝ can be computed efficiently using the pair-adjacent
violators (PAV) algorithm [1]. The solid line in Figure 1 shows the result of
isotonic calibration.

Platt [28] further constrains the calibration problem using logistic regression.
Niculescu-Mizil and Caruana [27] showed that logistic regression is well-adapted
for calibrating maximum margin methods like SVM. Moreover, it is less prone
to over-fitting as compared to binning and isotonic regression, especially when
relatively few training data are available. Logistic regression calibration consists
in fitting a sigmoid function

P (y = 1|s) ≈ hs(θ) =
1

1 + exp (θ0 + θ1s)
. (2)

The parameter θ = (θ0, θ1) ∈ R2 of the sigmoid function is determined by
maximizing the likelihood function on the training data,

LX (θ) =

n∏
i=1

pyii (1− pi)1−yi with pi =
1

1 + exp(θ0 + θ1xi)
. (3)

To reduce over-fitting and prevent θ0 from becoming infinite when the training
examples are perfectly separable, Platt proposed to use an out-of-sample data
model by replacing yi and 1− yi by t+ and t− defined as

t+ =
n+ + 1

n+ + 2
and t− =

1

n− + 2
, (4)

where n+ and n− are respectively the number of positive and negative training
samples. This ensures LX to have a unique supremum θ̂ = (θ̂0, θ̂1). The dashed
curve in Figure 1 shows the result of logistic calibration.

One limitation of probabilistic calibration methods is that the uncertainty
due to the number of training data is not taken into account. Figure 2 shows
the empirical distribution of the SVM scores in a binning calibration framework.
For a bin that contains many data, the estimate of the associated proportion
is more certain. This can be illustrated by confidence intervals. We can see
that for the (+2,+3] bin, the confidence interval is larger, meaning that the
proportion estimate is more uncertain. The same phenomenon occurs for iso-
tonic and logistic regressions: the less training sample, the more uncertain the
estimated parameters. In order to better handle such uncertainties, a more
powerful representation needs to be used instead of probability.

4



SVM score s
-3 -2 -1 0 1 2 3

P
os

te
ri

or
p
ro

b
ab

il
it

y
P

(y
=

1|
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: SVM scores distribution and confidence interval over the binomial proportion of
each bin. The intervals are computed at the 95% confidence level.

3. Theory of belief functions

The theory of belief functions, also known as Dempster-Shafer theory [30],
is a generalization of probability theory. It can be used for both prediction and
statistical inference. In this section, we first introduce some basic notions of
the theory of belief functions in a finite space. Then, we present the formula-
tion of likelihood-based belief functions. Our presentation follows the work of
Denœux [13] for statistical inference and the work of Kanjanatarakul et al. [23]
for its applications to forecasting.

3.1. Predictive belief functions

Let Ω = {ω1, . . . , ωC} be a finite set of classes. In the case of binary classi-
fication problems, we would have Ω = {0, 1}. A mass function defined over the
frame of discernment Ω is a function mΩ : 2Ω → [0, 1] verifying:∑

A⊆Ω

mΩ(A) = 1, mΩ(∅) = 0. (5)

Given an object whose class ω is in Ω, our belief about ω can be represented by a
mass function over Ω. The quantity mΩ(A), for a given subset A ⊆ Ω, represents
the belief committed to the hypothesis ω ∈ A. The particular mass mΩ(Ω)
represents the amount of ignorance. All subsets A ⊆ Ω such that mΩ(A) > 0
are called focal elements. A mass function whose focal elements are all singletons
actually defines a probability distribution and will be referred to as Bayesian.

5



Given two mass functions mΩ
1 and mΩ

2 , generated from independent pieces
of evidence, one can combine them into a new mass function mΩ

1,2, using Demp-
ster’s rule of combination:

mΩ
1,2(∅) = 0, mΩ

1,2(A) =
1

1− κ
∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), (6)

where

κ =
∑

B∩C=∅

mΩ
1 (B)mΩ

2 (C) (7)

represents the amount of conflict between the two mass functions. In this paper,
the closed-world assumption is used [31], thus only normalized mass functions
with no mass on the empty set are used. When the two mass functions are
Bayesian, i.e., probability distributions, Dempster’s rule becomes equivalent to
Bayes’ rule of combination with a uniform class prior distribution.

A mass function can also be represented by a belief or a plausibility function,
defined, respectively, as:

BelΩ(A) =
∑
B⊆A

mΩ(B) and PlΩ(A) =
∑

B∩A6=∅

mΩ(B), ∀A ⊆ Ω. (8)

The degree of belief BelΩ(A) represents the amount of evidence strictly sup-
porting the hypothesis ω ∈ A, while the plausibility PlΩ(A) = 1− BelΩ

(
A
)

is
the amount of evidence not contradicting it. A function used to represent and
assess the class of an object will be referred to as predictive.

There exist several ways to predict a label from a mass function. A popular
way is to transform the mass function into a probability distribution and choose
the singleton with maximum probability. This can be done using the pignistic
probability BetPΩ [32] defined as:

BetPΩ(ω) =
∑

A⊆Ω|ω∈A

mΩ(A)

|A|
, ∀ω ∈ Ω. (9)

The pignistic transformation consists in distributing the mass of any subset to its
singletons uniformly. It is also possible to transform a probability distribution
into a belief function by using the inverse pignistic transformation [17]. Another,
simpler and computationally more efficient way to predict a label from a mass
function is to choose the singleton with maximum plausibility. The plausibility
over the singletons is defined by the contour function

plΩ(ω) = PlΩ({ω}), ∀ω ∈ Ω. (10)

In the case of a binary classification problem, choosing the singleton with maxi-
mum mass, belief, plausibility or pignistic probability actually leads to the same
decision.
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3.2. Likelihood-based belief function

The theory of belief functions can also be used for statistical inference.
Shafer [30] originally proposed to use a “likelihood-based” belief function for
statistical inference. This approach was further justified by Denœux [13, 14].
Knowledge about some parameters can then be used for prediction as in [23].

Let X ∈ X be some observable data and θ ∈ Θ the unknown parameter of the
density function fθ(x) generating the data. Information about θ can be inferred
given the outcome x of a random experiment. Shafer [30] proposed to build a
belief function BelΘx from the likelihood function. After observing X = x, the
likelihood function Lx : θ 7→ fθ(x) is normalized to yield the following contour
function:

plΘx (θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
, ∀θ ∈ Θ, (11)

where sup denotes the supremum operator. The consonant plausibility function
associated to this contour function is

PlΘx (A) = sup
θ∈A

plΘx (θ), ∀A ⊆ Ω. (12)

The focal sets of BelΘx are defined as

Γx(γ) = {θ ∈ Θ | plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (13)

To manipulate belief functions defined over a continuous space, the random sets
formalism [26] is often used. Given the Lebesgue measure λ on [0, 1] and the
multi-valued mapping Γx : [0, 1]→ 2Θ, we have

BelΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ⊆ A})
PlΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ∩A 6= ∅}) , ∀A ⊆ Θ. (14)

A complete description of the theory of random sets and its relation to the
theory of belief functions can be found in [26].

3.3. Forecasting

Suppose that we now have some knowledge about the parameter θ ∈ Θ after
observing some training data x. The forecasting problem consists in making
some predictions about some random quantity Y ∈ Y whose conditional distri-
bution gx,θ(y) given X = x depends on θ. A belief function on Y can be derived
from the sampling model proposed by Dempster [8]. For some unobserved aux-
iliary variable Z ∈ Z with known probability distribution µ independent of θ,
we define a function ϕ : Θ× Z→ Y so that

Y = ϕ(θ, Z). (15)

7



A multi-valued mapping Γ′x : [0, 1]×Z→ 2Y is defined by composing Γx with ϕ

Γ′x : [0, 1]× Z → 2Y

(γ, z) 7→ ϕ(Γx(γ), z).
(16)

A belief function on Y can then be derived from the product measure λ⊗ µ on
[0, 1]× Z and the multi-valued mapping Γ′x

BelYx (A) = (λ⊗ µ) ({(γ, z) | ϕ (Γx (γ) , z) ⊆ A}) , (17a)

PlYx (A) = (λ⊗ µ) ({(γ, z) | ϕ (Γx (γ) , z) ∩A 6= ∅}) , (17b)

for all A ⊆ Y.

3.4. Binary case example

Let Y ∈ Y be a binary random variable, i.e., Y = {0, 1}. Let τ ∈ T , where
T = [0, 1], be the proportion parameter of its associated Bernoulli distribution
B(τ). The random variable Y can be generated by a function ϕ defined as

Y = ϕ(τ, Z) =

{
1 if Z ≤ τ,
0 otherwise,

(18)

where Z has a uniform distribution on [0, 1]. Suppose we have some information
about the parameter τ given under the form of a belief function BelTx that is
induced by a random closed interval Γx(γ) = [U(γ), V (γ)]. In particular, it
is the case if BelTx is the consonant belief function associated to a unimodal
contour function plTx . We get

Γ′x(γ, z) = ϕ ([U(γ), V (γ)] , z) =

 {1} if Z ≤ U(γ),
{0} if Z > V (γ),
{0, 1} otherwise.

(19)

The predictive belief function BelYx can then be computed as

BelYx ({1}) = (λ⊗ µ)({(γ, z) | Z ≤ U(γ)}) (20a)

=

∫ 1

0

µ({z | z ≤ U(γ)})f(γ)dγ (20b)

=

∫ 1

0

U(γ)f(γ)dγ = E(U) (20c)

and

BelYx ({0}) = (λ⊗ µ)({(γ, z) | Z > V (γ)}) (21a)

= 1− (λ⊗ µ)({(γ, z) | Z ≤ V (γ)}) (21b)

= 1− E(V ). (21c)
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Figure 3: Predictive mass function mY
x based on the contour function plTx .

As U and V take only non-negative values, these quantities have the following
expressions:

BelYx ({1}) =

∫ +∞

0

(1− FU (u))du (22a)

=

∫ τ̂

0

(1− plTx (u))du (22b)

= τ̂ −
∫ τ̂

0

plTx (u)du (22c)

and

PlYx ({1}) = 1−BelYx ({0}) (23a)

=

∫ +∞

0

(1− FV (v))dv (23b)

= τ̂ +

∫ 1

τ̂

plTx (v)dv, (23c)

where τ̂ is the value maximizing plTx . In many practical situations, the belief
function BelYx cannot be expressed analytically. However, they can be approx-
imated either by Monte Carlo simulation using Eqs. (20) and (21) or by nu-
merically estimating the integrals of Eqs. (22) and (23). The predictive mass
function mY

x can be represented by the areas of regions delimited by the contour
function plTx , as shown in Figure 3.
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4. Evidential calibration

In this section, we extend the three probabilistic calibration methods pre-
sented in Section 2 to the evidential framework. Instead of estimating a posterior
probability distribution P (·|s), we now aim at estimating a mass function mY

s .
As opposed to the Bayesian approach where there is single probability of success
P (y = 1|s), the evidential method returns two values: the belief BelYs ({1}) and
the plausibility PlYs ({1}).

4.1. Binning

Binning can be formulated as a binomial proportion estimation problem. For
a bin [sj , sj ], we are given nj trials with kj successes, and the goal is to estimate
the associated unknown binomial proportion τj ∈ [0, 1]. One simple way to get a
predictive belief function in such a configuration is to use Dempster’s model [9],
which leads to the following mass function:

mY
d ({1}) =

kj
nj + 1

, mY
d ({0}) =

nj − kj
nj + 1

, mY
d ({0, 1}) =

1

nj + 1
. (24)

It can be interpreted, similarly to the Laplace estimator, as having observed one
sample prior to the trial but with unknown label.

From a statistical inference point of view, confidence intervals are often used
to better model the uncertainty due to a small sample size. A confidence interval
[τ j , τ j ] at confidence level 1− α ∈ [0, 1], i.e., P

(
τ j ≤ τj ≤ τ j

)
= 1 − α, can be

represented by the following contour function defined over T :

plTci(τj) =

{
1 if τ j ≤ τj ≤ τ j ,
α otherwise.

(25)

This contour function can be used within the Eqs. (22) and (23) to derive the
associated predictive mass function, which is defined as

mY
ci({1}) = BelYci({1}) (26a)

= τ j −
∫ τj

0

plTci(τ)dτ (26b)

= (1− α)τ j , (26c)

and

mY
ci({0}) = 1− PlYci({1}) (27a)

= 1− τ j −
∫ 1

τj

plTci(τ)dτ (27b)

= (1− α)(1− τ j), . (27c)

10



For the Clopper-Pearson interval [6], the bounds are defined as

τ j = B
(α

2
; kj , nj − kj + 1

)
, τ j = B

(
1− α

2
; kj + 1, nj − kj

)
, (28)

where B(q;β, γ) is the q-th quantile of a beta distribution with shape parameters
β and γ. The choice of the confidence level is often arbitrary, a confidence level
of 95% is a common one. The mass function defined in Eqs. (26) and (27) is
similar to the one proposed in [12] but discounted by a factor α.

An alternative to confidence intervals is the use of the likelihood function as
proposed by Denœux [13]. If the relative likelihood function is used as contour
function for τj , we get

plTl (τj) =
τ
kj
j (1− τj)nj−kj

τ̂
kj
j (1− τ̂j)nj−kj

, (29)

which gives the following predictive mass function:

mY
l ({1}) =


0 if τ̂j = 0,

τ̂j −
B(τ̂j ; kj + 1, nj − kj + 1)

τ̂
kj
j (1− τ̂j)nj−kj

if 0 < τ̂j < 1,

nj
nj + 1

if τ̂j = 1,

(30a)

mY
l ({0}) =



nj
nj + 1

if τ̂j = 0,

1− τ̂j −
B(τ̂j ; kj + 1, nj − kj + 1)

τ̂
kj
j (1− τ̂j)nj−kj

if 0 < τ̂j < 1,

0 if τ̂j = 1,

(30b)

where B and B are, respectively, the lower and upper incomplete beta functions
defined as

B(z; a, b) =

∫ z

0

ta−1(1− t)b−1dt, (31a)

B(z; a, b) =

∫ 1

z

ta−1(1− t)b−1dt = B(1− z; b, a). (31b)

They can be computed exactly for integer values of a and b as

B(z; a, b) =

a+b−1∑
j=a

(a− 1)!(b− 1)!

j!(a+ b− 1− j)!
zj(1− z)a+b−1−j . (32)

Figure 4 illustrates the belief and plausibility of success obtained with differ-
ent sample sizes and binomial proportions. In Figure 4a, we can see that when
the sample size grows, Dempster’s model converges very rapidly to the Bayesian
estimate. In contrast, the Clopper-Pearson interval-based model is more con-
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Figure 4: (a) Belief and plausibility of success given a proportion of 2/3 w.r.t. the sample size.
(b) Belief and plausibility of success given a sample of size 10 w.r.t. the binomial proportion.
The Clopper-Pearson confidence interval was computed with a confidence level of 95%.
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Figure 5: Isotonic regression

servative. The likelihood-based model gives intermediate results. The Bayesian
estimator and its associated inverse pignistic transform do not take into account
the sample sizes. It can be noted that using the Laplace estimator instead of
the Bayesian estimator would yield different estimates for different sample size.
However, any given binomial proportion estimate can still be generated from an
infinite number of configurations. In Figure 4b, it is interesting to note that,
when the empirical proportion τ̂ is equal to 0 or 1, the likelihood-based model
yields the same result as Dempster’s model.

4.2. Isotonic regression

The calibration result from isotonic regression can be seen as a particular
case of binning. All the previous methods can thus be used. In Figure 5,
the vertical segments depict the likelihood-based interval for each bin defined
by the isotonic regression. We can see, however, that the lower and upper
envelopes defined by these intervals are not isotonic. A simple way to get an
isotonic envelope is to first scan the bins in increasing order and keep the highest
upper bound computed so far to define the upper envelope. Then we scan
the bins in decreasing order and keep the lowest lower bound to define the
lower envelope. The doted curves in Figure 5 illustrate the obtained belief and
plausibility functions.

4.3. Logistic regression

For logistic regression, the parameter θ ∈ R2 of the sigmoid function h,
defined in Eq. (2), needs to be estimated. After observing the score s of a test
sample, its label y ∈ {0, 1} can be seen as the realization of a random variable
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Y with a Bernoulli distribution B(τ), where τ = hs(θ) ∈ [0, 1]. By formulating
the logistic regression as a generalized linear model [21], normal approximation

intervals can be used to compute a confidence interval over hs(θ̂) for any score
s. The predictive mass function (26) can then be used.

From a likelihood point of view, the training data X generates the likelihood
function LX , which can be used to define a plausibility function PlΘX over the
parameter θ ∈ Θ as follows:

PlΘX (A) = sup
θ∈A

plΘX (θ), ∀A ⊆ Θ, (33)

where

plΘX (θ) =
LX (θ)

LX (θ̂)
, ∀θ ∈ Θ. (34)

As described in Section 3.4, a predictive belief function BelYX ,s can be derived

from the contour function plTX ,s. The function plTX ,s can be computed from PlΘX
as

plTX ,s(τ) =

{
0 if τ ∈ {0, 1}

PlΘX ({θ ∈ Θ | τ = hs(θ)}) otherwise,
(35)

=

{
0 if τ ∈ {0, 1}

PlΘX
(
h−1
s (τ)

)
otherwise,

(36)

where

h−1
s (τ) =

{
(θ0, θ1) ∈ Θ

∣∣∣∣ 1

1 + exp(θ0 + θ1s)
= τ

}
(37)

=
{

(θ0, θ1) ∈ Θ
∣∣ exp(θ0 + θ1s) = τ−1 − 1

}
(38)

=
{

(θ0, θ1) ∈ Θ
∣∣ θ0 = ln

(
τ−1 − 1

)
− θ1s

}
, (39)

which finally yields

plTX ,s(τ) = sup
θ1∈R

plΘX
(
ln
(
τ−1 − 1

)
− θ1s, θ1

)
, ∀τ ∈ (0, 1). (40)

Figure 6 illustrates the computation of the predictive belief function BelYx,s.

Figure 6a shows level sets of the contour function plΘX computed from the scores
of an SVM classifier trained on the Australian dataset. The value of plTX ,s(τ) is

defined as the maximum value of plΘX along the dashed line θ0 = ln
(
τ−1 − 1

)
−

θ1s. It can be approximated by an iterative maximization algorithm. Figure 6b
shows the contour function plTX ,s from which the predictive mass function mY

X ,s
can be computed using Eqs. (22) and (23). The calibration results using a
training dataset of size 20 and 200 are shown in Figure 7.
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Figure 6: (a) Level sets of the contour function plΘX . (b) Contour function plTX ,s with s = 0.5

and its associated predictive mass function mY
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(b) Number of training data: 200

Figure 7: Evidential logistic regression calibration results. The confidence interval-based
model was computed with a confidence level of 95%.
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Table 1: Number of training data used for training and testing on different datasets from UCI.

Dataset Train #1 Train #2 Train #3 Test
Australian 30 70 10–190 400
diabetes 30 70 10–200 468
heart 20 40 10–140 70
ionosphere 20 40 10–190 101
liver-disorders 20 40 10–190 95
sonar 20 40 10–90 58

5. Experimental evaluations

Experimental evaluations were conducted on several binary classification
problems from the UCI repository. We first compared the classification results
of the combination of three SVM classifiers using different calibration strate-
gies with probabilistic and evidential models. Then, we focused on the logistic
regression-based calibration method with the combination of ten SVM classi-
fiers. The source code of all the calibration methods is available on the author’s
website3

5.1. Combination of three classifiers

The data used to compare the combination results are described in Table 1.
For each dataset, three independent classifiers were trained on non-overlapping
subsets of different sizes. For two of them, we fixed the number of examples and
we considered different training sample sizes for the third one. For each experi-
ment, the training data were partitioned into two subsets of equal size. The first
subset was used to train the base SVM classifier and the other one for calibra-
tion. The whole process was repeated for 100 rounds of random partitioning.
The LibSVM4 library [5] was used to learn the base SVM classifiers.

Figure 8 shows the combination results using the binning strategy. We com-
pared the Bayesian model, along with its inverse pignistic transform, to evi-
dential ones using Dempster’s model, confidence interval and likelihood-based
approaches. We can see that, when the third classifier was trained with much
more data than the two others, the differences in performance were larger. In
contrast, when the three classifiers were trained with about the same amount
of training data, the five models all led to relatively close results. The Bayesian
approach and its inverse pignistic transform always performed worse when the
third classifier was trained with much more data. Dempster’s model and the
likelihood-based one yielded very similar results. The performance of the con-
fidence interval-based approach varied for the different datasets. Compared to
the two other evidential approaches, it performed worse on the heart and sonar

3https://www.hds.utc.fr/~xuphilip/dokuwiki/en/data.
4http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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datasets, similarly on the Australian and ionosphere datasets, and better on the
diabetes and liver-disorders datasets.

Figures 9 and 10 show the results obtained using isotonic and logistic re-
gressions, respectively. For these two calibration strategies, the performances of
the different models were very similar. For the isotonic regression method, we
can still see that the Bayesian and inverse pignistic models performed slightly
worse than the evidential ones, except on the diabetes dataset, for which the
confidence interval-based method performed worse when the third classifier was
trained with relatively few training data. For the logistic regression approach,
the four models led to almost similar results. In contrast with binning and iso-
tonic regression, the Bayesian and inverse pignistic models performed as well
as the evidential ones. Overall, the likelihood-based model returned the most
stable and satisfactory results.

We then compared the three calibration strategies using the likelihood-based
model. The results are shown in Figure 11. The best performances were ob-
tained either by the logistic regression method or by the isotonic regression one.
For the diabetes and liver-disorders datasets, the isotonic regression approach
was significantly better than the two others. For the Australian and heart
datasets, the logistic regression method performed the best. Finally, for the
ionosphere and sonar datasets, the isotonic and logistic regression approaches
had similar results. Moreover, they were both significantly better than the
binning method on the sonar dataset.

5.2. Combination of ten classifiers

In order to emphasize the contribution of evidential calibration methods,
we conducted an additional experiment in which ten classifiers were combined.
The training dataset was now partitioned into ten subsets. Three scenarios were
considered, as illustrated in Figure 12. In the first scenario (a), all ten classifiers
were trained using the same amount of training data. In the second one (b),
one half of the classifiers were trained with five times more data than the other
half. Finally, in (c), one classifier was trained with 2/3rd of the data, a second
one used 1/5th and the eight other ones shared the rest uniformly.

From the datasets used in the previous section, we only kept Australian and
diabetes as they were the only ones that were large enough to train ten classifiers.
And we furthermore added the adult dataset which was used in [28, 38].

To compare the performances of the different models, the significance of the
results was evaluated from a McNemar test [16] at the 5% level. The results
are shown in Table 2. The best results were always obtained by the likelihood-
based model except for adult (a). In particular, except for the inverse pignistic
transformation on the Australian dataset, the results were always significantly
better for scenario (c). For the adult dataset, the likelihood-based model always
gave significantly better results than the Bayesian model. We can see that the
likelihood-based approach is more robust when the training sets have highly
unbalanced sizes.
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Figure 8: Classification results using binning calibration. The x-axis corresponds to the
number of training data used to learn the third classifier. The y-axis corresponds to the
average error rate.
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Figure 9: Classification results using isotonic regression calibration. The x-axis corresponds
to the number of training data used to learn the third classifier. The y-axis corresponds to
the average error rate.
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(f) sonar
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Figure 10: Classification results using logistic regression calibration. The x-axis corresponds
to the number of training data used to learn the third classifier. The y-axis corresponds to
the average error rate.
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Figure 11: Classification results using the likelihood-based model. The vertical segments
correspond to the confidence interval of the average error rate at a 95% confidence level.
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Figure 12: Proportions of data used to train each of the ten classifiers, three scenarios: (a)
All classifiers use 10% of the training data. (b) One half the classifiers use 1/6th of the data
and the other half the rest. (c) One classifier uses 2/3rd of the data, a second one uses 1/5th

and the eight other classifiers use the rest.

Table 2: Classification error rates for different datasets and scenarios. The best results are
underlined and those that are not significantly different are in bold.

Adult Australian
#train=600, #test=16,281 #train=300, #test=390

Scenario (a) (b) (c) (a) (b) (c)

Bayesian 16.76% 17.30% 19.10% 14.87% 14.10% 14.10%

Inv. Pign. 16.68% 17.21% 18.98% 14.87% 14.10% 13.59%

Likelihood 16.71% 16.97% 18.35% 14.87% 13.33% 11.54%

Diabetes
#train=300, #test=468

Scenario (a) (b) (c)

Bayesian 21.58% 22.86% 46.58%

Inv. Pign. 21.37% 22.86% 45.30%

Likelihood 20.94% 22.65% 31.84%

6. Conclusion

In this paper, we have shown how to extend classical probabilistic calibra-
tion methods using belief functions. Belief functions can better represent the
uncertainty of the calibration procedure especially when few data are used. The
likelihood-based model gave good overall results and can be used with binning,
isotonic regression and logistic regression. The joint use of logistic regression
and likelihood-based model led to the most promising results.

The methods presented in this paper were applied to the calibration of SVM
classifiers but they may also be used for other classification algorithms. Their
extension to multi-class problem is also possible through the use of binary de-
composition such as one-vs-one [22, 35] or one-vs-all [38]. Comparison of prob-
abilistic approaches and evidential ones [29] will be considered in future work.
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