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Convergence analysis of linear or quadratic X-FEM for

curved free boundaries
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b GeM UMR Ecole Centrale de Nantes – Université de Nantes – CNRS, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101,

44321 Nantes, France

The aim of this paper is to provide a-priori error estimates for problems involving curved interfaces and solved with the linear 
or quadratic extended finite-element method (X-FEM), with particular emphasis on the influence of  the geometry representation 
and the quadrature. We focus on strong discontinuity problems, which covers the case of holes in a material or cracks not subjected 
to contact as the main applications. The well-known approximation of the curved geometry based on the interpolated level-set 
function and straight linear or curved quadratic subcells is used, whose accuracy is quantified by means of an appropriate error 
measure. A priori error estimates are then derived, which depend upon the interpolation order of the displacement, and foremost 
upon the above error measure and the quadrature scheme in the subcells. The theoretical predictions are successfully compared 
with numerical experiments.
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1. Introduction

The extended finite element method (X-FEM) is an extension to the classical finite element method introduced by

Moës, Dolbow and Belytschko in [1] which allows easy handling of problems with jumps or singularities. Adequate
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resolution of such problems usually widely relies on the quality of the mesh, which should conform to the interface

geometry. In particular, problems with evolving interfaces should be addressed with elaborated remeshing tools

(see [2–4]). The X-FEM circumvents the difficulty by a local enrichment of the polynomial interpolation space with

non-polynomial functions, based on the partition of unity method [5]. This enables a full independence of the mesh

with respect to the interface location.

The extension of the X-FEM to higher order elements was first considered by Stazi, Belytschko et al. in [6] with

the aim of describing cracks. Relying on the work of Chessa [7] on the partition of unity, they proposed a quadratic

interpolation for the classical part of the displacement but a linear one for the enriched Heaviside and crack-tip part.

Shortly after, Zi and Belytschko [8] considered the use of higher-order elements to describe cohesive cracks. To this

purpose, they removed crack-tip enrichments but used a corrected Heaviside enrichment instead at the cohesive tip

to account for discontinuities ending at the interior of an element. This absence of crack tip enrichment allowed the

authors to use quadratic interpolation for the enriched Heaviside part as well (see [8]). Later on, Laborde and cowork-

ers [9] extensively discussed crack-tip enrichment strategies that can be used with higher-order interpolation for the

Heaviside enrichment. Despite the singularity, they recover the optimal convergence by enriching with the crack-tip

functions on a fixed area. As this makes the conditioning number to soar, they proposed corrections with degree-

of-freedom gathering (the rate of convergence being suboptimal, short of a 0.5 exponent) and pointwise matching

(optimal). Alternative strategies were also proposed to restore acceptable conditioning without damaging the con-

vergence, by means of enrichment with cutoff functions [10], vectorial enrichments [11] or both combined [12], or

enrichment over a fixed area with an appropriate preconditioner [13]. This paper is restricted to Heaviside enrich-

ment, but the above bibliography highlights existing tools to extend it to crack-tips while preserving both optimal

convergence and acceptable conditioning.

In early papers about higher-order X-FEM, the authors highlighted the opportunity to better describe crack

curvature. Stazi and Belytschko [6] interpolated the level set function using the same quadratic shape functions as

those of the displacement. Based on the isozero of this interpolant, they would construct a quadrature scheme based

on a linear subdivision. Later on, Legay, Wang and Belytschko [14] would again consider the isozero of the level-set

functions, but use quadratic curved subcells for the quadrature. The authors observed suboptimal rates for curved

interfaces and optimal rates for straight ones, suggesting that a poor representation of the geometry would hinder the

convergence. More recently, and almost simultaneously, Cheng and Fries in [15], Dréau et al. in [16,17], Moumnassi

and coworkers [18] also stressed out experimentally suboptimal rates for higher-order formulations when used along

with a linear description of the geometry, provided the same grid is used as a starting point for the quadrature and the

bulk fields. All three papers proposed successful remedies to the problems, namely:

1. the description of the crack geometry on a finer subgrid, in [16–18], so that piecewise-linear cuts over relatively

small subcells drops the quadrature error to be as small as the interpolation error,

2. curved subcells with one curved 4-node edge in [15].

Despite these experiments, to our knowledge the link between the description of the geometry on the one hand,

the quadrature rule in the subcells on the other and the error of the problem was never theoretically quantified to a

predictive rule with X-FEM. This is the task that we propose to examine in this paper.

In this paper, the approach of Legay and coworkers [14] is adopted for the interface resolution: starting from the

interpolated level set on the finite-element mesh, classical subdivision of cut elements into straight triangles or curved

quadratic 6-node triangles is carried out. Each such subcell is then considered as belonging to one or the other side of

the interface.

An error measure is provided in part 4 to assess the accuracy of this geometrical representation. Correspond-

ing theoretical orders of convergence are provided and checked against numerical experiments. We link in part

5 geometrical representation, quadrature and convergence in X-FEM, based on the work of [19,20] in FEM.

To this aim, we derive a priori estimates as functions of the above geometrical error measure, the quadrature

scheme and the interpolation order of the displacement. In part 6, the estimates are validated by numerical

experiments.

The main result of this article is that, in practice, it suffices to perform a subdivision after the same order than the

interpolation and use the related typical quadrature scheme to get optimality. However, the theory allows to find out

problematic cases that have to be handled with thorough consideration.
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2. Formulation of the continuous problem

We consider an elastic body occupying a domain Ω in R
2, which is mathematically a bounded open set. This body

is cut through by a curved interface Γ , which can typically be a crack or a hole. In this way, Ω is separated into two

open sets Ωi , i ∈ {1, 2}, so that Ω = Ω1 ∪ Ω2 ∪ Γ . The restriction of any field v to Ωi is denoted by vi . For each

body, the remaining of the boundary ∂Ωi \ Γ is composed of non-overlapping parts Γ
i
u and Γ

i
g where conditions are

prescribed on the displacement ui and the surface force distribution gi , respectively. We assume that Γ
i
u has nonzero

measure. Interface Γ is assumed to be traction free, which means that both parts constitute non-interacting solids.

Holes in a material and cracks are the main applications of this case of study.

The body is subjected to volume forces fi in addition to the surface loads. Small displacements and strains are

assumed. The equations in Ωi read:

∇ · σ i + fi = 0 in Ωi (1)

σ i · ni = gi on Γ
i
g (2)

ui = 0 on Γ
i
u (3)

σ i · ni = 0 on Γ (4)

where σ i is the Cauchy stress tensor, defined from the elasticity fourth-order tensor Ai and the strain tensor

ϵi = 1
2



∇ui + ∇uT
i



, as σ i = Ai · ϵi .

In what follows, we adopt classical notations for the functional spaces: W m,p(Ω) denotes the Sobolev space of

functions v for which all derivatives up to order m lie in L p(Ω). In other words, for any multi-index α := (α1, α2)

whose size |α| = α1 + α2 is less than m, it holds ∂αv := ∂ |α|v

∂x
α1
1 ∂x

α2
2

∈ L p(Ω). The associated semi-norm is

denoted | · |m,p,Ω , and the associated norm ∥ · ∥m,p,Ω . Classically, index p is omitted when it is 2 so that we note

Hm(Ω) := W m,2(Ω) and ∥v∥m,Ω := ∥v∥m,2,Ω . We also introduce product spaces Hm (Ω1) × Hm (Ω2), which are

endowed with the broken norm ∥v∥2
m,Ω1∪Ω2

:= ∥v∥2
m,Ω1

+∥v∥2
m,Ω2

. In this paper, C will denote a generic non-negative

constant, and c a strictly positive constant.

The components of the solution belong to V := {v ∈ H1(Ω1) × H1(Ω2), v|Γ i
u

= 0, i ∈ {1, 2}}. A bilinear form

a ∈ L(V 2 × V 2; R) and linear form b ∈ L(V 2; R) are defined as:

For (u, v) ∈ V 2 × V 2, a (u, v) :=
2

i=1



Ωi

σ i (ui ) : ϵi (vi )dx (5)

For v ∈ V 2, l (v) :=
2

i=1



Ωi

fi · vi dx +



Γ i
g

gi · vi ds. (6)

The resulting weak formulation consists in finding u ∈ V 2, such that ∀v ∈ V 2:

a (u, v) = l (v) . (7)

Eq. (7) constitutes a vectorial second-order problem. For the sake of conciseness, and as is very common in

finite-element analysis, we shall in the mathematical developments of this paper rather work with a scalar second-

order elliptic problem: this corresponds to a heat diffusion problem through a cracked structure. All theorems of

this paper are given in the scalar setting, but their vectorized counterparts could be derived in a similar way. We set

a ∈ L(V × V ; R) as:

a (u, v) :=
2

i=1



Ωi

∇ui · Ai · ∇vi dx . (8)

Here is Ai the conductivity second-order tensor, whose components are assumed to have regularity properties

except across the interface: for i ∈ {1, 2} and (k, l) ∈ {1, 2}2, (Ai )kl ∈ L∞(Ωi ). This obviously ensures the continuity

of a. Tensor Ai is also supposed to verify an ellipticity property, that is to say there exists c > 0, ∀i ∈ {1, 2},
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∀x ∈ Ωi , ∀ξ ∈ R
2,



ξ

T · Ai (x) · ξ



 ≥ c|ξ |2. This makes a coercive. The source terms are fi ∈ L2(Ωi ) and we

introduce l ∈ L(V ; R) as:

l (v) :=
2

i=1



Ωi

fivi dx . (9)

Again, the problem may be written as (7).

3. The discrete problem

3.1. The approximation of the geometry

Since the X-FEM is widely used to describe propagating interfaces, the interface is usually implicitly represented,

by means of a signed distance function on Ω , called the level-set function (see e.g. [21]).

Assumption (H0). The existence of a level-set function φ is assumed in a 2δ-fixed-width strip Sδ centered on the

interface, whose isozero coincides with the interface:

Γ = {x, φ(x) = 0}. (10)

This assumption is fully discussed in Appendix A, where a rigorous definition is given under regularity assumptions

on the interface, the semi-width δ being related to the minimal radius of curvature.

We suppose that the whole domain Ω is meshed with a family Th of triangular affine meshes, regardless of the

location of the interface. We now aim at building an approximated conforming subdivision within cut elements. The

first stage consists in interpolating the level-set function, by:

φh(x) =


j∈Nh

N j (x)φ j (11)

where Nh denotes the nodes of the mesh, N j the shape function of order g associated with node j , and φ j the values

of the exact level-set function at this node (see Fig. 1(a)). Exponent g is thus the representation order of the geometry.

If g = 1, this amounts to the well-known linear subdivision.

The idea is then to rely in a second stage on the iso-zero curve Γφ of the interpolated level-set function (represented

in Fig. 1(b)) to build an approximation of the interface. If g = 1, two intersection points are computed to determine the

border of linear conforming subcells. If g = 2, an additional middle point is determined on Γφ , using the perpendicular

bisector to the segment linking the previous points (see Fig. 1(c)). The cut element is then subdivided into quadratic

triangular subcells (see Fig. 1(d)), an edge of which interpolates the three points on the isozero curve. This edge is

finally the approximation Γh of the interface (see Fig. 1(d)): any subcell E then fully belongs to one or the other side

of the interface. Approximated bodies Ω
h
i may then be identified as in Fig. 1(d).

About Γφ and Γh being different curves when g = 2.

When g = 1,Γφ is a line, and since two points determine a line, Γφ and Γh necessarily coincide. On the contrary,

when g = 2,Γφ is a conic section (the 2D case of quadric surface), and as such is determined in a unique manner not

by three, but by five points. Consequently, having three points in common does not ensure that the quadratic-subcell

edge Γh coincides with Γφ : they might still be different conic sections.

3.2. The interpolation of the field of unknowns

Again, Th denotes a family of affine triangular meshes of Ω . Since in the X-FEM the position of the interface is

independent of the mesh, this does not prevent the representation of arbitrary curved interfaces. Family Th is assumed

to be quasi-uniform and regular, that is to say for K ∈ Th , denoting hK the radius of the smallest circle containing K

and ρK the radius of the largest circle included in K and setting the characteristic mesh size h := maxK hK , we have:
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(a) Computation of nodal level sets. (b) Quadratic interpolation from

nodal values.

(c) Determination of some points on

the interpolated level-set isozero.

(d) Subdivision with corresponding quadratic

triangles and approximated domains.

Fig. 1. Subdivision of cut elements in the case where g = 2.

Fig. 2. Interface, mesh not matching the interface and enriched nodes, in the case p = 2.

Assumption (H1). There exists a constant C independent of h and K such that h
ρK

≤ C . This ensures that the angles

of triangle K are uniformly bounded away from zero.

In order to account for the field jump across the interface, the classical finite element approximation is enriched

with a Heaviside-like function (see [1]):

Vh :=









i∈Nh

ai Ni (x) +


j∈Kh

b j N j (x)H(x), ai ∈ R, bi ∈ R






. (12)

In this expression Ni is the shape function of order p at node i , with p ∈ {1, 2}, Kh is the set of enriched nodes – the

nodes whose shape function is not identically zero on the interface, as pictured in Fig. 2 – and H is the Heaviside-like
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function used to represent the jump:

H(x) =



−1 if x ∈ Ω
h
1

+1 if x ∈ Ω
h
2 .

(13)

Note that the interpolation order p may be different from the representation order g of the geometry. We denote Eh

the set of cut elements.

4. The accuracy of the geometry description

We shall now be equipped with an error measure for assessing the accuracy of the geometry description:

Definition 4.1. The interface resolution is introduced as ϵ := maxx∈Γ



minx′∈Γh
|x − x′|



. Of course, ϵ depends upon

h, but this dependence is omitted in the notation for the sake of conciseness. The dependence of ϵ upon h indicates a

convergence in L∞-norm.

This measure is an extension to X-FEM of Definition 3.1 in [22] for classical FEM. Geometrically, this means that

for any subdivision, we have Γh ⊂ Sϵ , where Sϵ is the 2ϵ-fixed-width strip centered on Γ : the interface is thus said to

be ϵ-resolved by the subdivision.

4.1. Interpolating the level-set function

The first stage of our description consists in approximating the level-sets. For K ∈ Th , let Pg(K ) be the space of

polynomials of total order g on K . Let Ig be the standard nodal interpolation operator. We have:

Lemma 4.1. Let g ∈ {1, 2}, δ′ < δ and assume the level-set φ to satisfy φ ∈ Cg+1 (Sδ). Then for h ≤ h0 := δ − δ′

the interpolation estimate ∥φ − Igφ∥0,∞,Sδ′
6 Chg+1∥φ∥g+1,∞,Sδ

holds.

Proof. We apply [19, Theorem 3.1.6] (interpolation with affine meshes). Since h ≤ h0 := δ − δ′, φ is well-defined on

all elements K ∈ Th verifying K ∩ Sδ′ ≠ ∅. �

4.2. Constructing subcells

In order to analyze the error that we have made approximating Γφ by Γh (second stage), we should introduce, for

the purpose of the demonstration exclusively, subcells which exactly resolve a curved interface (see [23]), referred to

as transfinite subcells (see Fig. 3). Their mappings are no longer polynomial but simply analytical, and constructed by

transfinite interpolation from the analytical expression of the curved edge to be matched. In order to evaluate the error

mentioned above, we have constructed a mapping F̃
Ẽ

for transfinite subcells and compared it with the polynomial

mapping FE of classical ones. The analysis is detailed in Appendix B. Its main result reads as follows (Lemma B.1):

under the assumption that Γφ admits a local Cg+1-parametrization fφ from a segment I , which is the case since Γφ is

a conic-section, we have:

∥F̃
Ẽ

− FE∥
g+1,∞,K̂

≤ Chg+1|fφ |g+1,∞,I . (14)

We are now in a position to give an estimate for the whole process:

Theorem 4.1. Let g ∈ {1, 2} be the representation order of the geometry. Assume interface Γ to have a geometric

continuity Gg+2. Then the interface is O(hg+1) resolved by the subdivision, that is to say ϵ ≤ Chg+1.

Appendix A may be consulted for a comprehensive definition of geometric continuity.

Proof. Since Γ has a geometric continuity Gg+2, after Lemma A.1 we have φ ∈ Cg+1(Sδ). We may therefore apply

Lemma 4.1, which for x ∈ Γh gives (see Fig. 4):

|φ(x)| ≤ min
x ′∈Γφ



|φ(x′) − φh(x′)| + |x′ − x|


≤ Chg+1|φ|g+1,∞,Sδ
+ min

x ′∈Γφ



∥x′ − x∥


. (15)
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Fig. 3. Classical and transfinite subcells, in the case where g = 2.

Fig. 4. Decomposition of the errors.

We may then apply Lemma B.1. to any subcell E with a curved edge for each cut parent element:

|φ(x)| ≤ Chg+1


|φ|g+1,∞,Sδ
+ |fφ |g+1,∞,I



. (16)

Let


I → R

s → fφ (s) = (x(s), y(s))
be a parametrization of Γφ . Then we have ∀s ∈ I ,

f ′
φ (s) · ∇φh (x(s), y(s)) = 0. (17)

It may be deduced that parametrization fφ may be chosen such that y′(s) = ∂φh

∂x
(x(s), y(s)) and x ′(s) =

− ∂φh

∂y
(x(s), y(s)). So differentiating with the chain rule and making use of the previous expressions yields (dropping

the dependence to s to alleviate notations):

y′′(s) = −
∂2φh

∂x2

∂φh

∂y
+

∂2φh

∂x∂y

∂φh

∂x
(18)

and:

y(3)(s) = −
∂φh

∂x



∂2φh

∂x2

∂2φh

∂y2
−


∂2φh

∂x∂y

2


. (19)

We derive similar expressions for the successive derivatives of x , and deduce |fφ |g+1,∞,I ≤ C∥φh∥
g+1
g+1,∞,Sδ

. Hence

|φ(x)| ≤ Chg+1∥φ∥g+1,∞,Sδ (1 + ∥φ∥
g

g+1,∞,Sδ



so ϵ ≤ Chg+1 which means that the interface is O(hg+1) resolved

by the subdivision. �

Remark 4.1. However, a locally better resolution of the interface would be appreciable in some situations, for instance

cut triangles which are cut close to a node. To remain general, let us consider any K ∈ Eh . Two of its edges

are intersected and the subcell containing their common node is called triangular subcell. This common node is

mapped onto the origin of the reference triangle K̂ (see Fig. 5). Such a map is moreover chosen such that the first

reference coordinate correspond to the largest coordinate λ̂M among the intersection points, while the second reference

coordinate is associated with the smallest λ̂m .
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Fig. 5. Intersected triangle.

(a) Lengthways intersected

triangle whose associated

edge is crossed.

(b) Lengthways

intersected triangle

whose associated

edge is not crossed.

(c) Small section but

not a lengthways

intersected triangle.

(d) Not a lengthways

intersected triangle.

Fig. 6. Various configurations of intersected triangles.

The first stage of the approximation may then be consequently improved in |φ − Igφ|0,∞,Γh
≤ λ̂M h|φ −

Igφ|1,∞,E ≤ C λ̂M hg+1. The second stage occurs with a triangular subcell E of a characteristic size λ̂M h (see Fig. 5),

so in K the interface is locally O(λ̂M hg+1)-resolved by the subdivision.

With this local property of an improved resolution of the interface, problematic cases are those for which one side

has a small area and the interface does not remain in the vicinity of a node, so that no better resolution is available.

The characteristic feature of those intersected elements is that the area of the one side is small when compared to the

length of the cut interface, hence the terminology developed below:

Definition 4.2. Let 0 < κ ≪ 1 be a fixed parameter. A triangle K will be called lengthways intersected if:

∃i ∈ {1, 2},
meas(Ωi ∩ K )

meas(Γ ∩ K )2
≤ κ. (20)

For the sake of the demonstration, we use alternative notations from Fig. 5: K is lengthways intersected if:

min(λ̂m, 1 − λ̂m)

λ̂M

≤ 2κ. (21)

To be more practical, for these triangles there is an almost coincident edge with the interface (see Fig. 6(a) and (b)).

To be more mathematical, problems will arise from triangulations (family of meshes) for which ratios (20) or (21) are

not bounded away from 0 as h → 0. Strictly speaking, we should call lengthways intersected a triangulation, not a

triangle.
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Fig. 7. Typical convergence rates (e.g. for an exponential shape).

4.3. Numerical experiments

The resolution of the interface in the sense of our error measure (Definition 4.1) was computed for various shapes,

namely polynomial, exponential, sinusoidal and circular curves. For the sake of comparison with the literature, the

classical area error measure is also assessed, which consists of comparing the approximate area on one side of the

interface with its analytical value:

area error =


meas(Ω1) − meas(Ωh

1 )



meas(Ω1)
. (22)

It is clear from this definition that both error measures should have the same order of convergence, unless a

compensation phenomenon occurs on the area error which makes its rate of convergence higher. In accordance with

the theory, the observed convergence order for both error measures was always 2 with a linear subdivision. For all

shapes but the circle, the interface resolution was observed to converge at order 3 with a quadratic subdivision, as

predicted by the theory, while the area error was always 4. The results for the exponential curve are displayed in Fig. 7

as an example. It is still unclear to us what systematic compensation effect is at stake. A super-convergent resolution

of the interface was observed for the circle (see Fig. 8), as was already noticed by [15].

5. A priori error estimates depending on geometry description and quadrature

As already pointed out in [6,8], a piecewise linear subdivision yields suboptimal convergence rate with higher-

order field interpolation, when the same mesh is used for interpolation and for quadrature. So optimal convergence

for curved interfaces relies partly on the representation of the interface geometry, and we shall now quantify this

dependence for the strong discontinuity problem presented in Section 2.

5.1. Applying the first Strang lemma

Given that u ∈ V is discontinuous across Γ and its interpolant uh ∈ Vh is discontinuous across Γh, ∇(u − uh)

would not be defined on both of them, thus making difficult the very definition of a H1-norm. Hence, we chose to

define the error as ∥ū − uh∥2

1,Ωh
1 ∪Ω

h
2

where ū is an extension to u to be defined with a discontinuity across Γh instead

of Γ .

To define such ū, we introduce bounded sets Ω̄i which contain all discretizations Ω
h
i from a certain mesh size:

∀h ≤ h0, Ω̄i ⊂


Ωi ∪ Ω
h
i



. Let p ∈ {1, 2}, we assume that u ∈ H p+1(Ω1) × H p+1(Ω2) and denote ui its restriction

to Ωi . We may extend ui to ūi ∈ H p+1


Ω̄i



in a stable way (see Stein [24]). We may then define ū ∈ H p+1(Ωh
1 ) ×

H p+1(Ωh
2 ) such as ū|

Ω
h
i

:= ūi . The error on the solution is defined as ∥ū − uh∥2

1,Ωh
1 ∪Ω

h
2

=


i=1,2 ∥ūi − uh∥2

1,Ωh
i

.
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Fig. 8. A superconvergent case: the circle.

Conversely, for a discrete wh ∈ Vh , we will sometimes be led to use extensions w̄h being discontinuous across Γ

instead of Γh . To define them, we note wi
h := wh |

Ω
h
i

. Since it is polynomial on each intersected triangle, we denote

w̄i
h its natural polynomial extension, and build w̄h by combining the restrictions to Ωi .

Approximating the operators, the first step is to consider exact integrals but over the approximated domain, which

leads to intermediate bilinear and linear forms over H1(Ωh
1 ) × H1(Ωh

2 ) : ǎh (v, w) :=


i=1,2



Ω
h
i



Āi · ∇v


· ∇wdx

and ľh (v) :=


i=1,2



Ω
h
i

f̄ivdx , where for i ∈ {1, 2}, Āi and f̄i are the stable extensions to Ai and fi related to the

Sobolev spaces they respectively belong to.

The second step is the quadrature. On a cut element K , the quadrature scheme is defined over each subcell E .

The reference triangle K̂ is endowed with an integration scheme whose weights are


ŵl



l=1..L
and integration points

are located at (b̂l)l=1..L . Denoting DFE the Jacobian matrix of FE and JE := det(DFE ), this yields an integration

scheme on each subcell with weights wl,E = ŵl JE (b̂l) and integration points locations bl,E = FE (b̂l). Let Vh be the

interpolation space (13), the discrete linear and bilinear forms are defined by ∀ (uh, vh) ∈ Vh :

ah(uh, vh) :=
2

i=1



E∈Ω
h
i

L

l=1

wl,E



Āi · ∇uh



· ∇vh

 

bl,E



(23)

lh(vh) :=
2

i=1



E∈Ω
h
i

L

l=1

wl,E



f̄ivh

 

bl,E



. (24)

The discrete problem then amounts to finding uh ∈ Vh such that:

∀vh ∈ Vh, ah (uh, vh) = lh (vh) . (25)

We recall:

Definition 5.1. The bilinear forms ah are said to be uniformly Vh-elliptic if there exists c > 0, ∀vh ∈ Vh,

c∥vh∥2

1,Ωh
1 ∪Ω

h
2

≤ ah (vh, vh).

A general abstract error estimate then reads:
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Proposition 5.1 (Extension to X-FEM of the Theorem 4.4.1 in [19]). Assume that the discrete bilinear forms ah are

uniformly Vh-elliptic, there exists a constant C independent of h such that:

∥ū − uh∥1,Ωh
1 ∪Ω

h
2

≤ C inf
vh∈Vh



∥ū − vh∥1,Ωh
1 ∪Ω

h
2

(a)

+ sup
wh∈Vh

|ǎh (vh, wh) − ah (vh, wh) |

∥wh∥1,Ωh
1 ∪Ω

h
2



+ C sup
wh∈Vh

|ľh (wh) − lh(wh)|

∥wh∥1,Ωh
1 ∪Ω

h
2

(b)

+ C sup
wh∈Vh

|ǎh (ū, wh) − a (u, w̄h) |

∥wh∥1,Ωh
1 ∪Ω

h
2

+ C sup
wh∈Vh

|ľh(wh) − l(w̄h)|

∥wh∥1,Ωh
1 ∪Ω

h
2

(c). (26)

Proof. ∀(v, w) ∈ H1(Ωh
1 ∪ Ω

h
2 ), by Cauchy–Schwarz and concavity of the square root:

|ǎh (v, w) | ≤ |Ā|0,∞,Ω1∪Ω2



∥∇v∥
Ω

h
1
∥∇w∥

Ω
h
1

+ ∥∇v∥
Ω

h
2
∥∇w∥

Ω
h
2



≤ |A|0,∞,Ω1∪Ω2





i=1,2



j=1,2

∥∇v∥
Ω

h
i
∥∇w∥

Ω
h
j



≤ 2|A|0,∞,Ω1∪Ω2
∥v∥

Ω
h
1 ∪Ω

h
2
∥w∥

Ω
h
1 ∪Ω

h
2
.

Then with a proof strictly identical to [19, 4.4.1], we get:

∥ū − uh∥1,Ωh
1 ∪Ω

h
2

≤ C inf
vh∈Vh



∥ū − vh∥1,Ωh
1 ∪Ω

h
2

+ sup
wh∈Vh

|ǎh (vh, wh) − ah (vh, wh) |

∥wh∥1,Ωh
1 ∪Ω

h
2



+ C sup
wh∈Vh

|ǎh (ū, wh) − lh(wh)|

∥wh∥1,Ωh
1 ∪Ω

h
2

.

We first decompose:

ǎh (ū, wh) =


ǎh (ū, wh) − a (u, w̄h)


+ a (u, w̄h) . (27)

And since a (u, w̄h) = l (w̄h), we deduce from (27) that:

ǎh (ū, wh) − lh (wh) =


ǎh (ū, wh) − a (u, w̄h)


+


l (w̄h) − ľh (wh)



+


ľh − lh



(wh) (28)

which leads to the result. �

Three kinds of errors appear in estimate (26) of Proposition 5.1. The first one (a) is a rather well-documented

interpolation error. The second (b) is the consistency error that we have made by using a quadrature scheme to compute

the integrals on the approximated geometry. The third (c) is the consistency error that arises by using operators on the

approximated geometry rather than the exact one, the integrals being assumed to be computed exactly.

Because we will need to prove uniform ellipticity for ah before going any further, let us focus on the integration

quantities involved in its expression (23). To this purpose, we recall:

Remark 5.1. Estimates |DFK | ≤ Ch and |JK | ≤ Ch2 hold for any parent element. For m ∈ {1, 2}, |Dm FE |
0,∞,K̂

≤

Chm and for l ∈ {0, 1, 2}, |JE |
l,∞,K̂

≤ Chl+2 hold for any subcell (see [19, Theorem 4.3.3] and its proof). However,

while the regularity Assumption (H1) of the parent mesh ensures the inverse properties |DF−1
K | ≤ Ch−1 and

|J−1
K | ≤ Ch−2, the inverse properties |DF−1

E |0,∞,E ≤ Ch−1 and |J−1
E |0,∞,E ≤ Ch−2 do not hold for all subcells. To

have additional properties for some of them, they should be classified after their shape properties.

Definition 5.2. From the more demanding to the more permissive, we will call:

• Regular, a subcell for which Assumption (H1) holds. For those subcells the inverse properties |DF−1
E |0,∞,E ≤

Ch−1 and |J−1
E |0,∞,E ≤ Ch−2 hold.

11



Fig. 9. Regular, slender and crescent-shaped subcells.

• Slender, a non regular subcell E , which, given a constant C independent of h and denoting J−1
E := det(DF−1

E ),

nevertheless verifies:

|J−1
E |0,∞,E |JE |

0,∞,K̂
≤ C. (29)

Any subcell with no curved edge is either regular or slender.

• Crescent-shaped, a neither regular nor slender subcell.

Again, asymptotically speaking, we should call regular, slender or crescent-shaped families of subcells, but not

individuals. Hence, strictly speaking, we call regular a family of subcells of the triangulation for which the ratio in

Assumption (H1) remains bounded as h → 0, slender a family for which (29) remains bounded, and crescent-shaped

subcells belonging to neither families.

Remark 5.2. In practice, the slenderness property excludes curved subcells which lead to a degenerescence of the

angle at the vertex with respect to the similar affine subcell angle (see the third triangle in Fig. 9).

Let us set out the following assumption about quadrature schemes for k ∈ N:

Assumption (H2, k). The quadrature scheme (ŵl , b̂l) is exact for Pk(K̂ ). Further in this paper, we will note (H2,

k = 3) if the quadrature scheme is exact for P3(K̂ ) for instance.

We now give a condition under which the approximate bilinear forms are uniformly Vh-elliptic:

Proposition 5.2 (Extension to X-FEM of [19, Theorem 4.4.2]). Let p = 2 and g = 2. Under Assumptions (H1), (H2,

k = 4) for regular and slender subcells and (H2, k = 6) for crescent-shaped subcells, the bilinear forms ah are

uniformly Vh-elliptic.

For p = 1 and g = 1, uniform ellipticity holds under the Assumptions (H1) and (H2, k = 0), and for p = 2 and

g = 1 it holds under Assumptions (H1) and (H2, k = 2), the easier proof being left to the reader.

Proof. Step 1. Let K ∈ Eh and for each side i ∈ {1, 2}, let E ⊂


K ∩ Ω
h
i



be a subcell. Let vh ∈ Vh , and call

p := vh |K∩Ω
h
i

∈ P2 (K ). The ellipticity condition on A on the Gauss point number l of E yields:

[(A · ∇ p) · ∇ p]


bl,E



≥ c|∇ p|2


bl,E



. (30)

The pull-back of p onto the reference parent element will be noted p̂ := p ◦ FK . Thus, we have for x ∈


K ∩ Ω
h
i



, Dp (x) = D p̂


F−1
K (x)



· DF−1
K so since FK is affine:

|Dp(x)|2 ≥
1

|DFK |2



D p̂



F−1
K (x)





2
. (31)

12



After (30) and (31), it holds:

L

l=1

wl,E [(A · ∇ p) · ∇ p]


bl,E



≥ c
1

|DFK |2

L

l=1



|D p̂|2 ◦ F−1
K ◦ FE (b̂l)



ŵl JE (b̂l). (32)

Step 2. Proof for slender subcells. We can estimate JE (b̂l) = 1

J−1
E (bl,E)

≥


J

−1
E





−1

0,∞,E
. Hence:

L

l=1

wl,E [(A · ∇ p) · ∇ p]


bl,E



≥ c



J

−1
E





−1

0,∞,E

|DFK |2

L

l=1



|D p̂|2 ◦ F−1
K ◦ FE (b̂l)



ŵl . (33)

We have |D p̂|2 ◦ F−1
K ◦ FE ∈ P4(K̂ ) which thanks to (H2, k = 4) allows the conversion of right-side member into

an exact integral that may be estimated in the following way:

L

l=1

ŵl |D p̂|2


F−1
K ◦ FE (b̂l)



=



K̂



|D p̂|2 ◦ F−1
K ◦ FE (x̂)



dx̂

≥ |JE |−1
0,∞,E JK



Ê

|D p̂|2dx̂ (34)

where we have noted Ê := F−1
K (E) ⊂ K̂ (see Fig. 5). Combining (33) and (34), the definition (29) of slender

subcells, and the classical estimates | p̂|2
1,Ê

≥ cJ−1
K |DFK |2|p|21,E (see [19, Theorem 4.3.2]), we may conclude:

L

l=1

wl,E [(A · ∇ p) · ∇ p]


bl,E



≥ c|p|21,E . (35)

Step 3. Proof for crescent-shaped subcells. Since FK is affine so is F−1
K , and FE ∈ P2(K̂ ) which implies:

JE



|D p̂|2 ◦ F−1
K ◦ FE



∈ P6(K̂ ). (36)

Thanks to (36) and (H2, k = 6), the right-side member of (32) may be converted into an exact integral, which after

a change of integration domain gives:

L

l=1

wl,E [(A · ∇ p) · ∇ p]


bl,E



≥ c
1

|DFK |2
JK | p̂|2

1,Ê
. (37)

By the same classical estimates | p̂|2
1,Ê

≥ cJ−1
K |DFK |2|p|21,E , we may conclude:

L

l=1

wl,E [(A · ∇ p) · ∇ p]


bl,E



≥ c|p|21,E . (38)

Step 4. Summing up (35) over E yields:

∃c > 0, ∀vh ∈ Vh, ah (vh, vh) ≥ c|vh |2
1,Ωh

1 ∪Ω
h
2

. (39)

We may now prove the same property with the norm instead of the semi-norm following the proof of [19, Theorem

4.4.2]. Applying the Poincaré inequality over Ω̄i to Stein extensions of vh , we may find a constant independent of

h such as ∀v ∈ Vh, ∥v∥1,Ωh
1 ∪Ω

h
2

≤ C |v|1,Ωh
1 ∪Ω

h
2

which yields the final result ∃c > 0, ∀vh ∈ Vh, ah (vh, vh) ≥

c∥vh∥2

1,Ωh
1 ∪Ω

h
2

. �

Having established a condition which ensures that the assumption of the abstract error estimate (26) holds, we take

to estimating its different terms. Let us start with the interpolation error (a) in (26). As it is well-documented in the

literature, we stick to the essential.
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locally 

higher error

Fig. 10. Situation responsible for local high errors.

Definition 5.3 ([10,12,25]). Let p ∈ {1, 2} be the interpolation order, let u ∈ H p+1 (Ω1 ∪ Ω2), we introduce an

interpolation operator Πh onto Vh by Πhu :=


l∈Nh
al Nl +



l∈Kh
bl Nl H , where ai , bi are given by (xi being the

position of the node associated with Ni ):

• if l ∈ Nh \ Kh then al := u(xl),

• if l ∈ Kh then:



al :=
1

2



ui (xl ) + ū j (xl )


bl :=
1

2
(−1)i ui (xl ) − ū j (xl )


where xl ∈ Ω

h
i and j := 3 − i .

Note that Definition 5.3 implies that if Ip is the nodal interpolation operator, then Πhu|
Ω

h
i

= Ipūi . The definition

is consistent since H2 (Ω1 ∪ Ω2) ⊂ C0 (Ω1 ∪ Ω2).

Proposition 5.3. Let p ∈ {1, 2}, let u ∈ H p+1 (Ω1 ∪ Ω2), the following interpolation estimate holds:

∥ū − Πhu∥1,Ωh
1 ∪Ω

h
2

≤ Ch p∥u∥p+1,Ω1∪Ω2
. (40)

Proof. The reader is referred to [10,12] for the case where p = 1. For p = 2, the regularity of the parent elements

and the stability of the extension give:

∥ūi − I2ūi∥1,Ωh
i

≤ Ch p∥ūi∥p+1,Ω̄i
≤ Ch p∥ui∥p+1,Ωi

. (41)

Summing up the results yields the desired property by definition of Πh . �

Note that the properties above say nothing about punctual values of the gradient (that in so say in the sense of the

norm of W 1,∞ (Ωi )): let us first illustrate how a classical (naive) estimate for this norm indeed fails to prove local

convergence for small sections. Take as the exact solution a polynomial, but with an order q > p too high to be

spanned by the basis. Let K ∈ Eh be a triangle cut on a small section, so that
meas(K∩Ωi )

meas(K )
= κ ≪ 1. The equivalence of

all norms on Pq (K ∩ Ωi ) yields ∥u −Πhu∥1,∞,Ωi ∩K ≤ Cκ−1/2h−1∥u −Πhu∥1,Ωi ∩K . We may then use the classical

estimate from [10,12,26] ∥u −Πhu∥1, K∩Ωi
≤ Ch p∥ūi∥p+1,K . The equivalence of norms over Pq (K ) finally yields:

∥u − Πhu∥1,∞,Ωi ∩K ≤ Cκ−1/2h p+1∥ūi∥p+1,K . (42)

Using quasi-interpolation operators improves the classical estimates of [12] into ∥u − Πhu∥1,K∩Ωi
≤ Ch p

∥ui∥p+1,K∩Ωi
except for an alternation of small and large sections, such as that represented in Fig. 10. The analysis

has not been reported here since quasi-interpolation operators are beyond the scope of this paper.

In practice, the phenomenon is familiar to X-FEM users, where incorrect values are often noticed at small sections.

However, the very fact that they occur only on small areas ensures that the (theoretically proven) H1-convergence is

not affected. So the wise user will either have engineering quantities of interest defined by integrals, or drop those

small sections when looking for maximal stress or strains.

5.2. About the quadrature rules in the subcells

We shall handle consistency errors (b) in (26), arising from using a quadrature to evaluate the integrals. The point

of this section is to prove that they do not yield suboptimal rates of convergence. In a nutshell, the paradigm of the next

two propositions is to rely on the fact that interpolation occurs on affine parent elements whose mapping, Jacobian

14



and their inverse are well-known, and the fact that the subcells have polynomial geometrical quantities (mappings and

Jacobian). The idea is then to increase the quadrature order to include the description of those geometrical quantities

as the shape of the subcells gets worse.

To explain it the other way round, for a uniform material and the case p = 2, a scheme correctly integrating P6

would be exact as it corresponds to the maximal order obtained taking into account geometrical and interpolation

effects. As the shape of the subcells gets more regular, some contributions due to geometrical effects become very

small, and may be neglected while keeping the integration error reasonably low.

Let ϕ̂ be a continuous function over K̂ , we define a quadrature error by ∆̂(ϕ̂) :=


K̂
ϕ̂ dx̂ −

L
l=1 ŵl ϕ̂(b̂l). In

the same way, the quadrature error on a subcell E ∈ Sh of a continuous function over Ê is ∆E (ϕ) :=


E
ϕ dx −

L
l=1 wl,Eϕ(bl,E ). It is estimated by:

Proposition 5.4 (Extension to X-FEM of [19, Theorem 4.4.4]). Let p = 2 and g = 2, E ∈ Sh, K ∈ Eh such

that E ⊂ K . Under Assumptions (H1), (H2, k = 7) and A ∈ W 2,∞(E) for crescent-shaped subcells, (H2,

k = 5) and A ∈ W 4,∞(E) for slender subcells, (H2, k = 3) and A ∈ W 2,∞(E) for regular subcells; we have

∀


p, p′


∈ (P2(E))2

∆E



A · ∇ p′


· ∇ p

 ≤ Ch2∥A∥2,∞,E∥p′∥2,E |p|1,E .

In case p = 1 and g = 1, Assumptions (H1), (H2, k = 0) and A ∈ W 1,∞(E) ensure a quadrature con-

sistency error (whose easier demonstration is left to the reader): ∀


p, p′


∈ (P1(E))2 ,

∆E



A · ∇ p′


· ∇ p

 ≤

Ch∥A∥1,∞,E∥p′∥1,E |p|1,E .

Proof. Step 1. Let (e1, e2) be an orthonormal basis of the plane, let ∂iv := Dv · ei , for (i, j) ∈ {1, 2}2, we have:

∆E



Ai j∂i p′∂ j p


= ∆̂


Ai j ◦ FE

 

∂i p′ ◦ FE

 

∂ j p ◦ FE



JE



.

Introducing the pullback with respect to the parent element p̂ := p◦FK yields ∂ j p (x) = D p̂


F−1
K (x)



·DF−1
K ·e j .

Let us call e j ′ :=
DF−1

K ·e j

|DF−1
K ·e j |

, then this may be reformulated into ∂ j p (x) =


DF−1

K · e j



 ∂ j ′ p̂



F−1
K (x)



. Since


DF−1

K · e j



 ≤ |DF−1

K |, we have:

∆E



Ai j∂i p′∂ j p


≤ |DF−1
K |2∆̂




Ai j ◦ FE




∂i ′ p̂′ ◦ F−1
K ◦ FE

 

∂ j ′ p̂ ◦ F−1
K ◦ FE



JE



. (43)

Step 2: Proof for crescent-shaped subcells. To alleviate notations, we denote ŵ :=


∂i ′ p̂′


◦ F−1
K ◦ FE



∂ j ′ p̂


◦

F−1
K ◦ FE JE , â := a ◦ FE := Ai j ◦ FE and notice that ŵ ∈ P6(K̂ ). Hence with (H2, k = 7) the continuous linear

form ϕ̂ → ∆̂


ϕ̂ŵ


assessing the quadrature error vanishes over the space P1(K̂ ), so the Bramble–Hilbert lemma [19,

Theorem 4.1.3] asserts that:

∃C, ∆̂


âŵ


≤ C |â|
2,∞,K̂

|ŵ|
0,K̂

. (44)

The second term is evaluated by |ŵ|2
0,K̂

≤ |JE |
0,∞,K̂

JK |∂i ′ p̂′∂ j ′ p̂|2
0,Ê

. By virtue of the Cauchy–Schwarz inequality

and | p̂|
1,Ê

≤ J
−1/2
K |DFK | |p|1,E , we assess:

|ŵ|
0,K̂

≤ |JE |
1/2

0,∞,K̂
J

−1/2
K |DFK |2|p|1,E |p′|1,E . (45)

Moreover D2â = D2 (a ◦ FE ) = DFT
E · D2a · DFE + Da · D2 FE , which given that |DF E | ≤ Ch and

|D2 FE | ≤ Ch2 yields:

|â|
2,∞,K̂

≤ Ch2∥a∥2,∞,E . (46)

Assumption (H1) implies that |DF K |2 J
−1/2
K |DF−1

K |2 ≤ Ch−1, which combined with |JE |
1/2

0,∞,K̂
≤ Ch and Eqs.

(44)–(46) yields:


∆E



a∂i p′∂ j p

 ≤ Ch2∥a∥2,∞,E |p|1,E |p′|1,E . (47)
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Step 3: Proof for slender subcells. Starting from Eq. (43) we set v̂ :=


∂i ′ p̂′


◦ F−1
K ◦ FE ∈ P2(K̂ ), û :=



∂ j ′ p̂


◦ F−1
K ◦ FE ∈ P2(K̂ ) and b̂ := (a ◦ FE ) JE . Given (H2, k = 5), the continuous linear form ϕ̂ → ∆̂



ϕ̂û


vanishes

over P3(K̂ ). Using the Bramble–Hilbert lemma and the Leibniz rule for derivating a product yields:



∆̂



b̂v̂û


 ≤ C


2

j=0

|b̂|
4− j,∞,K̂

|v̂|
j,K̂



|û|
0,K̂

. (48)

For j ∈ {0, 1}, we have:

|v̂|
j,K̂

≤ J
1/2
K |DFE |

j

0,∞,K̂
|J−1

E |
1/2

0,∞,K̂
|DF−1

K | j | p̂′|
1+ j,Ê

≤ |DFE |
j

0,∞,K̂
|J−1

E |
1/2

0,∞,K̂
|DF−1

K | j |DFK |1+ j∥p′∥1+ j,E . (49)

Since FK is affine and p̂′ ∈ P2(Ê):

|v̂|
2,K̂

≤ |J−1
E |

1/2

0,∞,K̂
|D2 FE |

0,∞,K̂
|DFK |2 |DF−1

K | ∥p′∥2,E . (50)

Moreover: |b̂|
4− j,∞,K̂

≤ 6
min{4− j,2}

l=0 |â|
4− j−l,∞,K̂

|JE |
l,∞,K̂

. Given that FE ∈ P2(K̂ ) and |Dl FE | ≤ Chl for

l ∈ {0, 1, 2}, one could easily prove |â|
4− j−l,∞,K̂

≤ Ch4− j−l∥a∥4,∞,E . Since JE ∈ P2(K̂ ), we get |JE |
l,∞,K̂

≤

C |JE |
0,∞,K̂

by virtue of the equivalence of all norms over P2(K̂ ), which leads to:

|b̂|
4− j,∞,K̂

≤ C |JE |
0,∞,K̂

h2− j∥a∥4,∞,E . (51)

Combining (48)–(51), using the estimates of Remark 5.1 and the definition (29) of a slender subcell, it follows

that:


∆̂



b̂v̂û


 ≤ Ch4∥p′∥2,E |p|1,E∥a∥4,∞,E . (52)

Given (43) and (52), we may conclude:

∆E



a∂i p′∂ j p


≤ Ch2∥p′∥2,E |p|1,E∥a∥4,∞,E . (53)

Step 4: Proof for regular subcells. The proof follows the same line than in Step 3 but for linear forms vanishing

over P1(K̂ ) instead of P3(K̂ ). Eq. (48) becomes:



∆̂



b̂v̂û


 ≤ C


2

j=0

|b̂|
2− j,∞,K̂

|v̂|
j,K̂



|û|
0,K̂

. (54)

Again, the derivatives of b̂ may be estimated by a Leibniz formula, but this time a classical estimate |JE |
l,∞,K̂

≤

Chl+2 is used to estimate the derivative of the Jacobian. Along with Remark 5.1, it holds:

|b̂|
2− j,∞,K̂

≤ Ch4− j∥a∥2,∞,E . (55)

This time the inverse properties of Definition 5.2 may be used to evaluate (49) and (50) in |v̂|
j,∞,K̂

≤ Ch j∥p′∥2,E ,

which leads to (52) and (53). �

Remark 5.3. Note that the property |JE |
l,∞,K̂

≤ Chl |JE |
0,∞,K̂

would have improved estimate (51) by two orders

and decreased by as much the required quadrature scheme, but we failed to prove it for all slender subcells.

Having evaluated the quadrature error in the integral defining the stiffness matrix, we shall now estimate the one

defining the volume forces:

Proposition 5.5 (Generalization to X-FEM of [19, Theorem 4.4.5]). Let p = 2 and g = 2, E ∈ Sh, K ∈ Th such

that E ⊂ K and assume that f ∈ W 1,∞(E). Under Assumptions (H1), (H2, k = 6) for crescent-shaped or slender

subcells and (H2, k = 4) for regular subcells; we have ∀p ∈ P2(E) : |∆E ( f p)| ≤ Ch2∥p∥0,E∥ f ∥1,∞,E .
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In case p = 1 and g = 1, under the Assumptions (H1), (H2, k = 0) and f ∈ L∞(E), we have ∀p ∈

P1(E) |∆E ( f p)| ≤ Ch∥p∥0,E∥ f ∥0,∞,E . The proof is left to the reader.

Proof. Step 1: proof for crescent-shaped or slender subcells.

The proof is analogous to that of Proposition 5.4, Step 2. We have ∆E ( f p) = ∆̂



f̂ v̂


with f̂ := f ◦ FE and

v̂ := (p ◦ FE ) JE . Since v̂ ∈ P6(K̂ ), by (H2, k = 6) the continuous linear form ϕ̂ → ∆̂


ϕ̂v̂


vanishes over P0(K̂ ),

so after the Bramble–Hilbert lemma:


∆̂



f̂ v̂


 ≤ C | f̂ |

1,∞,K̂
|v̂|

0,K̂

≤ C |DFE |
0,∞,K̂

|JE |
1/2

0,∞,K̂
|p|0,E∥ f ∥1,∞,E

≤ Ch2|p|0,E∥ f ∥1,∞,E . (56)

Step 2: proof for regular subcells. We have ∆E ( f p) = ∆̂( f̂ v̂) but with f̂ := ( f ◦ FE ) JE and v̂ := p ◦ FE . Since

v̂ ∈ P4(K̂ ) and (H2, k = 4), the continuous linear form ϕ̂ → ∆̂


ϕ̂v̂


vanishes over P0(K̂ ). The Bramble–Hilbert

lemma gives



∆̂( f̂ v̂)



 ≤ Ĉ | f̂ |

1,∞,K̂
|v̂|

0,K̂
.

Then | f̂ |
1,∞,K̂

≤ |DFE | | f |1,∞,E |JE |
0,∞,K̂

+ | f |0,∞,E |JE |
1,∞,K̂

and |v̂|
0,K̂

≤ |J−1
E |

1/2

0,∞,K̂
|p|0,E , and we get the

result after the properties of Definition 5.2. �

5.3. Geometry influence on the error

We now focus on consistency error (c) in (26), which is the most interesting, and arises by approximating the

geometry. Excluding lengthways intersected elements from the proof, we show that (c) is expressed as ϵh−1/2, ϵ

being the geometrical error measure of Section 4. However, the numerical experiments in Section 6 and the extended

proof in the Appendix C suggest that the estimates holds even for those elements in practice. A recap of all results

then yields the final estimates:

Theorem 5.1 (Inspired from [20, Section 4.4]). Assume (H1) and a quadrature scheme adapted to the regularity

properties of the subcells (see Propositions 5.2, 5.4 and 5.5 for full details). The interface is supposed to be ϵ-resolved

by the subdivision, with no lengthways intersected triangles. Suppose A ∈ W 2,∞ (Ω1 ∪ Ω2) , f ∈ W 1,∞ (Ω1 ∪ Ω2)

and u ∈ H p+1 (Ω1 ∪ Ω2), then the following error estimate holds:

∥ū − uh∥1,Ωh
1 ∪Ω

h
2

≤ Ch p


∥u∥p+1,Ω



1 + ∥A∥p,∞,Ω



+ ∥ f ∥p−1,∞,Ω



+ C
ϵ

h1/2



∥ f ∥0,∞,Ω + ∥u∥1,∞,Ω∥A∥0,∞,Ω



. (57)

Proof. Step 1: Recap the results. Due to Proposition 5.2, the approximate bilinear forms ah are uniformly Vh-elliptic,

so the abstract error estimate (26) of Proposition 5.1 may be used. By letting vh = Πhu in this estimate, we may

estimate the interpolation error ((26)(a)) by Proposition 5.3. Besides, all requirements are met to use the consistency

estimate of Proposition 5.4, which summing up the results over all subcells and using the stability properties of Πh

gives (in case p = 2):

ah(Πhu, wh) − ǎh(Πhu, wh)




∥wh∥1,Ωh
1 ∪Ω

h
2

≤ Ch2∥u∥2,Ω1∪Ω2
∥A∥2,∞,Ω1∪Ω2

. (58)

By the same token, the second term in ((26)(b)) is estimated by Proposition 5.5.

Step 2: The error due to the change of domain. Let us estimate terms ((26)(c)), which are due to the use of a non-

conforming finite element method because of the change in domain. Appealing to the Section 4.4 of [20], the last two

terms may be written as integrals over the skin (the part of Ωi which does not belong to Ω
h
i and conversely):

ǎh (ū, wh) − a (u, w̄h) =
2

i=1




Ω
h
i \Ωi

A∇ūi∇whdx −



Ωi \Ω
h
i

A∇ui∇w̄hdx



. (59)
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(a) Side of the triangular subcell. (b) Other side.

Fig. 11. Intersected triangle and measures of interest.

The Cauchy–Schwarz inequality on the above equation yields (as a reminder, Sϵ is the 2ϵ-wide strip centered on

Γ , see Fig. 11):


ǎh (ū, wh) − a (u, w̄h)


 ≤ meas(Sϵ)

1/2∥A∥0,∞,Ω



∥u∥1,∞,Ω1∪Ω2
|w̄h |1,Sϵ∩(Ω1∪Ω2)

+ ∥ū∥1,∞,Ωh
1 ∪Ω

h
2
|wh |1,Sϵ∩



Ω
h
1 ∪Ω

h
2





. (60)

It is obvious that meas(Sϵ) = O(ϵ), and we may use Berger’s lemma (see [20, Lemma 2.2]), which states that the

integral of a polynomial function over a subdomain of its original definition domain is controlled by the ratio of the

areas multiplied by the integral over the whole domain:

∥w̄h∥2
1,Sϵ∩Ωi ∩K ≤ C

meas(Sϵ ∩ Ωi ∩ K )

meas(Ωi ∩ K )
∥w̄h∥2

1,Ωi ∩K . (61)

In order to estimate the ratio, equivalent measures to the quantities of interest are represented in Fig. 11:

• with Assumption (H1) that the mesh is regular, the angles of the parent triangle K are bounded away from zero,

• the interface Γ is globally ϵ-resolved by the subdivision, but as we have seen in Remark 4.1, we have a better

precision when considering the intersection with K only: it is locally ϵλ̂M -resolved by the subdivision,

• the length of this intersection Γ ∩ K is equivalent to λ̂M h.

We may now evaluate the area of the dark gray strip in Fig. 11, as we have estimated its width and length

respectively from the last two points. It reads meas(Sϵ ∩ Ωi ∩ K ) ≤ C(ϵλ̂M )λ̂M h. If i is the side of the triangular

subcell (see Fig. 11(a)), then it comes meas(Ωi ∩ K ) ≥ c(λ̂M h)λ̂mh. Otherwise (see Fig. 11(b)), we may assert

meas(Ωi ∩ K ) ≥ c(1 − λ̂m)h2 ≥ c(1 − λ̂m)λ̂M h2. Hence, it comes:

meas(Sϵ ∩ Ω
i ∩ K )

meas(Ω i ∩ K )
≤ C

ϵ

h

λ̂M

min{λ̂m, 1 − λ̂m}
. (62)

At this stage, we come across Definition 4.2 of lengthways intersected triangles. Indeed, for triangles which are not

lengthways intersected, Definition 4.2 states that λ̂M

min{λ̂m ,1−λ̂m }
is bounded, so that by combining (61) with (62):

∥w̄h∥2
1,Sϵ∩Ωi ∩K ≤ C

ϵ

h
∥w̄h∥2

1,Ωi ∩K . (63)

As a remark, we may still derive this property on the side of the intersection with the larger area (Fig. 11(b))

for lengthways intersected triangles. On the contrary, on the smaller side (Fig. 11(a)), no such property can be

established. Then, decomposing ∥w̄h∥2
1,Ωi ∩K

≤ ∥w̄h∥2
1,(Ωi \Sϵ)∩K

+ ∥w̄h∥2
1,Ωi ∩Sϵ∩K

, and making use of (63), we

have ∥w̄h∥2
1,Ωi ∩K

≤ ∥wh∥2

1,Ωh
i ∩K

+C ϵ
h
∥w̄h∥2

1,Ωi ∩K
. Given Theorem 4.1, ϵ is at least a O(h2), so for h small enough,

it comes:

∥w̄h∥1,Ωi ∩K ≤ C∥wh∥1,Ωh
i ∩K . (64)

18



Table 1

Expected rates of convergence as a function of the displacement, geometry and quadrature according to (58).

Displacement Representation

order g of the

geometry

Assumed accuracy of

the quadrature

scheme

Convergence order of

the interface

resolution ϵ

Consistency

geometry: order

of ϵh−1/2

Displacement

interpolation

error rate p

Energy

error rate

P1 1 1 2 1.5 1 1

P2 1 2 2 1.5 2 1.5

P2 2 2 3 2.5 2 2

Combining (64) and (63), summing up over all intersected elements, and replacing the result in (60), we obtain:

ǎh (ū, wh) − a (u, w̄h)




∥wh∥1,Ωh
1 ∪Ω

h
2

≤ C
ϵ

h1/2
∥A∥0,∞,Ω∥u∥1,∞,Ω1∪Ω2

. (65)

Following the very same procedure, one shows that:


l(w̄h) − ľh(wh)





∥wh∥1,Ωh
1 ∪Ω

h
2

≤ C
ϵ

h1/2
∥ f ∥0,∞,Ω (66)

which ends the proof. �

6. Numerical experiments

The ability of the X-FEM analysis to catch the analytical solution is assessed through the relative energy error,

namely:

energy error =



Ω
h
1

ϵ (ū1 − uh) : A : ϵ (ū1 − uh)



Ω1
ϵ (u1) : A : ϵ (u1)

. (67)

This is equivalent to the H1


Ω
h
1 ∪ Ω

h
2



-norm considered in Section 5: as in [19,20], uh is compared with an

extension ū rather than with u. Comparing thus solutions domainwise, we study in practice the impact of an

approximated geometry on the solution over a domain of interest: the matter, as opposed to the holes. This corresponds

to the actual engineering concern. The expected convergence rates are given in Table 1.

6.1. Plate with a hole under tension

In this test, tested with an X-FEM formulation in [27], an infinite plate with a central hole is subjected to a uniform

traction σ along the x-axis. In plane stress, the analytical solution of the problem, as available in [27], is:

σxx (r, θ) = σ



1 −
a2

r2


3

2
cos (2θ) + cos (4θ)



+
3

2

a4

r4
cos (4θ)



(68)

σyy (r, θ) = σ



−
a2

r2


1

2
cos (2θ) − cos (4θ)



−
3

2

a4

r4
cos (4θ)



(69)

σxy (r, θ) = σ



−
a2

r2


1

2
sin (2θ) + sin (4θ)



+
3

2

a4

r4
sin (4θ)



. (70)

In practice, a square plate is considered of length 2 m with a hole radius a = 0.4 m. A contour traction is prescribed

on its edges, immediately deduced from the analytical stress (see [27,18]). To prevent any rigid-body motion, the

displacement is prevented along the x-axis at the middle of the upper and lower edges, and along the y-axis at the

middle of the lateral edges (see Fig. 12). The material is isotropic and elastic, with parameters E = 105 Pa and

ν = 0.3.

19



Fig. 12. Numerical test: model and loading.

Fig. 13. Numerical results for a problem with a strong discontinuity.

The orders of convergence for P2 or P1 interpolation and subdivision were close to the theoretical values (see

Fig. 13). However, and in accordance with the results in [16,17], the case of a P2 displacement with a P1 subdivision

yielded a superconvergent rate 1.87, closer to 2 than to the theoretical value 1.5, though values themselves are

significantly higher. This superconvergence probably occurs due to symmetry effects related to the circular surface.

To highlight this fact, the geometry description is perturbed by a randomly distributed quantity O


h2


, corresponding

to the geometry error determined in Section 4 for a linear subdivision. We then observed a recovered theoretical rate

1.5 (see Fig. 13).

Moreover, several quadrature rules were tested over the subcells, from 3-point to 12-point Gauss schemes. Very

little influence could be observed, as can be seen in Fig. 13. Given that 3-point Gauss rule exactly integrates elements

of P2(K̂ ), it seems like an exact integration of elements in P2(K̂ ) suffices to yield optimal orders of convergence,

which is precisely the case in FEM (see [19]).
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Fig. 14. Plate with an elliptic hole: geometry and loading.

Fig. 15. Plate with an elliptic hole: results.

6.2. Plate with an elliptic hole

This time, an elliptic hole is inserted into the plate (see Fig. 14), which is subjected to surfaces forces g = σ · n

where σ obeys (68)–(70) and n is the normal vector to the ellipse. In this way, the analytical solution (68)–(70) still

applies.

The observed convergence rate are close to their predicted values (see Fig. 15), thus ensuring the optimality of

the estimates. In particular, the distinction between linear and quadratic subdivision is more obvious, with respective

convergence rates 1.54 and 1.94 close to their theoretical values.

6.3. A practical study of problematic cases

Let us now discuss practical aspects, to see if the demonstration shortcomings really induce problems or are

just theoretical subtleties. Let us first investigate whether a poor integration scheme actually induces outstanding

quadrature errors in badly shaped subcells, that is to say slender or crescent-shaped subcells, according to
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Fig. 16. Quadrature error: crescent-shaped subcells.
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Fig. 17. Quadrature error: slender subcells.

Definition 5.2. We have plotted in Figs. 16 and 17 the local relative integration errors for all curved subcells,

respectively with respect to the aspect ratio hE/ρE of the subcell and ratio of the Jacobians |J−1
E |0,∞,E |JE |

0,∞,K̂
: the

first is high for a slender subcell (Fig. 16) and the other is high for a crescent-shaped subcell. Two conclusions emerge

from Figs. 16 and 17.

1. The quadrature error in slender subcells appears to be no larger than that of regular subcells, when tested with

the rather poor quadrature scheme recommended for the latter. Hence, the quadrature in slender subcells seems to

require no particular treatment. The reader is referred to Remark 5.3 for an explanation of the phenomenon.

2. The quadrature error for crescent-shaped subcells appears rather higher than the other values, though there are not

enough points to assert it with certainty. For our strategy, there are indeed very few of them, too few to have a

significant impact on the error. However, for a subdivision strategy that would involve a lot of crescent-shaped

subcells, suboptimal rates may be obtained if the quadrature scheme is not increased, as has been observed in [18].

Secondly, we recall that we have proven convergence properties with respect to the geometry error in Theorem 5.1

excluding the case of lengthways intersected triangles (see Definition 4.2). Denoting N the number of intersected

triangles K , let 1EK =


Ω
h
1 ∩K

ϵ (ū1 − uh) : A : ϵ (ū1 − uh) dΩ , EK =


Ω
h
1 ∩K

ϵ (ū1) : A : ϵ (ū1) dΩ and

Ē =
N

K=1 EK /N . We have plotted in Fig. 18 the local relative energy errors 1EK /Ē for the above problem of

a plate with a hole, as a function of the characteristic ratio of the intersection (21), which is high for lengthways

intersected triangles. The normalization has been done with the average local energy on tested elements, so as to

prevent the spurious effect of higher local interpolation errors on small sections mentioned in Section 5.
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Fig. 18. The effect of lengthways intersected elements: test 1.
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Fig. 19. The effect of lengthways intersected elements: test 2.

In Fig. 19, we have considered another test of a full plate (no hole) under uniaxial tension, whose boundary has

been perturbed according to the O


h2


error measure determined in Section 4 for linear subdivision. As the exact

displacement is spanned by the basis, there is no interpolation in this case, so we have directly plotted the local

relative error given by 1EK /EK . Both in Figs. 18 and 19, we see that errors do not increase for lengthways intersected

triangles, so this suggests that the exclusion of lengthways intersected triangles from the theoretical estimate is not a

practical issue. We propose in Appendix C a proof of convergence for lengthways intersected triangles in a simplified

case: this analysis shows that the only problematic case will be detected beforehand by the subdivision process, so

that there will be no negative impact over the convergence.

7. Conclusion

The practical conclusion of these special cases of study is that a subdivision with subcells with the same order than

the finite-element mesh, used along with the classical related quadrature scheme, is successful to yield optimal orders

of convergence. As for the theory, theoretical a-priori error estimates were derived in this paper for the X-FEM method

which take into account quadrature effects and the description of the geometry, and can anticipate the convergence

rate of a formulation, and predict whether it will be optimal or not. Our estimates hold for linear or quadratic elements,

but we believe that the methodology can easily be extended to higher orders.
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Appendix A. Constructing level-sets from implicit or parametric representation

We need to define regularity properties for the curve Γ to be represented. Here, it is assumed to have a geometric

continuity Gk with k ≥ 2: in general this means that Γ is part of the boundary of an open set Ω of class Ck , which is

translated by Eqs. (72)–(74) for an implicit representation, and means that Γ admits a parametrization of class Ck .

Then, we derive level-sets in the upcoming lemma. Note that we always need the assumption of a regular closed

curve to do so. Hence if Γ is open, it has to be regularly extended beyond its extremities to get a regular level-set. This

phenomenon has already been highlighted by Fries [15].

Lemma A.1. Let Ω be a bounded open set of class Ck with k ≥ 2, whose boundary is denoted ∂Ω . Then there exists

δ > 0 such that the following mapping be a Ck−1-diffeomorphism:

Ξ :
∂Ω×] − δ, δ[→ Sδ ⊂ R

2

(x, t) → x + tn(x).
(71)

Its inverse will be denoted Ξ
−1 : y → (π(y), φ(y)). π(y) is then called the orthogonal projection onto ∂Ω . In

the case where Ω is convex, it coincides for points outside D with the classical definition of the orthogonal projection

onto a convex set. φ(y) is our object of interest, it is called the signed distance function to ∂Ω and used as a definition

of the exact level-set.

Proof. By definition of the regularity of a bounded open set, there exists a function ϕ ∈ Ck(R2) such that:

Ω = {x ∈ R
2, ϕ(x) < 0} (72)

∂Ω = {x ∈ R
2, ϕ(x) = 0} (73)

∃c > 0, ∀x ∈ ∂Ω , |∇ϕ|(x) ≥ c. (74)

So ∂Ω is an implicitly defined curve, whose points are all regular. So we may define unit normal and tangent

vectors to this curve:

n (ϕ) :=
∇ϕ

|∇ϕ|
(75)

and:

t(ϕ) := Rot −π
2

(n(ϕ)) . (76)

With the help of the implicit functions theorem, there is a regular parametrization of ∂Ω in the vicinity of each of

its points. Let x ∈ ∂Ω , there exists an open portion of the curve containing x which admits a regular parametrization,

that we can Ck-equivalently reparametrize with a normal parametrization s → fx(s). Then, the definition of the

directional derivative on the differential manifold ∂Ω yields for the derivative relative to the first variable:

∂Ξ

∂x
= t(s) + t

dn(s)

ds
= (1 − tγ (s)) t(s) (77)

where we have made use of the Fréchet formula and called the curvature γ .

The derivative relative to the second variable is simply:

∂Ξ

∂t
= n(s). (78)

Hence the first derivative DΞ is:

DΞ = (1 − tγ (ϕ)) t(ϕ) ⊗ t(ϕ) + n(ϕ) ⊗ n(ϕ) (79)

where the curvature is bounded. Indeed, since ϕ is of class C2 on a compact set on the first hand, its gradient is

bounded away from zero in the other, and γ (ϕ) = t(ϕ)T ·D2ϕ·t(ϕ)
|∇ϕ| (see [21]), we may deduce that there exists R0 > 0

such that |γ (ϕ)| < 1
R0

. Let ξ ∈ R
2, denoting | · | any norm on R

2, we have |DΞ (ξ)| ≥ |ξ |


1 − |t |
R0



. Let us set

δ < R0, then infξ
|DΞ (ξ)|

|ξ | ≥ 1 − δ
R0

> 0. Hence DΞ is invertible, and |DΞ
−1| ≤ 1

1−δ/R0
.
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We have shown that Ξ has a nonzero Jacobian everywhere. Let us prove that it is injective. By contradiction,

let x, x′ be distinct points on ∂Ω such that there exists (t, t ′) ∈] − δ, δ[2 verifying x + tn(x) = x′ + t ′n(x′). As a

consequence |x − x′| ≤ δ|n(x) − n(x′)| and since the curvature is bounded |n(x) − n(x′)| ≤ R−1
0 |(x) − (x′)|, so

|x − x′| ≤ δ/R0|x − x′| which is impossible since δ/R0 < 1. After the global inversion theorem, we conclude that Ξ

is a Ck−1 diffeomorphism. �

Lemma A.2. Let Γ be a closed regular simply-connected parametric curve, represented by a parametrization

f : I ⊂ R → R
2

s → f (s)
of class Ck with k ≥ 2. Then there exists δ > 0 such that the following mapping be a Ck−1-

diffeomorphism:

Ξ :
I×]−δ, δ[ → Sδ ⊂ R

2

(s, t) → f (s) + tn(s).
(80)

This lemma is similar to Lemma A.1, but for parametrically-represented curves of geometrical continuity Gk .

Proof. The assumptions on f imply that it is Ck-equivalent to the normal parametrization. Without loss of generality,

the parametrization may therefore be considered normal. The curvature is bounded since it is expressed as γ (s) =

−t(s)T · Dn(s) · t(s) and f is of class C2. The Jacobian of Ξ is then found to be bounded away from zero proceeding

as in Lemma A.1 and the injectivity of Ξ is proven in the same way, knowing that f (s′) = f (s) yields s′ = s since the

curve is simple. �

Remark A.1. Suppose that assumptions of either Lemma A.1 or Lemma A.2 hold. Then the signed distance function

is of class Ck−1, by definition of a Ck−1-diffeomorphism.

Appendix B. Transfinite maps and their errors

Lemma B.1. Let Γ be a curved interface admitting the normal parametrization in the local basis of Fig. 20


I → R

s → f (s) = (x(s), y(s))
. Let [s1, s2] ⊂ I such that f ∈ Cg+1([s1, s2]). Let Ẽ be a transfinite subcell whose boundary

matches Γ exactly on [s1, s2]. Then denoting F̃
Ẽ

the transfinite map, FE the corresponding isoparametric map

(see Fig. 20) and RE := F̃
Ẽ

− FE , we have ∥RE∥
g+1,∞,K̂

≤ Chg+1|f |g+1,∞,[s1,s2] where C is independent of h

and f .

Actually, with the notations of Fig. 5, the characteristic size of the subcell is λ̂M h, so we have ∥RE∥
g+1,∞,K̂

≤

Chg+1λ̂
g+1
M |f |g+1,∞,[s1,s2].

Proof. We refer the reader to the Appendix A of [23] for a comprehensive proof in the case g = 1. We shall detail the

proof in the case where g = 2.

Step 1: Introduce an explicit definition of Γ on [s1, s2] and show that h = O


|xE
3 − xE

1 |


. Using the appropriate

local system of coordinates (see Fig. 20), we observe that y(s1) = y(s2) = 0. Hence with Rolle’s theorem

∃sx ∈ [s1,s2], y′(sx ) = 0. Let us set h := |s2 − s1| and h0 < |f |−1
2,∞,I , for h < h0, the Taylor inequality on

interval [sx , s] yields x ′(s)2 = 1 − y′(s)2 ≥ 1 − (h/h0)
2 > 0. So x is C3 and strictly monotonic on [s1, s2], hence it

is invertible and the inverse s :


[0, |xE
1 − xE

3 |] → [s1,s2]

x → s(x)
is C3.

Moreover h ≤
 s2

s1
x ′(s)ds +

 s2

s1
|y′(s)|ds ≤ |xE

3 − xE
1 | + (h/h0) h, hence |xE

3 − xE
1 | ≥ (1 − h/h0)h. So when

the mesh is sufficiently small, h and |xE
3 − xE

1 | are equivalent quantities. From here onward we will then rather work

with h := |xE
3 − xE

1 |. We may define the part of Γ that the subcell approximates explicitly Γ : y = ν(x) where

ν :


[0, h] → R

x → y (s(x))
. The regularity assumptions about f and the regularity of s yield ν ∈ C3([0, h]).

Step 2: Introduce the polynomial and transfinite maps and prove |RE |
0,∞,K̂

≤ Ch3|f |3,∞,[s1,s2]. Calling (λ̂i )i∈{1..3}

the reference barycentric coordinates (x̂(λ̂1, λ̂2) and λ̂3 = 1 − λ̂1 − λ̂2), and N13 the quadratic shape function of the

25



Fig. 20. Classical and transfinite subcells, and local system of coordinates.

node located at x̂13, the expressions of the polynomial and transfinite maps are (see the Appendix of [23]):

FE (x̂) =
3

i=1

λ̂i x
E
i +



xE
13 − x̄E

13



N13 =
3

i=1

λ̂i x
E
i + 4y



xE
13



λ̂1λ̂3y (81)

F̃
Ẽ
(x̂) =

3

i=1

λ̂i x
E
i +

1 − λ̂1 − λ̂2

1 − λ̂1

ν(λ̂1h)y. (82)

Then RE := FE − F̃
Ẽ

has the expression RE



x̂


= λ̂3

λ̂3+λ̂2
ν(λ̂1h) − 4ν( h

2
)λ̂1λ̂3. Let us pose ν̂(λ̂1) := ν(λ̂1h), the

error would then take the appropriate form:

RE



x̂


=
λ̂3

λ̂2 + λ̂3

RE



λ̂1



(83)

where RE (λ̂1) := ν̂(λ̂1) − 4ν̂( 1
2
)λ̂1(1 − λ̂1) is the residual along the lower edge [x̂3, x̂1] of the reference triangle in

Fig. 20. Hence |RE



x̂


| ≤ |RE (λ̂1)| with equality if x̂ belongs to that edge. We may then consider this case without

loss of generality. Expanding ν̂ to the Taylor series at 0, 1 and 1/2 gives:

ν̂(λ̂1) = λ̂1ν̂
′(0) + λ̂2

1

ν̂′′(0)

2
+ R2(0; λ̂1)

= (λ̂1 − 1)ν̂′(1) + (λ̂1 − 1)2 ν̂′′(1)

2
+ R2(1; λ̂1)

= ν̂


1

2



+



λ̂1 −
1

2



ν̂′


1

2



+



λ̂1 −
1

2

2 ν̂′′


1
2



2
+ R2


1

2
; λ̂1



(84)

where the Laplace residual has been noted Rk (a; b) :=
 b

a
ν̂(3)(t)

k! (b − t)k dt for k ∈ {0, 1, 2}.
We may then multiply each of the above Taylor series with its corresponding shape function along the segment:

the series at 0, 1 and 1/2 are respectively multiplied by N3(λ̂1) = (1 − 2λ̂1)(1 − λ̂1), N1(λ̂1) = λ̂1(2λ̂1 − 1) and

N13(λ̂1) = 4λ̂1(1 − λ̂1). Owing to the fact that N1(λ̂1) + N13(λ̂1) + N3(λ̂1) = 1, the addition yields:

RE (λ̂1)

λ̂1



1 − λ̂1

 

1 − 2λ̂1

 =


ν̂′(0) + ν̂′(1) − 2ν̂′(1/2)


+
1

2



λ̂1ν̂
′′(0) + (λ̂1 − 1)ν̂′′(1) + (1 − 2λ̂1)ν̂

′′(1/2)


+
R2(0; λ̂1)

λ̂1

−
R2(1; λ̂1)

1 − λ̂1

+ 4
R2(1/2; λ̂1)

1 − 2λ̂1

. (85)
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Further expansion into the Taylor series of ν̂′(0), ν̂′(1), ν̂′′(0) and ν̂′′(1) around 1/2 allows to cancel out first and

second order terms in the above expression:

ν̂′(0) + ν̂′(1) − 2ν̂′(1/2) = R1(1/2; 0) + R1(1/2; 1) (86)

λ̂1ν̂
′′(0) + (λ̂1 − 1)ν̂′′(1) + (1 − 2λ̂1)ν̂

′′


1

2



= λ̂1 R0


1

2
; 0



+ (λ̂1 − 1)R0


1

2
; 1



. (87)

Hence:

RE (λ̂1)

λ̂1



1 − λ̂1

 

1 − 2λ̂1

 = R1(1/2; 0) + R1(1/2; 1) +
1

2



λ̂1 R0(1/2; 0) + (λ̂1 − 1)R0(1/2; 1)


+
R2(0; λ̂1)

λ̂1

−
R2(1; λ̂1)

1 − λ̂1

+ 4
R2(1/2; λ̂1)

1 − 2λ̂1

. (88)

From this expression it is obvious that:

|RE |0,∞,K ≤ C |ν̂|3,∞,[0,1] ≤ Ch3|ν|3,∞,[0,h] ≤ Ch3|f |3,∞,[s1,s2]. (89)

Step 3: Prove the same properties for the derivatives with respect to x̂(λ̂1, λ̂2).

Combining (88) with (83), we have:

RE (x̂)

λ̂1λ̂3



1 − 2λ̂1

 = R1(1/2; 0) + R1(1/2; 1) +
1

2



λ̂1 R0(1/2; 0) + (λ̂1 − 1)R0(1/2; 1)


+
R2(0; λ̂1)

λ̂1

−
R2(1; λ̂1)

1 − λ̂1

+ 4
R2(1/2; λ̂1)

1 − 2λ̂1

. (90)

Let a ∈ [0, 1]. We have
∂ R0(a;λ̂1)

∂λ̂1
= ν̂(3)(λ̂1). Let l ∈ {1, 2}, it comes ∂ Rl (a;λ̂1)

∂λ̂1
= Rl−1(a; λ̂1). Hence, for

m ∈ {0..3}, a straightforward recursion yields






∂m R2(a;λ̂1)

∂λ̂m
1





≤ |ν̂|3,∞,[0,1]|λ̂1 − a|3−m . The only term of (90) that could

be problematic to prove the result is
λ̂3 R2(1;λ̂1)

1−λ̂1
. Its k-order derivative with respect to x̂, k ∈ {0..3}, involves terms of the

form Rk;m,l := 1

(1−λ̂1)
l+1



∂m (λ̂3)

∂λ̂m
i

∂k−m−l R2(1;λ̂1)

∂λ̂k−m−l
1



where m ∈ {0, 1}, i ∈ {1, 2} and l is an integer verifying m + l ≤ k.

In case m = 0, we have:

|Rk;m,l | ≤
λ̂3

1 − λ̂1



Dk−l R2(1, λ̂1)





(1 − λ̂1)l
≤ |ν̂|3,∞,[0,1]|1 − λ̂1|

3−k . (91)

Else, if m = 1 then |Rk;m,l | ≤



Dk−(l+1) R2(1,λ̂1)







1−λ̂1





l+1 ≤ |ν̂|3,∞,[0,1]|1 − λ̂1|
3−k , so we get to bound all derivatives of RE

with |ν̂|3,∞,[0,1], which given (89) yields the results that we intended to prove ∥RE∥3,∞,K ≤ Ch3|f |3,∞,[s1,s2]. �

Appendix C. Elements of proof for lengthways intersected elements

In this appendix, we derive an estimate of the error due to the change in domain in the case of lengthways intersected

triangle, under the simplifying assumptions that (to alleviate expressions):

• the interpolation is linear,

• the subdivision is linear,

• there is no “source term”: f = 0,

• the conductivity is isotropic and uniform: A = 1.
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Fig. 21. Lengthways intersected triangle.

To this aim, we would like to refine estimate (c) in (26) by getting rid of the superior bound in the consistency

estimates supwh∈Vh

|ǎh(ū,wh)−a(u,w̄h)|
∥wh∥

1,Ωh
1

∪Ω
h
2

. Considering again the proof of Proposition 5.1, and the proof of Theorem 4.1.1

in [19], it can be seen that it actually suffices to consider wh = uh − Πhu. Abiding by the same principle, Strang

and Fix [20] also proposed an analysis of the error due to the change of domain by introducing ǔh that would be the

solution over the discrete space if the operators were computed on the exact domain:

∀vh ∈ Vh, a


ǔh, vh



= 0. (92)

The authors [20, Section 4.4] would then study E := ∥uh − ǔh∥1,Ωh
1 ∪Ω

h
2

as the consistency error and come across

the estimates:

E2 ≤ C

ah



u − ǔh, uh − ǔh


+



ǎh



ū, uh − ǔh



− a


u, uh − ǔh





≤ Ch p E + ϵ1/2|uh − ǔh |1,Sϵ . (93)

We shall adopt the same paradigm and look for an estimation of the second term. As we have seen in (62), in a

lengthways intersected element K (see Fig. 21), the Berger lemma would only give:

|uh − ǔh |2
1,Sϵ∩K∩Ω

h
i

≤ C
λ̂M

λ̂m

ϵ

h
|uh − ǔh |2

1,K∩Ω
h
i

. (94)

So now we aim at finding a better approximation for |uh −ǔh |2
1,K∩Ω

h
i

that would remove the λ̂M

λ̂m
factor. The gradient

is split into a tangential and a normal part to the almost coincident edge e, according to the notations of Fig. 21:

∇


uh − ǔh



= ∇τ



uh − ǔh



+ ∇n



uh − ǔh



. (95)

Given that the gradients are constant over K since the interpolation is linear and that meas


K ∩ Ω
h
i



≤

λ̂mhmeas


e ∩ Ω
h
i



(see Fig. 21), integrating over K ∩ Ω
h
i yields:

|uh − ǔh |2
1,K∩Ω

h
i

≤ λ̂mh|∇τ



uh − ǔh



|2
0,e∩Ω

h
i

+ |∇n



uh − ǔh



|2
0,K∩Ω

h
i

. (96)

We denote K ′ the adjacent element to K such that K ′ ∩ K = e (see Fig. 21). Element K ′ obviously verifies
meas



K ′∩Ω
h
i



meas(K ′)
≥ c, so that meas



e ∩ Ω
h
i



≤ C
meas(K ′)

h
≤ C

meas


K ′∩Ω
h
i



h
. Still keeping in mind that gradients are
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constant, we have then:

|∇τ



uh − ǔh



|2
0,e∩Ω

h
i

≤
C

h
|∇τ



uh − ǔh



|2
0,K ′∩Ω

h
i

. (97)

As for the second term, the discrete translation of the free surface boundary condition makes ∇ǔh nearly orthogonal

to the normal of Γh , itself being a close direction to nK since the element is lengthways intersected. To give it a

mathematical translation, we write the weak formulation of the problem:



Ωi

∇ǔh · ∇vhdΩ = 0. (98)

We then choose as a test function the shape function of the opposite node I to the almost coincident edge. In

Fig. 21, we would take vh = NI for instance. Calling K ′′ the element belonging to the support of I along with K , it

holds:


K∩Ωi

∇ǔh · ∇NI dΓ = −



K ′′∩Ωi

∇ǔh · ∇NI dΓ . (99)

By the same token, we have:



K∩Ω
h
i

∇uh · ∇NI dΓ = −



K ′′∩Ω
h
i

∇uh · ∇NI dΓ . (100)

Since ∇NI |K is directed toward nK , it holds ∇NI |K = C
h

nK . Given that ∇uh and ∇ǔh are constant elementwise,

it may be deduced from (99) that ∇ǔh |K · nK = −
meas(Ωi ∩K ′′)
meas(Ωi ∩K )

∇ǔh |K ′′ · nK ′′ and from (100) that ∇uh |K · nK =

−
meas



Ω
h
i ∩K ′′



meas


Ω
h
i ∩K

 ∇uh |K ′′ · nK ′′ . Subtracting these expressions yields:


∇


uh − ǔh



· nK



K

≤ C
meas



Ω
h
i ∩ K ′′



meas


Ω
h
i ∩ K




∇


uh − ǔh



K ′′

+ C







meas


Ωi ∩ K ′′


meas (Ωi ∩ K )
−

meas


Ω
h
i ∩ K ′′



meas


Ω
h
i ∩ K










∇ǔh



K ′′ . (101)

As meas


Ω
h
i ∩ K ′′



∼ λ̂2
mh2 and meas



Ω
h
i ∩ K



∼ λ̂m λ̂M h2, it holds:

meas


Ω
h
i ∩ K ′′



meas


Ω
h
i ∩ K

 ≤ C
λ̂m

λ̂M

. (102)

Moreover, we may decompose:

meas


Ω
h
i ∩ K ′′



meas


Ω
h
i ∩ K

 −
meas



Ωi ∩ K ′′


meas (Ωi ∩ K )
=

meas


Ω
h
i ∩ K ′′



− meas


Ωi ∩ K ′′


meas


Ω
h
i ∩ K



−
meas



Ωi ∩ K ′′


meas


Ω
h
i ∩ K



×
meas



Ω
h
i ∩ K



− meas (Ωi ∩ K )

meas (Ωi ∩ K )
. (103)

We have |meas


Ω
h
i ∩ K ′′



− meas


Ωi ∩ K ′′


| ≤ λ̂2
mϵh. The gray area in Fig. 22 may be estimated by

|meas


Ω
h
i ∩ K



− meas (Ωi ∩ K ) | ≤ λ̂2
Mϵh, from which we immediately deduce meas (Ωi ∩ K ) ≥ λ̂M h



λ̂mh −

λ̂Mϵ


. Note that if λ̂Mϵ ≥ λ̂mh then the edge is intersected twice, as represented in Fig. 22(b). In our program, this

configuration is detected by the subdivision process and an error is issued since it cannot be handled. So we will

29



(a) Accepted configuration. (b) Rejected configuration.

Fig. 22. Lengthways intersected triangles.

assume from now on that λ̂Mϵ < λ̂mh. With these estimates and (102), (103) gives:






meas


Ω
h
i ∩ K ′′



meas


Ω
h
i ∩ K

 −
meas



Ωi ∩ K ′′


meas (Ωi ∩ K )







≤
λ̂m

λ̂M

ϵ

h



1 +
C

λ̂m/λ̂M − ϵ/h



≤ C
ϵ

h



1 −
λ̂M

λ̂m

ϵ

h

−1

. (104)

Since the gradients are constant by elements, recalling the areas of meas


Ω
h
i ∩ K ′′



and meas


Ω
h
i ∩ K



, given

(102) and (104), and assuming that ∇ǔh is bounded we have:



K∩Ω
h
i

|∇n



uh − ǔh



|2dΩ ≤ C




λ̂m

λ̂M



K ′′∩Ω
h
i

|∇


uh − ǔh



|2 + ϵ2λ̂m λ̂M



1 −
λ̂M

λ̂m

ϵ

h

−2


 . (105)

Combining the results of (105) and (97) in (96), reporting in (94) yields:

|uh − ǔh |2
1,K∩Sϵ∩Ω

h
i

≤ C
ϵ

h



|uh − ǔh |2
1,K ′∩Ω

h
i

+ |uh − ǔh |2
1,K ′′∩Ω

h
i



+ C
ϵ3

h
λ̂2

M



1 −
λ̂M

λ̂m

ϵ

h

−2

. (106)

Summing (106) over all lengthways intersected triangles (there are at most
meas(Γ )

h
of them) yields:

|uh − ǔh |21,Sϵ
≤ C

ϵ

h
E2 + C

ϵ3

h2
λ̂2

M



1 −
λ̂M

λ̂m

ϵ

h

−2

. (107)

Reporting the expression in (93), we have:

E2 − C E


h p + ϵh−1/2


− C


ϵh−1/2
2


1 −
λ̂M

λ̂m

ϵ

h

−1

≤ 0. (108)

Hence E lies between the roots of this second-order polynomial, so giving a superior bound to the abs-value of the

roots, we conclude about the consistency error:

E ≤ Ch p + Cϵh−1/2







1 −
λ̂M

λ̂m

ϵ

h

−1/2

+ 1



 . (109)

To conclude about this proof, for lengthways intersected triangles, similar error estimates than Theorem 5.1 may

still be derived. If the intersection is convex, as in Fig. 21, the estimate cannot be degenerated. On the contrary, it

30



can if it is too concave, as in Fig. 22(b), but in such cases the subdivision algorithm alerts us before the estimates get 

critical.

Notations guide

The symbols are listed following their order of appearance. Note that superscript ¯ generally indicates an extension

(to a larger domain than the original domain of definition for example), superscript ˜ indicates quantities defined over a

so-called transfinite element (an element with an analytical map, conforming to the exact interface), superscript ˆ refers

to quantities defined over the reference space.

Part 2

Ω full body

Γ interface or crack

∂Ω boundary of Ω

Γu part of the boundary with a prescribed displacement (Dirichlet boundary conditions)

Γg part of the boundary with a prescribed force distribution (Neumann boundary conditions)

i side relative to the interface

Ωi part of the body on side i

f volume forces

A tensor of elasticity

σ Cauchy stress tensor

ni outward normal vector to Ωi

u displacement field

ui restriction of the field u on the side i

W m,p(Ω) Sobolev space of functions whose derivative up to order m lies in L p(Ω)

Hm(Ω) := W m,2(Ω)

x = (x1, x2) Cartesian coordinates in R
2

|x| any norm on the finite-dimensional space x belongs to

D derivation operator (e.g. if u is a vector, Du is its Jacobian matrix)

Dm := D ◦ · · · ◦ D
  

m times

(e.g. if u is scalar, D2u is its Hessian matrix)

∇ : ∇u is the gradient of u, ∇ · u is the divergence of u
∂u
∂xi

derivative of u with respect to the i

α = (α1, α2) ∈ R
2 multi-index

|α| = α1 + α2 size of the multi-index

∂αv := ∂ |α|v

∂x
α1
1 ∂x

α2
2

|v|m,p,Ω :=



|α|=m



Ω
|∂αv|pdx

1/p

semi-norm in W m,p (Ω)

|v|m,∞,Ω := max|α|=m supΩ |∂αv| semi-norm in W m,∞ (Ω)

∥v∥m,p,Ω :=



|α|≤m



Ω
|∂αv|pdx

1/p

norm in W m,p (Ω) or ∥v∥m,∞,Ω := max|α|≤m supΩ |∂αv|

∥v∥m,Ω := ∥v∥m,2,Ω

∥v∥2
m,Ω1∪Ω2

:= ∥v∥2
m,Ω1

+ ∥v∥2
m,Ω2

C generic non-negative constant

c generic strictly positive constant

V subspace of H1(Ω1) × H1(Ω2) of functions respecting the Dirichlet boundary conditions

a ∈ L(V × V ; R) stiffness bilinear form

b ∈ L(V ; R) external force linear form

Vh approximation space for V .
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Part 3

Th affine triangulation of M

K parent element

hK external radius of an element

ρK internal radius of an element

h characteristic mesh size (maximal external radius)

g order of representation of the geometry

φ exact level-set function

φh interpolated level-set function

Γφ iso-zero of the interpolated level-set

Γh approximation of Γ

Ω
h
i approximation of Ωi

p ∈ {1, 2} order of the interpolation

Ni shape function of order p associated with node i

Nh nodes of Th

Eh cut elements

Kh enriched nodes

H Heaviside-like function.

Part 4 and appendices

δ semi-width of the strip in which φ is defined

Sδ strip of width 2δ centered on Γ

Ξ map whose inverse defines the level-set function

ϕ function implicitly defining Γ

t tangent vector to a curve

γ curvature

s curvilinear abscissa

R0 minimal radius of curvature

f normal parametrization of Γ

fφ normal parametrization of Γφ

I definition segment for the parametrization

Ip standard nodal interpolation operator

Pk(K ) space of polynomials of total order k on K

δ′ semi-width of the strip in which φh is defined

h0 upper bound for the mesh size

ϵ resolution of the interface

Ẽ transfinite subcell

K̂ reference triangle

FE transformation mapping K̂ onto E

F̃
Ẽ

transfinite transformation mapping K̂ onto Ẽ

RE residual F̃
Ẽ

− FE

(x, y) position in the local system of coordinates

x̂l coordinate of the lth node of the reference element

xE
l := FE



x̂l



ν local explicit definition of Γ on a subcell

(λ̂i )i∈{1..3} barycentric coordinates

ν̂ scaled local explicit definition of Γ on a subcell

Rk (a; b) :=
 b

a
ν̂(3)(t)

k! (b − t)k dt Laplace residual
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λ̂M 1D reference coordinate of the farthest intersection point

λ̂m 1D reference coordinate of the closest intersection point

κ generic tolerance for close intersections.

Part 5

Ω̄i domain containing all discretizations

Ω
h
i for a given fixed mesh size

ūi : H p+1 stable extension of ui to Ω̄i

ū function over Ω
h
1 ∪ Ω

h
2 defined by ūi over Ω

h
i

E integration subcell


ŵl



l=1..L
integration weights

(b̂l)l=1..L integration points locations

DFE Jacobian matrix of FE

JE := det (DFE ) of inverse J−1
E

wl,E integration weights in the physical space

bl,E integration points location in the physical space

Vh interpolation space for the displacement

ah discrete bilinear form (approximated domains and quadrature scheme)

lh discrete linear form (approximated domains and quadrature scheme)

ǎh intermediate bilinear form (approximated domains and exact integration)

ľh intermediate linear form (approximated domains and exact integration)

p, p′ elements of P2 (K )

p̂ := p ◦ FK pullback onto the reference parent element of p

Ê := F−1
K (E) pullback onto the reference element of a subcell

Πh X-FEM (discontinuous) interpolation operator onto Vh

al classical degree of freedom

bl enriched degree of freedom

∆̂(.) quadrature error over the reference triangle

∆E (.) quadrature error over a subcell

i ′, j ′ directions of derivation in the reference space

â pullback of Ai j onto the reference space (indices are dropped to alleviate notations)

w̄i
h natural polynomial extension to K of the polynomial function wi

h defined on K ∩ Ω
h
i

w̄h defined by w̄i
h on each Ωi

e almost coincident edge to a lengthways intersected triangle

K ′ adjacent triangle to a lengthways intersected triangle through its almost coincident edge

ˆ̄w
i

h := w̄i
h ◦ FK .
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