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Explicit dynamics with a non-local damage model using the thick
level set approach
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In this paper, we are interested in the dynamical response of a material body subjected to impact loadings. 
Such loadings are brutal and intense and may damage the material, leading to strain localization and rup-
ture. Before strain localization occurs, computation of such problems is often accurate enough and very 
efficient when an explicit time integration scheme is applied. However, after strain localization occurs, the 
mathematical relevance of a model is preserved only if non-locality is introduced. This is often resulting in 
a dramatic increase of computational costs. We propose in this work to introduce non-locality through the 
Thick Level Set approach (TLS). It is the first time the TLS approach has been presented in a dynamical 
context. In this approach, additional computational efforts are limited in space to a domain slightly bigger 
than the strain localization region and the time discretization is explicit. The non-local computation is based 
on a new technique where basis functions are built on the damaged band. The resulting function space has 
needed properties to compute non-local fields. 

KEY WORDS: thick level set; damage mechanics; explicit dynamics; impact

1. INTRODUCTION

This paper focuses on the dynamical response of a material body modeled in continuum mechanics
and subjected to impact loadings. Impact loadings are understood here as intense and brutal loadings
that may lead to a rupture of the material body. Such loading conditions are encountered during
crashes, explosions or any energetic and short-time phenomena. Numerically, models that predict
the evolution of a material body up to the rupture are efficiently solved by explicit time integration
schemes. These schemes proved to be robust and sufficiently accurate for engineering applications.

A lot of research efforts concentrate on modeling the rupture, and two major trends can be sum-
marized: fracture mechanics and damage mechanics. On the one hand, fracture mechanics models
propagation of large-scale defects (cracks) that are points (1D), lines (2D), or surfaces (3D) where
unilateral discontinuity of kinematic fields occurs. But it fails to initiate new cracks. On the other
hand, damage mechanics models an homogeneization of small-scale defects (micro-cracks) and han-
dles both cracking and pulverisation (micro-cracking on a segment (1D), a surface (2D), or a volume
(3D)). The continuity of a broken material is most of the time ambiguous. But it easily initiates new
defects. This work takes place in damage mechanics.

Experimentally, the transition from a sane material body towards a broken material body is
often limited to particular areas that experience intense strain. This phenomenon is called strain
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localization. It is shown that strain localization occurs whenever material exhibits strain softening,
that is, a decline of uniaxial stress at increasing strain as defined by [1]. For a large number of mate-
rials such as steel, rock, soil, and concrete, localized areas present a characteristic length, which
corresponds to the scale at which the localization phenomenon occurs.

For the class of local and rate-independent constitutive models presenting strain-softening (that
is the consequence of a damage model or more generally the consequence of a plastic model with
negative hardening) strain localization cannot be accurately modeled because there is no information
about the localization scale. It is commonly observed numerically that for this class of models,
localization tends (while refining the space discretization) to occur on a zone of null measure. A
theoretical result may be found in [2] on a uni-dimensional material body in which localization
occurs on a point. A consequence is that there is no energetic dissipation associated to the rupture.
Numerically in the context of FEM discretization, a pathological mesh sensitivity is symptomatic of
this lack of characteristic length.

Nevertheless, it seems that the class of local and rate-dependent constitutive models does give a
more satisfactory solution [3, 4]. The characteristic time involved in such models induces a charac-
teristic length by a space/time coupling due to the equation of dynamics. However, the characteristic
time involved in rate-dependent model has nothing in common with the localization problem and
leads to physically non acceptable localization areas. With the exception of the delay-damage model,
where the characteristic time is intentionally introduced for this purpose [4]. But in this last model,
an estimation of the resulting characteristic length given by [5] shows that it depends on the state of
stress inside the body and likely vanish when stress wave has small magnitude.

To regularize local constitutive models, the concept of non-locality is often used. There are several
ways to introduce non-locality in the formulation of models going from a complete rewrite of gov-
erning equations as in microstructured continuum theory and related particular cases like Cosserat
theory, second gradient theory, and Cosserat second gradient theory, see [6], to a minimal rewrite
of governing equations as in non-local integral models [1, 7] or gradient-enhanced models [8]. A
comparison of non-local models can be found in [9] and concludes that few formulations become
mathematically well-posed after non-local regularization. It also concludes that for mathematically
well-posed formulations, such models lack of thermodynamic grounds. It seems, however, that this
does not affect the effectivity of the regularization. Another comparison between non-local inte-
gral model and delay-damage model is proposed in a dynamic context in [10]. Classifications of
non-local approaches can be found in [6, 9, 11].

We can mention as well phase field approaches [12–14] emanating from fracture mechanics,
which regularize the discontinuity introduced by the crack with a smooth auxiliary phase field.
Then, the fracture energy is written in terms of the phase field and a smooth loss of some material
properties with respect to the phase field is added. These approaches lead to a formulation close
to a continuum damage mechanics formulation for which damage variable would be smoothed.
Extension to dynamic brittle fracture can be found in [15, 16].

We now focus on the Thick Level Set (TLS) approach, a young approach to introduce non-locality
in the formulation. It has been first introduced in a quasi-static context [11, 17, 18] and compared
with phase field approaches [19] and is presented here in a dynamic context. This approach has
the particularity to provide the non-locality only when a first defect emerges in the material body.
More precisely, the computation is purely local until damage initiates, for instance, when the local
energy release rate (the thermodynamic force conjugate to damage rate) reaches a threshold value.
Then, non-locality starts acting on the formulation by means of a non-local energy release rate and
a non-local damage rate, which are responsible of the damage growth. This newly appeared non-
locality is also limited in space to damaged areas. When damage grows enough, the material body
presents fully damaged areas and the non-locality stops acting on it. This fully damaged areas are
dumped from the computation, and a discontinuity appears in kinematic fields. To sum up, the non-
locality appears, grows, and stops with damage. The two non-local fields are the average of their
local counterparts but in a different way than that for non-local integral models. All this features
are handled by an auxiliary field: a level set function field. This level set function is chosen as a
signed distance function so that we have a way to introduce a characteristic length. The iso-zero
curve of this level set function is also coincident with the damage front so that we are able to
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easily discretize the interface between the sane material and the damaged material. The damage
growth problem is transformed on a level set function propagation problem, and as a consequence,
all the work of the non-locality is to provide an appropriate level set function rate for the level set
function to be updated. In this paper, we propose a new way to compute non-local fields based on
the construction of an approximation space that has all required properties to compute the average
of local counterparts.

The paper is organized as follows: in the second section, we recall governing equations of classical
continuum damage mechanics with a constitutive model written by means of a free-energy poten-
tial and a dissipation potential. We introduce the TLS approach and we define two non-local fields,
the non-local energy release rate, and the non-local damage rate. Once every governing equations
are given, we give in the third section a time discretization and we write three variational problems
that must be solved at each time step; the third one is the weak form of the balance of momentum
equations, and the two others are related to the TLS approach. They permit to compute non-local
fields and are limited to the localization region. Then, in the fourth section, we give a space dis-
cretization and we present the new way to compute non-local fields. The fifth section is dedicated to
numerical applications. Finally, the sixth section proposes a discussion of the TLS approach exposed
in this paper.

2. GOVERNING EQUATIONS

2.1. Mechanical problem

We assume a material body as a continuum of homogeneous density � whose material points belong
to the domain � � R

2 and study its evolution during the time interval T D Œ0I tf � � R
C, where

tf is the final time, in terms of displacement u and damage d . Both fields are supposed continuous
in space and time. We place ourselves under the small strain assumption. We provide a constitutive
model, formally denoted by functionals F� D F� .".u/; d/ and Fd D Fd .".u/; d/, where " is the
small strain tensor. We impose three initial conditions: the initial displacement u0, the initial velocity
Pu0, and the initial damage d0. We also impose two boundary conditions: the Dirichlet boundary
condition ud and the Neumann boundary condition T d , respectively, on parts @�D and @�N of the
domain frontier such that @�D [ @�N D @� and @�D \ @�N D ;. It leads to the study of the
following initial boundary value problem:

� Ru D r � �
� D � > in � � T

� D F� .".u/; d/

Pd D Fd .".u/; d/

(1)

of initial conditions

u D u0

Pu D Pu0 in � � ¹0º
d D d0

(2)

and boundary conditions

u D ud on @�D � T

� � n D T d on @�N � T
(3)

where � is the Cauchy stress tensor and n is the outward normal. The aims of the TLS is to provide a
constitutive model that is consistent with regard to the localization problem. The constitutive model
is built by defining both a free-energy potential ' and a dissipation potential  �, and applying on
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them normality rules to derive, respectively, state and evolution laws. We will see in the following
that in the TLS the state laws remain unchanged compared with classical thermodynamic framework
whereas the evolution law introduces non-locality in the formulation.

2.2. Free-energy potential, local state laws

We define the small strain tensor

" D r su D 1

2

�

ruC ru>� in � � T (4)

and the local energy release rate Y . The free-energy potential ' D ' ."; d / provides relations
between ."; � / and .d;�Y / thermodynamic pairs. Thermodynamics stability requires that the free-
energy is a lower semi-continuous and convex functional of small strain and damage [20]. Then,
state laws may be derived by calling normality rules:

.� ;�Y / 2 @' ."; d / in � � T (5)

where @' stands for subdifferential. For a differentiable free-energy potential, it simplifies to

� D @' ."; d /

@"
in � � T (6)

�Y D @' ."; d /

@d
in � � T (7)

From state laws, we derive the energetic dissipation by using Clausius-Duhem inequality:

� W P" � P' D Y Pd > 0 in � � T (8)

The fulfilment of this inequality is ensured by introducing a dissipation potential. Nevertheless, it
is known that if we provide a local evolution model to relate the damage rate to the energy release
rate, the obtained formulation will fail to model accurately the localization problem. A solution is
to introduce a characteristic length in the formulation to add non-locality.

2.3. Dissipation potential, non-local evolution law

In order to introduce a characteristic length, we use the TLS approach first described in [11]. We
assume a continuous level set function � that takes value zero on the damage front so that we can
define it as

�.t/ D ¹x 2 � j �.x; t / D 0º (9)

This front is a closed interface or is in intersection with domain boundary. It splits domain � into
two regions: one composed of sane material and the other one composed of damaged material. We
further assume that the level set function verifies the property:

kr�k D 1 in � � T (10)

This equation is a particular case of the stationary eikonal equation and the associated boundary
value problem admits many distinct solutions as highlighted in [21] for the Dirichlet boundary value
problem. The level set function that we are looking for is given by the fast marching methods [22]
and often called the signed distance function to the damage front. For simple geometries, the signed
distance function is given by

�.x; t / D ˙ min
y2�.t/

kx � yk (11)
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In the following numerical applications, Equation (11) is used instead of the fast marching method.
The use of the fast marching method is a perspective of this work. We still call � the level set function
in the following. With this function at hand, we map the damage field on it in the following way:

d.�/ D 0 � 6 0

d 0.�/ > 0 0 < � < lc (12)

d.�/ D 1 � > lc

where lc is the characteristic length and the prime operator 0 denotes the derivative with respect
to the level set function. We call this function the damage profile. Note that the introduction of a
characteristic length is possible because the level set function has the unit of a length. The damage
growth problem is thus transformed on a level set function propagation problem:

² Pd D Fd .".u/; d/ in � � T
d D d0 in � � ¹0º !

² P� D F� .".u/; �/ in � � T
� D �0 in � � ¹tiº

(13)

where we denote formally F� D F� .".u/; �/ as an evolution model for the level set function and
where ti 2 T is the time at which material body begins to suffer damage. Let us remark that when
the initial damage d0 is zero, there is no damage front and therefore it is somewhat hard to define the
initial level set function �0. In fact, as the damage is not initiated, non-locality is not acting and the
computation is purely local. As soon as damage initiates, we place a damage front by considering
a level set function �0. In practice, we place a circular iso-0 with radius li < lc and centered on
the material point that suffers damage. This implies a small perturbation of the damage field but
is not inconvenient in practice. This is the way the TLS approach handles transition from a local
formulation to a non-local formulation.

With the representation (12) of the damage field, the damage rate is given by

Pd D d 0.�/ P� in � � T (14)

An important consequence is that to keep the property (10), the level set function rate P� verifies

d

dt
kr�k D r�

kr�k
� r P� D 0 in � � T (15)

A simple manner to manipulate fields that verify such a constraint is to define a new coordinate
system: x D .x; y/ ! ´ D .´; s/ attached to the damage front where ´ follows the level set
function gradients and s follows the iso-curves. The iso-0 curve (the damage front) defines ´ D 0.
And s D 0 is taken arbitrary along the iso-0. The jacobian of the change of coordinate is

J.´; t / D 1 � ´

��.s; t/
(16)

where �� is the radius of curvature of the iso-0 curve. The jacobian is valid when the damage front
is regular. The damage front is supposed regular with the exception of the first application where a
specific comment is addressed. Note that the coordinate system itself is depending on time variable
because it is attached to a moving front. Note as well that in practice, we never construct such a
coordinate system. Then, property (15) on the level set function rate can be written P� D P�.s; t/. We
apply the change of coordinate to Equation (14):

Pd.´; t / D d 0.�.´; t// P�.s; t/ (17)

which means that the damage evolution model is linked to the level set function evolution that is
always normal to the damage front. The evolution model for the level set function must provide such
a behavior. We define the following domains and interface:
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�C.t/ D ¹x 2 � j 0 6 �.x; t / 6 lcº (18)

��.t/ D ¹x 2 � j �.x; t / < 0º (19)

�c.t/ D ¹x 2 � j �.x; t / > lcº (20)

�c.t/ D ¹x 2 � j �.x; t / D lcº (21)

The domain �C is called the damage band. All domains and interfaces are illustrated on Figure 1.
As said before, when initial damage is zero, we have � D ��. Then, when damage initiates,
we have � D �� [ �C, that is, �c D ;. Finally, when damage propagates enough, we have
� D �� [�C [�c so that it exists a fully damaged area where d D 1. A tricky question is what
should we do in this fully damaged area, keeping in mind that it does not mean that the stress tensor
is zero, for instance, by considering asymmetric traction/compression constitutive model. In this
work, we decide to force the constitutive model to provide � .x; t / D 0;x 2 �c.t/. This way, we are
sure that within a one-element thick fully damaged area, the discontinuity is naturally (understood
as no need to remesh) handled by the approach. It provides a transition from damage to fracture.

In the TLS approach, there is no straightforward relation between the damage rate and the local
energy release rate. Instead, Equation (17) is used, and an evolution model is provided for the level
set function. To this purpose, we introduce a pair of thermodynamically conjugate non-local vari-
ables

�

NY ; NPd
�

called, respectively, the non-local energy release rate and the non-local damage rate,

Figure 1. Domains and interfaces used in the thick level set approach.

Figure 2. A damage band, the curvilinear coordinate system attached to it, the length l.s; t/ (the upper bound
of the interval we integrate over in (23) and (24)) and the local and non-local energy release rate Y and NY .

6



which are defined on �C only and verify property (15), that is, NY D NY .s; t/ and NPd D NPd.s; t/ and
we want the pair to verify the additional property:

Z

�C

NY NPd dV D
Z

�C

Y Pd dV in T (22)

meaning that the global dissipation due to non-local thermodynamic pair is the same as the local
one. The Clausius-Duhem equation is therefore verified at least globally. The expression of the non-
local energy release rate has already been given in [17], it is resulting from the stationarity of the
potential energy functional (that makes sense in quasi-statics) with respect to a variation of the level
set function:

NY .s; t/ D
R l.s;t/

0
Y.´; t /d 0 .�.´; t// J.´; t / d´

R l.s;t/

0 d 0.�.´; t//J.´; t / d´
(23)

where l.s; t/ is the length of the developed damage band along level set function gradients; see
Figure 2. It is the minimum between lc and value ´ for which a discontinuous level set function
gradient is found.We have

R

�C.t/
dV D

R

�.t/

R l.s;t/

0
J .´; t / d´ ds. We therefore deduce from (22);

see Appendix A for details:

NPd.s; t/ D
R l.s;t/

0
Pd.´; t /J.´; t / d´

R l.s;t/

0 J.´; t / d´
(24)

These non-local fields appear to be some average of their local counterpart in the direction of the
level set function gradient. Note that definition of the non-local energy release rate introduces an
additional weighting function through the first derivative of the damage profile. An evolution model
is written in terms of non-local quantities by calling the normality rule on a dissipation potential

� D  � � NY
�

. To preserve thermodynamics stability, this potential must be a positive, lower semi-
continuous, and convex functional of non-local energy release rate, null for null non-local energy
release rate [23]. Then, the evolution model is given as

NPd 2 @ � � NY
�

in �C� T (25)

For a differentiable dissipation potential, it simplifies in

NPd D @ �

@ NY
� NY
�

in �C� T (26)

Equation (17) is introduced inside Equation (24), and we use notation

Nd 0.s; t/ D
R l.s;t/

0
d 0.�.´; t//J.´; t / d´
R l.s;t/

0 J.´; t / d´
(27)

to obtain an expression of the level set function rate

P�.s; t/
ˇ
ˇ
�C D

NPd.s; t/
Nd 0.s; t/

(28)

So far, the damage evolution model is not prescribed. The only constraints on the level set velocity
are given by Equation (15) and the fulfilment of Clausius-Duhem equation at the global stage with
an appropriate choice of the dissipation potential. The level set function rate is known inside�C and
has to be extended to the other side of the damage front. In level set methods, see [24], the level set
function must be updated at least on a narrow band defined around the iso-0. We introduce a narrow
band �N � �� for which � � @�N and we apply the following advection boundary problem:
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� r�

kr�k � r
P�j�N

D 0 in �N � T

P�j�N
D P�j�C on � � T

(29)

which completes the governing equations needed to compute the formal problem given in (13). We
now discretize in time governing equations and give variational problems that have to be solved at
each time step. Note that from (28) and (29), the level set function can only be updated in�C[�N .
As commonly carried out in level set methods, a reinitialization step is added to update the level set
function on all the domain �. In numerical simulations, we use (11) for that purpose.

3. TIME DISCRETIZATION

The time discretization is built by considering a growing sequence of time values tk 2 T, k 2 N.
We define time steps as �t D tkC1 � tk and we simplify notations from f

�

x; tk
�

to f k for
clarity. The main unknowns are the displacement field u.x; t / and the level set function �.x; t /. We
have to integrate in time two partial differential equations: the second-order balance of momentum
equations, given in Equation (1), and the first-order level set propagation equation, given in Equation
(28). We apply the second-order accurate central difference time integration scheme to the first one
and the first-order accurate forward Euler method to the second one, leading to

ukC1 D uk C�t Puk C 1

2
�t2 Ruk (30)

�kC1 D �k C�tF�

�

"
�

ukC1
�

; �k
�

(31)

RukC1 D 1

�
r � F�

�

"
�

ukC1
�

; d
�

�kC1
��

(32)

PukC1 D Puk C 1

2
�t
�

Ruk C RukC1
�

(33)

This is the most straightforward way to discretize in time the TLS approach. Both schemes are
explicit, they remain stable if time steps are upper bounded by a critical value �tc . It is given in
the next section after a space discretization. Note that the obtained scheme is fully explicit, because
the evolution model itself is computed from �k . Knowing the displacement field ukC1 and the level
set function �k , we deduce the strain field "kC1 from (4) and the damage field dk from (12) and
derive the local energy release rate Y kC1 by applying state law (7). We then compute non-local
fields NY kC1 from (23) and NPdkC1 from (26) and deduce the level set function rate field P�kC1 from
(28) only in domain �Ck

. We then extend the level set function rate to the other side of the damage
front in the narrow band �N by applying (29). We deduce �kC1 by updating the damage front and
applying (11). Computations of the non-local energy release rate, and the level set function rate
are not straightforward because they are defined on a curvilinear coordinate system attached to the
damage front. One way to compute them is to establish variational formulations, as proposed in
[17], that we discuss in the next section.

3.1. Variational formulations

Following [17], we introduce the constrained space

NS D
´

y regular on �Ck

ˇ
ˇ
ˇ
ˇ
ˇ

r�k


r�k



� ry D 0

μ

(34)
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Any function lying on this function space is constant along level set function gradients. In other
words, these functions depend only on coordinate s of the curvilinear coordinate system attached to
the damage front. Then, we apply the two following variational problems:

Problem 1. knowing �k and Y kC1 both regular on �Ck
, find NY kC1 2 NS such that

Z

�Ck

�

NY kC1 � Y kC1
�

d 0
�

�k
�

�� dV D 0 8�� 2 NS (35)

Problem 2. knowing �k regular on �Ck
and NPdkC1 2 NS, find P�kC1 2 NS such that

Z

�Ck

�

d 0
�

�k
�

P�kC1 � NPdkC1
�

�� dV D 0 8�� 2 NS (36)

The third variational problem is given by

Problem 3. knowing ukC1 2 U , �kC1, T kC1
d

, ukC1
d

and RukC1
d , find RukC1 2 RU such that

Z

�

� RukC1 � u� dV C
Z

�

F�

�

"
�

ukC1
�

; d
�

�kC1
��

Wr su� dV �
Z

@�N

T kC1
d
�u� dSD0

8u�2U0

(37)

in spaces

U D
°

u regular in � j u D ukC1
d

on @�D

±

(38)

RU D
°

Ru regular in � j Ru D RukC1
d on @�D

±

(39)

U0 D ¹u regular in � j u D 0 on @�Dº (40)

The difficulty lies in the computation of variational formulations in the space NS. In the next section,
we build an approximation space that weakly verifies the constraint.

4. SPACE DISCRETIZATION

This section is dedicated to the computation of Problem 1, Problem 2, and Problem 3. Problem 3
is standard in the FEM, the only difference is the numerical integration that takes into account the
damage front. For Problem 1 and Problem 2, the difficulty lies in the constrained function space
NS. A solution adopted in [17] was to simplify the space by removing its constraint and add more

difficulty to the variational equation. This was carried out by using lagrangian techniques. Here,
we propose a new approach in which we build a finite dimensional function basis where every
function weakly verifies the constraint. The new approach can be summarized as follow: first, we
build some approximation functions on the damage front that we call modes. These are obtained
by well chosen linear combinations of FEM approximation functions intersecting the damage front.
Then, we advect these modes to the damage band by solving several times an advection equation
where the advective velocity is the level set function gradient and modes are given as Dirichlet
boundary conditions. We end up with extended modes and we use them as basis functions of a
finite dimensional constrained function space NSh. Note that these advection problems are solved
in an efficient way, compatible with an explicit dynamics computation. We first explain how to
build modes on the damage front and then explain how to extend it to the damage band. Then, we
generalize such an extension to a narrow band on the other side of the damage front to be able to
update the level set function.
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4.1. Kinematic fields

We consider a space discretization �h of domain � and we approximate kinematic fields using
FEM piecewise linear approximation functions defined on three-noded triangular element (we omit
the notation �h for clarity):

u.x/ D
X

i2SD

uiN i .x/ (41)

Pu.x/ D
X

i2SD

PuiN i .x/ (42)

Ru.x/ D
X

i2SD

RuiN i .x/ (43)

where a DOF and its associated approximation function are numbered with a unique number (ID)
belonging to the set SD . There are nD IDs in SD . Applying the space discretization to the variational
formulation given in Problem 3, we write the problem using matrix notations ŒM � 2 M

nD , ¹F º 2
R

nD , ¹Rº 2 R
nD that is: find ¹ RU º 2 R

nD such that

ŒM �¹ RU º C ¹F º D ¹Rº (44)

where we have

Mij D
Z

�

�N i �N j dV (45)

Fi D
Z

�

� W r sN i dV (46)

Ri D
Z

@�N

T d �N i dS (47)

With the discretization at hand, we can express the critical time step of the whole scheme used in
numerical simulations. For the central difference scheme alone, we use the lower estimate critical
time step provided by linear elastodynamics, see [25],

�tuc D
h

cl

(48)

where cl is the longitudinal elastic wave velocity and h is the smallest element characteristic length.
For an element undergoing damage, the wave velocity is altered, leading to a greater critical time
step. For the forward Euler method alone, we first consider the level set propagation equation

P� � v� kr�k D 0 in � (49)

where v� is the physical velocity imposed to the level set function. From (10) and (13), we express
this velocity as

v� D P� D F� .".u/; �/ (50)

The critical time step is given as, see [26],

�t�c D
h

max
x2�

.jv� j/
(51)
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Finally, the critical time step for the whole scheme is chosen as

�tc D min
�

�tuc ; �t
�
c

�

(52)

Without going into too much detail, the numerical integration takes into account the damage front.
In a cut element, damage is strictly positive on the �C side, and zero on the other side. The mass
matrix is lumped as usual in explicit dynamics.

4.2. Non-local energy release rate, level set function rate

4.2.1. Modes on damage front. We use the previous space-discretization �h to build a non-
conforming space discretization�C

h
of domain�C and a space discretization �h of damage front � .

Space discretization �h is built by finding intersections between the damage front � and some �C
h

edges. We define on each vertices belonging to �C
h

a DOF. All IDs are collected in the set Sd and
we define hat functions Ni ; i 2 Sd . We then use algorithm described in [27] to select some vertices
(called vital vertices) belonging to �h. For each vital vertex, we define a DOF. All IDs are collected
in another set S� and we define basis functions '˛

� ; ˛ 2 S�, called modes. The DOF of a vital ver-
tex is linked to DOFs of some vertices belonging to �C

h
. All the corresponding IDs belong to a last

set Sl � Sd . See Figure 3 for an illustration of all different sets. Then, modes are defined as linear
combinations of hat functions Ni ; i 2 Sl and restricted to �h (we omit the notation �h for clarity):

'˛
�.x/ D

X

j 2Sl

a ˛
j Nj .x/j� ˛ 2 S�; a ˛

j 2 R (53)

These modes are well chosen to impose stiff interface conditions within the eXtended Finite Element
Method (X-FEM), see [27]. But this is not necessarily a good choice for a front propagation. Indeed,
depending on the location of the damage front with respect to the space discretization�C

h
, the ‘size’

of modes may present a large disparity and some mode can be very thin. To keep a front propagation
smooth enough, we propose to remove modes that are considered too thin by combining them with
neighboring ones. To this purpose, we consider the front length

l� D
Z

�

dS (54)

Because the mode basis is a partition of unity, see once more [27], we have

l� D
X

˛2S�

Z

�

'˛
� dS

„ ƒ‚ …

l˛

(55)

Figure 3. Sets involved in modes definition.
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The length is obtained as the sum of terms l˛ of a lumped mass matrix with unit density assembled
on the damage front. Matrix entries are good quantities to evaluate mode sizes. Practically, we
define a threshold value lred under which the mode is eliminated and combined to its neighbors.
Starting from n� modes '˛

� ; ˛ 2 S�, we end up with nred filtered modes Q'˛
� ; ˛ 2 Sred, where

Sred � S� is a set of DOFs IDs. We add a tilde notation on filtered modes. To build filtered modes,
we start from modes and recombine them based on Algorithm 1. Removing a mode ˛ affects mode
˛ � 1 and mode ˛ C 1

Q'˛�1
� Q'˛�1

� C 1

2
Q'˛
� (56)

Q'˛C1
�  Q'˛C1

� C 1

2
Q'˛
� (57)

Finally, we get

Q'˛
�.x/ D

X

j 2Sl

Qa ˛
j Nj .x/j� ˛ 2 Sred; Qa ˛

j 2 R (58)

Mode filtering is basically a rearrangement of a ˛
j ; ˛ 2 S� coefficients to Qa ˛

j ; ˛ 2 Sred coefficients.

Algorithm 1 Mode filtering
1: initialize Sred D S�,
2: assemble lumped mass matrix with unit density on �h with basis functions Q'˛

� ; ˛ 2 Sred,
3: set smallest term of mass matrix in l ,
4: while l < lred do

5: erase mode ID from Sred,
6: remove mode by combining it to neighbors using (56) and (57),
7: dispatch mass to neighbors,
8: set lred or more to corresponding mass matrix entry,
9: set smallest term of mass matrix in l ,

10: end while

4.2.2. Modes advection to damage band. Now that several modes are defined on the damage front,
we advect them in the damage band by applying nred times the following advection boundary value
problem

r�

kr�k
� r Q'˛ D 0 in �C ˛ 2 Sred (59)

Q'˛ D Q'˛
� on � ˛ 2 Sred (60)

where the advection velocity is the level set function gradient and modes Q'˛
� are imposed as Dirichlet

boundary conditions. We recognize in this problem the constraint (15) on the level set function rate
and non-local fields. It means that these extended modes are good candidates to build function space
NS. One can note that on � , the inequality r �

kr �k � n < 0 is verified, because n D � r �
kr �k , as required

for such a purely advective boundary value problem; see [28]. This problem can be satisfactory
solved by applying a Streamline-Upwind Petrov-Galerkin (SUPG) weak formulation as established
in [28], that is,

Problem 4. for ˛ 2 Sred, find Q'˛ 2 S˛ such that
Z

�C

�
r�

kr�k � r Q'
˛

�

'� dV C
Z

�C

N�
�

r�

kr�k � r Q'
˛

��
r�

kr�k � r'
�
�

dV D 0 8'� 2 S0

(61)
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Figure 4. Damage band and narrow band after discretization.

with

S
˛ D

®

' 2 H
1
�

�C� ˇˇ ' D Q'˛
� on �

¯

(62)

S0 D
®

' 2 H
1
�

�C� ˇˇ ' D 0 on �
¯

(63)

where N� is a diffusion term. Using the TLS approach, the damage front � is in general not
conforming to the mesh and the spatial integration must take into account only parts of finite
element that are inside the domain �C; see Figure 4 for an illustration. More importantly,
Dirichlet boundary condition are harder to prescribe on a damage front that is not mesh conforming.
A solution is to combine the SUPG formulation to a weak imposition of Dirichlet boundary
condition by means of a Lagrange multiplier defined on a stable Lagrange multiplier space; see [27]
for a precise definition and motivation on the use of such a space. The weak formulation becomes

Problem 5. for ˛ 2 Sred, find Q'˛ 2 H1
�

�C� and �˛ 2
�

H1=2.�/
�0

such that

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Z

�C

�
r�

kr�k
� r Q'˛

�

'� dV

C
Z

�C

N�
�

r�

kr�k
� r Q'˛

��
r�

kr�k
� r'�

�

dV

C
Z

�

�˛'� dS D 0 8'� 2 H1
�

�C�

Z

�

�

Q'˛ � Q'˛
�

�

�� dS D 0 8�� 2
�

H1=2.�/
�0

(64)

Note that the Lagrange multiplier space must be defined as proposed in [27], otherwise, the problem
fails to pass the inf-sup condition. To update the damage front position, the level set function rate
must be defined on both side of it, as given by Equation (29). In practice, the level set function rate
is only extended to a narrow band �N defined on the other side of the damage front with respect
to the damage band, as depicted in Figure 4 and problem (29) similar to mode extension is solved
on the narrow band. Extended modes are approximated using FEM piecewise linear approximation
functions defined on three-noded triangular element and Lagrange multipliers are approximated
using non-filtered modes

Q'˛.x/ D
X

j 2Sd

b ˛
j Nj .x/ ˛ 2 Sred; b ˛

j 2 R (65)

�˛.x/ D
X

j 2S�

cj˛'
j
�.x/ ˛ 2 Sred; cj˛ 2 R (66)
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Variational formulations given in Problem 1 and Problem 2 are then discretized by using the
extended modes as basis functions, that is, trial and test fields belong to the following finite
dimensional function space:

NS D

8

<

:
y.x/ D

X

˛2Sred

y˛ Q'˛.x/; y˛ 2 R

9

=

;
(67)

4.2.3. Efficient computer implementation. We now write Problem 5 using matrix notation. In order
to solve the nred boundary value problems efficiently, a global matrix is assembled only once and
Dirichlet boundary conditions are assembled in a matrix. It leads to several linear systems that can
be written in a compact form: for ˛ 2 Sred, find ¹D˛º D

�

b ˛
j

�

2 R
nd and ¹E˛º D

�

cj˛
�

2 R
n�

such that

nd

®

n�

®

�

nd
‚…„ƒ

AC B
n�

‚…„ƒ

C>

C 0

��

nred
‚ …„ ƒ

D1 � � � Dnred

E1 � � � Enred

�

D
�

nred
‚ …„ ƒ

0 � � � 0

D1
� � � � D

nred
�

�

(68)

where ŒA� 2M
nd , ŒB� 2M

nd , ŒC � 2M
n��nd and

®

D˛
�

¯

2 R
n� with

Aij D
Z

�C

Ni

�
r�

kr�k
� rNj

�

dV (69)

Bij D
Z

�C

N�
�

r�

kr�k � rNi

��
r�

kr�k � rNj

�

dV (70)

C i
j D

Z

�

'i
�Nj dS (71)

D˛i
� D

Z

�

Q'˛
�'

i
� dS (72)

Now, we can build the extended modes from (65) and the finite dimensional function space NS from
(67). Variational formulations given in Problem 1 and Problem 2 reduces to find

® NY
¯

R
2 R

nred and
® P�
¯

R
2 R

nred such that

ŒM �R
® NY
¯

R
D ¹Y ºR (73)

ŒM �R
® P�
¯

R
D
° NPd
±

R
(74)

where ŒM �R 2M
nred , ¹Y ºR 2 R

nred and
° NPd
±

R
2 R

nred with

M ˛ˇ D
Z

�C

Q'˛ Q'ˇd 0.�/ dV (75)

Y ˛ D
Z

�C

Y Q'˛d 0.�/ dV (76)

NPd˛ D
Z

�C

NPd Q'˛ dV (77)
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We introduce matrix ŒP � D
�

b ˛
j

�

2 M
nd �nred containing all DOF values of all extended modes

resulting from ¹D˛º vectors concatenation. Therefore, we can rephrase Problem 2 and Problem 3
using classical FEM basis functions

ŒM �R D ŒP �>ŒM �ŒP � (78)

¹Y ºR D ŒP �>¹Y º (79)

° NPd
±

R
D ŒP �>

° NPd
±

(80)

® NY
¯

D ŒP �
® NY
¯

R
(81)

® P�
¯

D ŒP �
® P�
¯

R
(82)

where ŒM � 2M
nd , ¹Y º 2 R

nd ,
° NPd
±

2 R
nd ,

® NY
¯

2 R
nd and

® P�
¯

2 R
nd with

Mij D
Z

�C

NiNjd
0.�/ dV (83)

Yi D
Z

�C

YNid
0.�/ dV (84)

NPdi D
Z

�C

NPdNi dV (85)

So, we finally solve the two problems in the following way: find
® NY
¯

and
® P�
¯

such that
�

ŒP �>ŒM �ŒP �
� ® NY

¯

R
D ŒP �>¹Y º

® NY
¯

D ŒP �
® NY
¯

R
(86)

�

ŒP �>ŒM �ŒP �
� ® P�

¯

R
D ŒP �>

° NPd
± ® P�

¯

D ŒP �
® P�
¯

R
(87)

The mass matrix can be lumped to improve efficiency, we define ¹M º 2 R
nd and ¹M ºR 2 R

nred

with

Mi D
X

j 2Sd

Mij (88)

M ˛ D
X

ˇ2Sred

M ˛ˇ (89)

We have the relation

¹M ºR D ŒP �>¹M º (90)

So that the two problems become the following: find
® NY
¯

and
® P�
¯

such that
�

ŒP �>¹M º
�

��
® NY
¯

R
D ŒP �>¹Y º

® NY
¯

D ŒP �
® NY
¯

R
(91)

�

ŒP �>ŒM �
�

��
® P�
¯

R
D ŒP �>

° NPd
± ® P�

¯

D ŒP �
® P�
¯

R
(92)
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where operator �� denotes the element-wise product. We apply a linear system similar to linear
system (68) to compute matrix ŒP �N that is the same operator as ŒP � but on the narrow band. We
deduce the level set function rate on the narrow band simply by computing

® P�
¯

N
D ŒP �N

® P�
¯

R
(93)

All the computation process is resumed in the Algorithm 2 for the case of a lumped mass matrix.
We consider this process in numerical applications.

Algorithm 2 Computation of the level set function rate in domains �C and �N . �= denotes the
element-wise division.

1: compute ŒP �,
2: assemble lumped FEM mass matrix ¹M º,
3: assemble right and side ¹Y º,
4: compute

® NY
¯

! ŒP �
��

ŒP �>¹Y º
�

�=
�

ŒP �>¹M º
��

,

5: compute
° NPd
±

! @ � �® NY
¯�

=@ NY ,

6: compute
® P�
¯

R
!
�

ŒP �>
° NPd
±�

�=
�

ŒP �>¹M º
�

,

7: compute
® P�
¯

! ŒP �
® P�
¯

R
,

8: compute ŒP �N ,
9: compute

® P�
¯

N
! ŒP �N

® P�
¯

R
,

By solving (91), (92), (93), and (44) while using the two explicit time integration schemes, one
may solve the following problems: Kalthoff and Winkler experiments and the single-edge notched
tension test that are proposed in the following section.

4.3. Mesh adaptation

In this work, there are two length scales: the characteristic length of the structure and the character-
istic length of the material. When the last one is much smaller than the first one, a uniform mesh
often leads to mesh considered as too thin. While accuracy is increased, so do computational costs.
A natural solution is to use an adaptive mesh to preserve accuracy in areas of interest while decreas-
ing computational costs by coarsening the mesh everywhere else. For this purpose, we use a time
adaptive mesh refined around the damage band.

It is based on a balanced quadtree data structure with hanging nodes (incompatibly placed nodes)
[29–31] combined with a straightforward projection of displacement, velocity, and level set function
fields. The mesh is obtained from the quadtree data structure by assigning two three-noded triangular
elements per cell. This division step is alternated for two neighboring cells. A refinement level is
assigned to cells and elements to identify their sharpness. The unique cell of refinement level 0 is
the bounding box of domain �. Others are obtained by recursive and conditional subdivisions of a
cell into four cells of one higher refinement level. Domain boundary @� conforms to the mesh so
that elements outside domain are simply filtered out. Damage front � is given by the iso-0 of the
level set function and is treated within the X-FEM [27, 32, 33]. Hanging nodes specific treatment is
detailed in [31].

The mesh is adapted in time using refinement only, that is, the number of DOFs only increases.
Initial refinement is specific to numerical applications. Next, refinements are then based on three
criteria. The first criterion concerns the sign of the level set function. If the level set function is
positive, then the highest refinement level (chosen as a numerical parameter) is used. If the level set
function is negative, then the second criterion is used. This second criterion accounts for the absolute
value of the level set function (the distance to the front). If this value is lower than a certain length
lm, the highest refinement level is used, otherwise, the refinement level decreases as a function of
j�j� lm. It takes into account the balance of the quadtree data structure so that a single hanging node
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per edge is possible. The last criterion consist in refining elements for which the refinement level is
too low to a minimum refinement level (also chosen as a numerical parameter). Based on the two
first criteria, the adaptive mesh is closely related to the level set function field and values on new
nodes are simply interpolated.

For the displacement and velocity fields, the projection is realised by solving the two following
problems:

Problem 6. knowing 1u 2 V , find 2u 2 V such that
Z

�

2u � 2u
�

dV D
Z

�

1u � 2u
�

dV 82u
� 2 V (94)

Problem 7. knowing 1
Pu 2 V , find 2

Pu 2 V such that
Z

�

2
Pu � 2 Pu

�
dV D

Z

�

1
Pu � 2 Pu

�
dV 82

Pu
� 2 V (95)

where

V D ¹u regular in �º (96)

and we used left superscript 1 and 2 to specify the mesh a field is discretized on: 1 for old mesh,
2 for new mesh.

The mesh is adapted when the damage band advances on a distance ˛lm; ˛ 2 R so that it always
stays inside the highest refinement level area. Note that this solution is preferred over a fully dynamic
mesh adaptation as in [34] because mass matrix assembly and projection step are not fully optimized
from an implementation point of view. This projection step takes place after Equation (33).

5. NUMERICAL APPLICATIONS

5.1. V-shaped damage band

In this section, we illustrate the non-local computation based on modes on a V-shaped damage band
by computing the non-local energy release rate NY . We define a domain � � R

2 as a unit length
square and a damage band as depicted in Figure 5. We assume an energy release rate field given by
Y.x/ D y and a linear damage profile d.�/ D �=lc . The analytical solution is given by

NY .s/ D

8

ˆ̂

<̂

ˆ̂

:̂

s C l.s/p
5

s <
p

5
2

s � l.s/p
5

s >
p

5
2

(97)

Figure 5. V-shaped damage band, to illustrate the computation of the non-local energy release rate field.
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where the length l.s/ represents the thickness of the damage band, it is given by

l.s/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

min 2s; lc ;

 p
5

4
� s
2

!!

s <
p

5
2

min
s

2
�
p
5

4

!

; lc ; 2
�p

5 � s
�
!

s >
p

5
2

(98)

and where the coordinate s is given for any point on the damage band by

s.x/ D

8

ˆ̂

<̂

ˆ̂

:̂

2x C yp
5

x 2 �C and y < 1
2

r

4x2 C y2 � 4xy � 16x C 8y C 16
5

x 2 �C and y > 1
2

(99)

The prescribed damage front is not regular and the jacobian given in Equation (16) is singular for
x D .1I 1=2/. Nevertheless, the computation of Equation (23) on a small variation of the damage
front shape to get a circular tip of radius " is possible and leads to

NY D
1
lc

R "

0
.Y C ´�/

�

1 � ´
"

�

d´
1
lc

R "

0

�

1 � ´
"

�

d´
(100)

D Y C 1

3
�" (101)

where � D cos
�

arctan
�

1
2

��

, by taking the limit when " tends toward 0, the non-local energy release
rate at the singular tip is found equal to the energy release rate. The solution is discontinuous, and
the discontinuity is due to that of the level set function gradient; see Figure 2. We are interested in
the capacity of the method to approximate such a solution. We therefore study its convergence with
respect to space discretization. To do so, computation is carried on five cartesian meshes going from
16 � 16 to 256 � 256 and made of three-noded triangular and alternated elements for which the
element characteristic length are h D 6:250�10�2I 3:125�10�2I 1:563�10�2I 7:813�10�3I 3:906�
10�3 m. The method possesses two parameters . N�; lred/ that we decline in six values for the first
parameter N� D h

10
I h

4
I h

2
IhI 3h

2
I 2h and ten values for the second parameter lred D hI 2hI : : : I 10h.

We establish the convergence towards the analytical solution by considering the relative error with
respect to the analytical solution

relative error D
R

�C

� NY � NYh

�2
dV

R

�C
NY 2 dV

(102)

Convergence curves are depicted in Figure 6. For lred D 3h, the smallest relative errors are obtained
for h

4
6 N� 6

h
2

; see Figures 6(i) and 7. The relative error rapidly increases when N� decreases as
we loose the SUPG stabilization term in Problem 5. The relative error slowly increases when N�
increases, so greater values seem acceptable in practice. On the other hand, for N� D h

2
, the smallest

relative error is obtained when lred D h; see Figures 6(i) and 8. The relative error increases when lred

increases. It increases even faster as the mesh is coarser, this is probably due to the small number of
modes; see Figure 8. In practice, we will not choose a value lred D h, but we keep in mind that the
value should not be too big and even more on a coarse mesh. The obtained non-local energy release
rate is depicted in Figure 9 and compared with the lagrangian-based computation [17]. We observe
on the damage band tip that the discontinuity of the non-local energy release rate is well described
by the computation based on modes. Iso-values are always orthogonal to the level set function iso-
values. Oscillations are localized around the discontinuity of the solution, this is inherent to the
SUPG but it is acceptable because it is localized in a band of a few elements thickness.
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Figure 6. Relative error versus mesh size for (i) different diffusion coefficient N� and lred D 3h; (ii) different
mode support length lred and N� D h=2.

Figure 7. Relative error versus diffusion coefficient for (i) different mesh size h and lred D 3h; (ii) different
mode support length lred and h D 3:906 � 10�3 m.

Figure 8. Relative error versus mode support length for (i) different mesh size h and N� D h=2; (ii) different
diffusion coefficient N� and h D 3:906 � 10�3 m.

19



Figure 9. Non-local energy release rate computed with the mode-based method (left) and the lagrangian-
based method (right) from [17]. Parameters are h D 7:813 � 10�3 m, N� D h=2, and lred D 3h. Errors
concentrate on the discontinuity of the solution. The mode-based is able to represent the discontinuity of the

solution.

5.2. Application model

The constitutive model assumed in following numerical applications is a non-linear elastic dam-
ageable model with asymmetric traction/compression behavior and a delayed damage growth. It is
summarized with two potentials. The first is the free-energy potential; see [35]

'."; d / D .1 � d/
�
1

2
� htr"i2C C � h"iC W h"iC

�

C
�
1

2
� htr"i2� C � h"i� W h"i�

�

(103)

where � and � are homogeneous Lamé parameters. The second is the dissipation potential

� � NY
�

D Yc

�c

 *

NY
Yc

� 1
+

C
� 1
a

 

1 � exp

 

�a
*

NY
Yc

� 1
+

C

!!!

(104)

where Yc is the critical energy release rate over which damage initiates and propagates, �c is the
characteristic time and a is an homogeneous parameter that influence the rate at which the non-local
damage rate tends toward the upper bound value 1

�c
. Operators h�iC and h�i�, respectively, stand for

the positive and negative part of a quantity:

(1) for a scalar

hxiC D
1

2
.x C jxj/ (105)

hxi� D
1

2
.x � jxj/ (106)

(2) for a second-order tensor

h"iC D
3
X

iD1

h"i iC vi ˝ vi (107)

h"i� D
3
X

iD1

h"i i� vi ˝ vi (108)

20



where "i are eigenvalues and vi are eigenvectors of the tensor. It reads

� D .1 � d/
�

� htr"iC IC 2� h"iC
�

C .� htr"i� IC 2� h"i�/ (109)

Y D 1

2
� htr"i2C C � h"iC W h"iC (110)

NPd D 1

�c

1 � exp �a
*

NY
Yc

� 1
+

C

!!

(111)

where (111) is a delay-damage evolution model [4] derived from a positive, continuous, and convex
dissipation potential that vanishes for a vanishing non-local energy release rate. The positiveness
of the non-local damage rate implies the positiveness of the level set function rate. Moreover, this
model is chosen because it upper bounds the non-local damage rate:

NPd < 1

�c

(112)

By considering (28), we write an upper bound on the level set function rate:

P� < 1

�c

1

Nd 0
(113)

For a well chosen damage profile function, such as d.�/ D �=lc and d.�/ D 2.�=lc/ � .�=lc/2
for 0 < � < lc , see Appendix B for details, one can prove that

P� < lc

�c

(114)

The right hand side of (114) is taken as

lc

�c

D cR (115)

where cR is the Rayleigh wave speed and is the crack velocity upper bound in brittle fracture. Then,
it is ensured that

P� < cR (116)

With (115), the critical time step for the forward Euler method is �t�c D h
cR

, noticing that cR < cl

and using (52) the estimate of the critical time step is �tc D h
cl

.

5.3. Kalthoff and Winkler experiments

In this section, we are simulating the Kalthoff and Winkler experiments [36]. A large amount of
work has already been carried out on the simulation of such experiments, we summarize some
of them:

� in [37, 38], a damage model is used until strain localization occurs, then a cohesive crack model
is introduced;
� in [39–41], brittle materials are considered, modeling is not focused on strain localization

aspects but on efficient and accurate strategy to use the X-FEM in explicit dynamics. It focuses
on schemes, enrichment, and lumping strategy;
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� in [42], authors focuse on a time-dependent enrichment to accurately treat crack propagation
within the X-FEM;
� in [15, 16], a phase field approach is used to regularize the crack into a smooth field and to

model the loss of material properties around the crack, it leads to a model similar to continuum
damage mechanics with an additional length scale.

Figure 10. Geometry for the Kalthoff and Winkler plate.

Figure 11. Damage fields for Kalthoff and Winkler experiments.
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A projectile is launched at velocity v0 on an edge of a rectangular l � 2l steel plate as depicted in
Figure 10. The plate is notched on this edge with two notches of length l=2 and the projectile impacts
in between them. The plate is modeled under the plane strain assumption. The problem is symmetric,
and therefore only half of the plate is modeled and we impose the boundary condition u�e2 D 0. The
projectile is assumed to have the same impedance as the plate, and therefore the impacted part of the
edge as velocity Pu �e1 D v0

2
. The material is a maraging steel modeled by a constitutive model given

by potentials (103) and (104). Material properties are E D 190 GPa, � D 0:3, � D 8000 kg/m3,
Yc D 4:434 MPa, lc D 5 mm, �c D lc=cR, a D 4 and d.�/ D 2.�=lc/ � .�=lc/2 for 0 < � < lc .
It leads to longitudinal wave speed cl D 5654 m/s, transversal wave speed ct D 3022 m/s, and
Rayleigh wave speed cR D 2799 m/s.

The length of the plate is l D 0:1 m. The velocity of the projectile is v0 D 33 m/s. Numerical
parameters are li D 2 mm, N� D h=2 and lred D 2h. Numerical computations are achieved on two
128 � 128 and 256 � 256 quadtree adaptive meshes made of three-noded triangular and alternated
elements, the minimal level of refinement is 3 and the maximum level of refinement is, respectively,
7 and 8. It leads to h D 7:8 � 10�4 m and h D 3:9 � 10�4 m. The mesh adaptation parameters are
lm D 5 mm and ˛ D 1=5. The mesh is initially refined around the notch on a band of lm thickness.
The two meshes are referred respectively as coarse mesh and fine mesh in the following. The time
step is chosen as�t D 0:8h=cl . We focus our interest on the damage distribution, in Figures 11 and

Figure 12. Front velocity versus time.

Figure 13. Dissipated energy versus time.
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14, on the front velocity, in Figure 12 and the dissipated energy Ed , in Figure 13. The front velocity
is estimated by computing the time derivative of a damage band length estimate:

L D 1

2lc

Z

�C\Di

dV i D 1; 2 (117)

where D1 and D2 are two domains illustrated in Figure 10. This way, we can estimate the front
velocity for the two cracks. The dissipated energy is obtained by computing

Ed D
Z tf

0

Z

�C

NY NPd dV dt (118)

it is a good quantity to evaluate mesh sensitivity. We observe that the damage distribution is very
close to the one obtained in [37]. Two cracks appear and propagate into the domain. The presence of
the second crack, although not reported in Kalthoff and Winkler experiments, exists in continuum
damage mechanics-based approaches as in [37, 38]. In these studies, a damage area is initiated,
but material instabilities are not lost. Note that in [37], the maximum damage obtained in this area

Figure 14. Damage fields at instant t D 71:85�s for Kalthoff and Winkler experiments and corresponding
meshes.
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(close to d D 1) has a similar shape as our second crack. The approach presented in this paper
is in fact limited to brittle failure, diffuse micro-cracking are not modeled within this paper. We
are going further on this subject in the discussion section. There are almost no pathological mesh
dependencies, neither on the dissipated energy, the front velocity, and the damage distribution. It
exists in a mesh dependency on the size of the fully damaged domain �c visible in Figure 14. The
width of the domain is about h. This is due to the lack of enrichment to disconnect both sides of
domain �c . In [17], a ramp Heaviside enrichment is introduced to remove this mesh dependency.
The use of this enrichment in dynamics is not straightforward and remains a perspective in the
approach. The angle between the main crack and the horizontal axis is about 65ı (evaluated from
the initiation location to a point where a bifurcation is observed, otherwise from initiation location
to crack tip at instant t D 85:11�s, the angle is about 71ı). Kalthoff and Winkler reported in their
experimental studies an angle of about 70ı. The average front velocity is below the Rayleigh wave
speed. In Figure 22, we observe a first impulse in all curves, going away from plots bounding boxes.
These impulses correspond to the initiation of damage where we place a circular iso-0 of radius li .
We observe as well small negative values, probably due to level set function reinitialization step.

5.4. Single-edge notched tension test

In this section, we are interested by the branching capacity of the TLS approach and the influence of
the parameter a on the crack velocity. Experimental crack branching with a complex crack pattern
can be found in [43]. Numerically, the branching problem of a single-edge notched tension test
has already been treated by many authors [15, 16, 37, 38, 44]. We consider the domain � as a
L � l rectangle with a notched edge. The length of the notch is e. It is modeled by a predefined
damaged band �C of thickness 2lc . The problem is illustrated in Figure 15. We apply a constant
stress of magnitude T on both side of edges parallel to the notch. The problem is modeled under the
plane strain assumption using the constitutive model given by potentials (103) and (104). Material
properties are E D 32 GPa, � D 0:2, � D 2450 kg/m3, Yc D 1:2 kPa, lc D 2:5 mm, �c D
lc=cR, a D 0:5I 1I 2I 5 (declined in four values) and d.�/ D 2.�=lc/ � .�=lc/2 for 0 < � < lc .

Figure 15. Geometry for the single-edge notched tension test.

Figure 16. Maximum front velocity versus time for different values of parameter a.
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It leads to longitudinal wave speed cl D 3809 m/s, transversal wave speed ct D 2332 m/s, and
Rayleigh wave speed cR D 2119 m/s. Lengths are l D 100 mm, L D 40 mm and e D 50 mm.
The applied stress has magnitude T D 1MPa. Numerical parameters are N� D h=2 and lred D 3h.
Numerical computations are achieved on a 80� 200 cartesian mesh made of three-noded triangular
and alternated elements. It leads to h D 5 � 10�4 m. The time step is chosen as �t D 0:75h=cl .

Figure 17. Damage fields for single-edge notched tension test at instant t D 78:75 µs.
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The geometry and material parameters are chosen to be close to the dynamic crack branching test
considered in [16] where we estimate our parameters product Yclc equal to their parameter Gc

following the relationship with fracture mechanics given in [11] for which h is taken as 0. We
focus our interest on the branching capacity by looking at the damage distribution in Figure 17. The
influence of parameter a is seen on the maximum front velocity curve given in Figure 16 as well as
in Figure 17 where the crack branching is delayed.

We observe in Figure 17 that the predefined damaged band opens until the fully damaged area has
a one element thickness. The main crack propagates and branches into two cracks. The symmetry
and the smoothness of the crack pattern seems better for smaller values of a. Crack branches sooner
for bigger values of a even if we observe a longer main crack length. No other initiation occurs. In
Figure 16, we observe that the maximum level set function rate is significantly slower than the upper
bound cR. Parameter a affects the average velocity of the crack without significantly changing vari-
ations of curves. Oscillations amplitude is reduced for smaller a so that a does affect the stability
of the propagation. The final increase in maximum front velocity corresponds to the emergence of
the through-crack. When the damage front cut the domain boundary, a specific treatment is needed
for the computation of modes and the level set function reinitialization into a signed distance func-
tion. This is not treated in this article and remain a perspective of the approach. The obtained results
remain close to results obtained in [16, 37] for a D 5. Compared with [16], the kinematic field
discontinuity is modeled. Compared with [37], no localization criterion is used to model transition
from a continuous formulation to a discontinuous formulation.

6. DISCUSSION

6.1. Physical features

The foundation of the TLS approach is continuum damage mechanics. Nevertheless, the TLS
approach tries to add into the formulation the physical benefit of modeling discontinuities that is the
key idea of fracture mechanics. This choice is different from the phase-field approach that is built on
fracture mechanics grounds but regularize the discontinuity for a computational benefit. This capac-
ity of TLS to introduce kinematic fields discontinuities takes all its importance for problems with
large sliding of cracks lips inducing mesh distortions.

The TLS approach, thanks to level set methods, has a great potential in the branching and merging
of cracks. An interesting physical feature of the TLS approach concerns the branching capacity
obtained without any numerical help and any additional physical criteria.

The parameters �c and a introduced by the delay-damage evolution model serve two purposes: �c

imposes an upper bound to the crack velocity and a controls the average velocity. Parameter �c is
easy to determine from the maximum crack velocity. The choice of parameter a could then be made
on the basis of an experimental average crack velocity.

6.2. Computational efficiency

Extra computational costs to handle non-locality is restricted to small spatial and temporal zones
compared to other non-local approaches where the extra computational costs are widespread in
space and time. Indeed, in the TLS approach, damage initiation is local leading to purely local com-
putation before localization emerges somewhere. Afterwards, computational costs are increased, but
in a smaller proportion than other approaches because the non-local computation is only needed in
small areas that suffer damage. Computational costs increase with damage expansion.

The proposed extension to dynamics has almost no linear system to solve, it only appears when
computing matrices ŒP � and ŒP �N with DOFs from �C

h
and �Nh

.
Although all the benefits have not been implemented yet, level set methods used in the TLS

approach are efficient to track the damage front. Computation of level set function rate is limited to
�C[�N . In this paper, the level set function is defined on all the domain, updated on�C[�N and
reinitialized on � using a tree-based implementation of the distance function for the reinitialization
step. This narrow band technique is well known in the community of level set methods; see [24].
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6.3. Limitations and perspectives

The approach presented in this paper is limited to brittle fracture under the small strain assump-
tion as in previous paper dedicated to quasi static [11, 17]. It is extended to dynamic but leaves
out the ramp Heaviside enrichment introduced in [17]. Therefore, the fully broken area has a
one-element thickness and is still mesh dependent. A perspective of this work is to determine a
lumping strategy for the mass matrix as well as an efficient implementation with growing DOFs due
to enrichment.

As first commented in the Kalthoff and Winkler experiments section, the presented approach is
limited to brittle fracture in the sense that diffuse damage is not accounted for. A broader presenta-
tion is given in [45] where the key idea is to relax the constraint imposed on the level set function
kr�k D 1 to kr�k 6 1 to get a spatial damage distribution that satisfies at all time krdk 6 f .d/

on �. Without going into details, it means that the TLS approach can be extended to treat localized
as well as diffuse fracturing.

So far, the level set reinitialization is based on a straightforward distance computation based on
Equation (11) or a slightly improved one as used in Kalthoff and Winkler experiments. This compu-
tation does not correspond to the level set function needed in the TLS approach in presence of holes,
notches. In Kalthoff and Winkler experiments, this low-quality reinitialization step affects non-local
fields computation and level set function rate. A better suited method to reinitialize the level set
function is the fast marching method. We believe that this method would improve simulation of the
Kalthoff and Winkler experiments.

7. CONCLUSION

In this paper, we presented the TLS approach in the dynamical context of a material body subjected
to impact loadings. We recalled that the TLS handles both the transition from a purely local compu-
tation to a non-local computation when damage initiates and the transition from a partially damaged
area to a fully damaged area when damage propagates. We saw that the fully damaged area is not
taken into account anymore so that it naturally brings the discontinuity in the displacement field (up
to now, for a fully damaged band broader than one element).

The approach introduces a characteristic length in the formulation with the help of an auxiliary
field: the level set function. To this end, we saw that the level set function must be a signed distance
function. We wrote an evolution model for the level set function based on a non-local computation
by introducing a thermodynamically conjugate pair of non-local variables: the non-local energy
release rate and the non-local damage rate. We highlighted properties that must be verified by such
fields so that the level set function remains a signed distance function during its propagation.

We gave a purely explicit time discretization based on the central difference time integration
scheme for balance of momentum equations and the forward Euler time integration scheme for the
level set function update.

We insisted on the fact that efficiency is preserved because computation of non-locality is limited
to the damaged area.

We gave a new way to compute non-locality that is based on specific basis functions that weakly
impose desired properties on non-local fields and level set function rate. We proposed an efficient
computer implementation for which the construction of those basis function is not required.

Further improvements would be to introduce enrichment in the formulation so that discontinuity
is treated even when the thickness of the fully damaged area is finer than one element. This work
has already been treated in a quasi static context and is under development in a dynamics context.
This would lead to a proper transition from damage to fracture.

APPENDIX A: NON-LOCAL DAMAGE RATE COMPUTATION

We derive the non-local damage rate expression considering (22):
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– for the local thermodynamic pair

Z

�C

Y Pd dV D
Z

�C

Yd 0.�/ P� dV in T

D
Z

�.t/

P�.s; t/
Z l.s;t/

0

Y.´; t /d 0.�.´; t//J .´; t / d´ ds

D
Z

�.t/

P�.s; t/
R l.s;t/

0 Y.´; t /d 0.�.´; t//J .´; t /d´
R l.s;t/

0 d 0.�.´; t//J .´; t / d´
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0

d 0.�.´; t//J .´; t / d´ ds

D
Z
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P�.s; t/ NY .s; t/
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(A.1)

– for the non-local thermodynamic pair

Z

�C

NY NPd dV D
Z

�.t/

NY .s; t/ NPd.s; t/
Z l.s;t/

0

J .´; t / d´ ds (A.2)

we obtain (24) by identification of (A.1) and (A.2).

APPENDIX B: LEVEL SET FUNCTION RATE UPPER BOUND

For the two following damage profile functions (defined for 0 < � < lc), the upper bound (113)
reads

d.�/ D �

lc
) P� < lc

�c

(B.1)

d.�/ D 2
�
�

lc

�

�
�
�

lc

�2

) P� < lc

�c

f .l; ��/ (B.2)

where

f .l; ��/ D
1 � 1

2
l

��

2 � l
lc
� l

��

�

1 � 2
3

l
lc

� (B.3)
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Note that @f
@��

> 0 for �� > l > 0. We have

1

2
< lim

��!C1
f .l; ��/ 6 1 8l 2 �0I lc � (B.4)

1

2
< f .l; l/ 6

3

4
8l 2 �0I lc � (B.5)

For these two damage profile functions, we obtain (114).
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