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Abstract

An inflatable beam is an airtight structure made of a soft technical fabric and sub-

jected to an internal pressure which gives it a final cylindrical shape, a pre-stress in the

membrane and a bearing capacity. Against all appearances, it is not a standard beam

and it requires a specific formulation in order to take account of the internal pressure

which plays a key role in its mechanical response.

This work deals with inflatable beams made of orthotropic materials. The first part

of the paper is concerned with the inflation of the membrane tube, an important stage

which is often neglected so far in the literature. As preliminaries of the bending prob-

lem studied in the next part of the paper, the constitutive law related to the inflated state

of the tube – not the natural state – is investigated. It will be shown that the consti-

tutive law related to the inflated pre-stressed state is not the same as the constitutive

law related to the natural state. Expressions of the material coefficients involved in

the former constitutive law will be established from the material coefficients defined

on the natural reference configuration which are the only ones supposed to be known.

The second part of the paper deals with the bending of the inflatable beam. The Tim-

oshenko beam kinematics will be chosen because of the significant shear effect in the

tube wall and the problem will be formulated in finite deformations in order to accounts

for all the nonlinear effects, in particular the action due to the internal pressure which

is a follower load. The nonlinear system of equations obtained will then be linearized

around the pre-stressed configuration and will result in a more tractable linear system.
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The proposed formulation allows a comprehensive study of the influence of the internal

pressure on the geometry and material properties of orthotropic inflatable beams The

analytical results will be compared with numerical results obtained from a nonlinear

membrane finite element code.
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1. INTRODUCTION

Inflatable structures made of modern textiles have been used for several decades.

Among their applications in space industry, there are deployable antennas, inflatable re-

entry capsules and inflatable solar power sails, mainly made of isotropic fabrics. The

inflatable technology is also widely applied to terrestrial structures, both in civilian and

military fields. Today, large inflatable structures are built for sports centres , exhibition

halls and storage shelters. The fabrics used in these types of structures are often made

of warp and weft threads which ensure the mechanical resistance and a coating which

ensures the airtightness. In comparison with conventional structures, the inflatable

structures may present some advantages in some specific cases: they are light, easily

foldable, easily to transport, deploy. Moreover, it is not very expensive to manufacture

them and keep them deployed.

The pressurized membrane structures are often made of bearing components which

take the shape of tubes or beams. Each component is made of an airtight fabric and

subjected to an internal pressure which gives it a final cylindrical shape, a pre-stress in

the membrane and a bearing capacity. In the sequel, mention will be made of two types

of reference configuration:

(i) the natural configuration, where there is no external loads and the stress field is

zero. The geometry and material properties are supposed to be known in the natural

configuration. The membrane has no bearing capacity in this state;

(ii) the pre-stressed configuration, where the membrane structure is subjected to the

internal pressure only. The geometry and, as will be seen below, the material properties

are different from those in the natural state. The bearing capacity of the structure should

increase with the pre-stress, i.e. with the internal pressure.
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Several works have been conducted in the literature to predict the behavior of an

inflated tube subjected to bending loads. In these works, the reference configuration

corresponds to the pre-stressed configuration of the inflated tube.

The earliest analytical expressions for the load-deflection response and the collapse

load of a cantilever pressurized membrane tube can be found in Comer and Levy’s pa-

per [1]. In this work, the usual Euler-Bernoulli kinematics was chosen and it was

assumed that the tube is made of an isotropic linear elastic material. Later, Webber

[2] extended Comer and Levy’s theory [1] to the case of a tube subjected to bending

and twisting, and succeeded in determining how a twisting moment modifies the de-

flection, the wrinkling load as well as the collapse load. Afterwards, Main et al. [3]

improved Comer and Levy’s theory of pressurized membrane tubes [1] by considering

the effect of the bi-axial stress state on the wrinkling. Experiments were conducted

on pressurized tubes with circular cross-sections and the results obtained were com-

pared with those given by Comer and Levy’s theory [1]. In another study, Main [4]

took the orthotropic property of the fabric into account so as to enhance his previously

developed theory. Suhey et al. [5] carried out numerical computations on anisotropic

pressurized membrane tubes by means of membrane finite elements and validated their

finite element model by comparing their numerical results with Main et al.’s theoretical

results in [3],[4].

When using the Euler-Bernoulli kinematics, the internal pressure does not appear

in the expression of the deflection. In order to improve the previous formulations, many

other authors preferred to use the Timoshenko kinematics which is more appropriate

for thin-walled beams.

A major contribution in this formulation type is due to Fichter [6] who developed

a theory for pressurized cylindrical membrane tubes made of isotropic membrane. His

approach was based on the minimization of the total potential energy. After lineariza-

tion, Fichter successfully derived the analytical equations for the bending problem of

a pressurized membrane tube, exhibiting the very term of the internal pressure in the

deflection expression.

Steeves [7] adopted a similar approach and proposed solutions in terms of Green

functions. Wielgosz and Thomas [8] [9] dealt with analytical solutions for inflatable
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isotropic beams and panels by establishing the equilibrium equations in the deformed

state in order to incorporate the internal pressure in their formulation. They considered

the internal pressure as a follower force which represents the strengthening effect on the

bending and shear stiffnesses. Le van and Wielgosz [10] improved Fichter’s theory [6]

by using the virtual power principle in the context of the total Lagrangian formulation.

They considered large displacements and rotations in order to take account of all the

nonlinear terms in the kinematic and equilibrium equations, and proposed solutions for

the bending and buckling of a pressurized isotropic membrane tube. Davids and Zhang

[11] confirmed Fichter’s results by considering the pressure work during the volume

change in isotropic Timoshenko beams. On the basis of [10], Apedo et al. [12], Nguyen

et al. [13] went further by developing a theory for pressurized membrane tube made

of an orthotropic material. They first used a 3D kinematics and then linearized their

formulation. The bending and buckling problems were investigated, and the results

obtained show that it is essential to consider the fabric orthotropy in the computations.

In all the above-mentioned works, the reference configuration is the pre-stressed

configuration, yet the material coefficients used in the constitutive law are those related

to the natural configuration, which corresponds to the tube without internal pressure.

On the other hand, studies on the behavior of fabrics used in pressurized membrane

structures have shown the fabric characteristics in the pre-stressed state differ from

those in the natural state and depend on the internal pressure.

Cavallaro et al. [14] utilized finite element analysis to compute the load-displacement

curve of a pressurized membrane tube subjected to four-point bending conditions and

found that the mechanical response strongly depends on the internal pressure. Turner

et al. [15] conducted torsion tests on pressurized membrane tubes subjected to different

internal pressures with the aim of determining the shear modulus of the fabric in the

pre-stressed configuration. Their experimental results also reveal that the shear modu-

lus depends on the internal pressure and the larger the pressure is, the larger the shear

modulus. Later on, Davids and Zhang [11] realized four-point bending tests with the

same fabric as in [15] and with different internal pressures. By taking the shear mod-

uli in [15], these authors performed an inverse analysis upon the load-displacement

and obtained the Young’s modulus. They noticed that the Young’s modulus of the
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fabric in the pre-stressed configuration increases with the internal pressure. A beam

finite element was designed to compute the load-displacement response of the pres-

surized membrane tube and the input data used were the material coefficients in the

pre-stressed configuration of the structure. A good correlation found between the nu-

merical model and the experimental deflection indicated that it is essential to use the

material coefficients related to the pre-stressed configuration. More recently, Kabche

et al. [16] presented a complete procedure based on Turner et al.’s test [15] in order

to quantify the fabric properties in the pre-stressed configuration, which are strongly

dependent on the internal pressure. They also realized the same four-point bending test

as Davids and Zhang [11] and made similar observations on the material coefficients

related to the pre-stressed configuration.

Inflatable structures are usually made of coated woven fabrics, which mostly dis-

play an anisotropic and viscoelastic behavior. In most of the above-mentioned studies,

coated fabrics are modeled - as commonly practiced in the field of tensile structures

- as orthotropic membranes under the plane stress assumption. Accordingly, we will

not deal here with fabrics but with orthotropic membranes and we will assume that the

membrane obeys the Saint Venant - Kirchhoff orthotropic elastic law. Elaborate mod-

els of coated fabrics and comparison with experimental results are much more complex

subjects and they will not be considered in this paper. Our aim is to propose a compre-

hensive analytical model for orthotropic inflatable beams including both the inflation

and the bending stages. The paper is organized as follows:

• Section 2 defines the problem of a pressurized membrane tube and points out

that one should consider two distinct successive stages. The first is the inflation

of the membrane tube, an important stage which is often neglected so far in the

literature. The second stage is the bending of the pressurized membrane tube

and it will be seen further that the results of this stage strongly depend on those

acquired in the first stage.

• Sections 3 to 5 are concerned with the inflation of the membrane tube. Section 3

is a brief reminder of the analytical results given in [17] for the geometry of the

inflated tube. As preliminaries of the bending problem studied in the next part
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of the paper, the constitutive law related to the inflated state of the tube – not the

natural state – is investigated in Section 4. It will be shown that the tube remains

orthotropic with respect to the inflated state. However, the material coefficients

involved in the constitutive law are no longer the same. As far as the authors’

knowledge, this is the first time a bridge is established between the material

coefficients at the natural state and those at the pressurized state. The change

of the material coefficients are numerically computed on different geometries of

the tube and material properties of the membrane in Section 5. The values of

the material coefficients for the membrane will be chosen of the same order as

the coefficients found in the literature for fabrics. The numerical results obtained

will be used in the bending stage of the tube.

• The last part of the paper – Sections 6 to 9 – deals with the bending of the tube.

As will be described in Section 6, the Timoshenko beam kinematics is chosen

because of the significant shear effect in the tube wall and the problem is formu-

lated in finite deformations in order to accounts for all the nonlinear effects, in

particular the action of the internal pressure which is a follower load. The result

of this is a nonlinear system of equations governing the bending problem, which

highlights the significant role of the internal pressure in the response of inflat-

able beams. In the next Section 7, the nonlinear system of equations obtained

will be linearized around the pre-stressed configuration and will result in a more

tractable linear system. Finally, Sections 8 and 9 constitute an application of the

obtained analytical results to a cantilever inflatable beam. The numerical results

for different tube geometries, materials and internal pressures will be compared

with numerical results obtained from a nonlinear membrane finite element code.

2. THE PROBLEM OF THE PRESSURIZED MEMBRANE TUBE

The problem will be described using a kinematical time t which is not necessarily

the physical time as one is in Statics, and which is useful, however, to relate the suc-

cessive states of the mechanical system. When studying the bending of a pressurized
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membrane tube, one has to consider two successive stages, formulated in two different

ways and based on two different reference configurations (see 1).

1. The inflation stage. It is assumed that there exists a time t∅ when no external

loading is applied on the tube and the stress field therein is zero. At that time,

the tube is said in the stress-free (or natural) configuration (or state).

The typical feature of a membrane tube is that the tube has no stiffness in the

absence of external loading and the only way for it to acquire a stiffness is to

subject it to an internal pressure. Thus, the inflation is essential to membrane

structures and deserves a separate study on its own, where the only loading is the

internal pressure. The inflation stage will be formulated as a three-dimensional

problem of nonlinear elasticity. The reference configuration will be chosen as

the stress-free one and referred to as the natural reference configuration.

2. The bending stage. The internal pressure causes pre-tensions in the tube wall

and enables the tube to bear other external loads. From a given time t0 > t∅, the

internal pressure is kept fixed and other loads are then applied on the external

surface in order to bend the tube.

The bending problem will be formulated using a Timoshenko kinematics with

finite displacements and rotations. This time, the reference configuration is cho-

sen equal to the one at time t0, when the tube is subjected to the internal pressure

only. The new reference configuration - where the stress field is not zero - is

called the (pressurized) pre-stressed reference configuration. As for the final

configuration, it is taken as the one at current time t > t0 when the tube is both

pressurized and bent.

Thus, one has to deal with two distinct reference configurations successively: one

is stress-free and the other pre-stressed. Of course, quantities related to the pre-stressed

reference configuration are not independent of quantities related to the stress-free refer-

ence configuration, there exist relations between them which will be established later.

Let us now specify the notational convention adopted in this work.

a. If the reference configuration is pre-stressed, we shall adopt the standard no-

tational convention for finite deformation problems. In general, a Lagrangian
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Figure 1: The three configurations of the membrane tube: the natural configuration, the pressurized pre-

stressed configuration and the pressurized and bent configuration.

quantity related to the pre-stressed reference configuration will be denoted with

an upper case letter, whereas its Eulerian counterpart related to the deformed

configuration will be denoted with the same letter but in lower case. If the up-

per/lower case mode is not possible, the Lagrangian quantity will be written with

a letter indexed by 0, while its Eulerian counterpart will be written with the same

letter without index. Accordingly, we denote (Figure 1):

- Ω0 the pressurized pre-stressed position, where the tube is subjected to

the internal pressure only, Ω the current position, where the tube is both

pressurized and bent;

- X the position of a current particle of the tube in the pressurized pre-

stressed reference configuration and x the position of the same particle in

the deformed configuration. These positions are related by

x =Φ(X, t) (1)

where Φ is the deformation from Ω0 to Ω;

- σ(x, t) the Cauchy stress tensor, Σ(X, t) the second Piola-Kirchhoff stress

tensor related to the pre-stressed state. The pre-stress in the tube solely

subjected to the internal pressure then is Σ0(X)≡Σ(X, t0).

b. As mentioned above, the reference configuration which is obvious in the inflation

stage of the tube is the stress-free configuration, not the pre-stressed one. In order
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to distinguish the two reference configurations, we shall either attach the index

∅ to any quantity related to the stress-free configuration, or write the index ∅

instead of index 0. Accordingly, we denote (Figure 1):

- Ω∅ the stress-free reference position;

- ∅X the position of a current particle of the tube in the stress-free configu-

ration. The current position x of the same particle is related to ∅X by

x = ∅Φ(∅X, t) (2)

where ∅Φ is the deformation from Ω∅ to Ω;

- ∅Σ(∅X, t) the second Piola-Kirchhoff stress tenssor related to the stress-

free state.

From (1) and (2), the two deformations Φ and ∅Φ are not independent but related

by

x =Φ(X, t) = ∅Φ(∅X, t) (3)

Making t = t0 in (3) gives

X =Φ(X, t0) = ∅Φ(∅X, t0)≡ ∅Φ0(
∅X) (4)

The inflation of the tube is defined by the deformation ∅Φ0 from the stress-free

configuration Ω∅ to the pressurized pre-stressed configuration Ω0.

Let (ex, ey, ez) be a fixed Cartesian basis. It is assumed that the tube in its stress-

free reference state is cylindrical of axis Oex, thickness H∅, radius R∅ and length L∅,

Moreover, the tube is made of an orthotropic material with the orthotropy directions

eℓ,et in the reference configuration parallel to the tube axis and the tube circumfer-

ence, respectively, as shown in Figure 2 (there is no possible confusion of index t

denoting the tangential orthotropy direction with above-mentioned time t). Thus, the

third orthotropy direction is radial. The local orthotropy basis (eℓ, et , en) is related to

the Cartesian basis by eℓ = ex, et = ey cosφ + ez sinφ , en =−ey sinφ + ez cosφ , where

φ designates the angle from ey to et .

The goal of the paper is to study the bending of the pressurized tube and answer the

following question:
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Figure 2: Local orthotropy basis and fixed Cartesian basis

• When the pressurized membrane tube is bent, what are the expressions for the

deflection and the cross-section rotation?

The answer to this question will be given in Sections 6 et seqq. For this purpose,

the two following questions need to be answered beforehand:

• What is the geometry of the pressurized tube?

It is essential to precisely determine the length and the radius of the tube in

the pressurized state, since the radius of a thin-walled structure has a significant

influence on the cross-section area and the second moment of area and as a result,

the tube radius and length have a signifiant influence on the deflection and the

rotation. This is true for a standard thin-walled (not membrane) structure and as

will be seen in Section 6, this is also true for the pressurized membrane tube.

Determining the geometry of the pressurized tube is a preliminary work which is

independent of the bending study itself. The results have been obtained in [17],

they will be briefly recalled in Section 3 with notations adapted to the present

framework.

• What is the constitutive law related to the pressurized pre-stressed reference con-

figuration?

Since the bending problem is formulated with respect to the pressurized pre-

stressed reference configuration, the constitutive law employed must be a rela-

tionship between variables related to the pre-stress configuration. One has to
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derive this constitutive law from that related to the natural reference configura-

tion, which is the only one supposed to be known.

This issue will be investigated in Section 4.

3. GEOMETRY OF THE INFLATED TUBE

Let us begin with the the problem of the orthotropic membrane tube subjected to

the internal pressure only. The reference configuration is chosen identical to the natural

one Ω∅, the final configuration is the pressurized pre-stressed one Ω0, and the transition

from the former to the latter is described by the deformation ∅Φ0 defined in (4), see

Figure 1.

Let p be the prescribed internal pressure. Owing to the axial symmetry of the

problem, it can be assumed that the inflated tube remains cylindrical of axis Oex, and

we denote H, R, L the thickness, radius and length of the inflated tube, respectively.

The matrix of the deformation gradient tensor ∅F0 ≡
∂∅Φ0(

∅X)

∂∅X
in the local or-

thotropy basis is expressed as

Mat(∅F0;eℓ,et ,en) =


L

L∅
0 0

0
R

R∅
0

0 0
H

H∅

 hence ∅J0 ≡ det∅F0 =
L

L∅

R
R∅

H
H∅

(5)

It is assumed that the constitutive law of the orthotropic membrane, related to the

natural reference configuration, is hyperelastic, of the St Venant-Kirchhoff type:

∅E0 =
∅C : ∅Σ0 (6)

where ∅E0 =
1
2
(∅FT

0
∅F0 − I) and ∅Σ0(

∅X) ≡ ∅Σ(∅X, t0) denote the Green strain

tensor and the second Piola-Kirchhoff stress tensor, respectively, both related to the

natural configuration and computed at the inflated configuration; I is the identity tensor

and finally ∅C is the compliance tensor related to the natural reference configuration.

The matrix of the compliance tensor ∅C in the orthotropy basis (en, eℓ, et ) is of the
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following form

Mat(∅C;eℓ,et ,en) =


∅Cℓℓℓℓ

∅Cℓℓtt
∅Cℓℓnn 0 0 0

∅Cttℓℓ
∅Ctttt

∅Cttnn 0 0 0
∅Cnnℓℓ

∅Cnntt
∅Cnnnn 0 0 0

0 0 0 ∅Ctnnt 0 0
0 0 0 0 ∅Cnℓℓn 0
0 0 0 0 0 ∅Cℓttℓ

 (7)

where the components of the matrix are functions of the Young’s moduli ∅Eℓ, ∅Et , the

Poisson’s ratios ∅νnℓ, ∅νtℓ, ∅νnt and the shear moduli ∅Gℓt , ∅Gnℓ, ∅Gtn :

∅Cℓℓℓℓ =
1

∅Eℓ

∅Cℓℓtt =
∅Cttℓℓ =−

∅νtℓ
∅Et

∅Cℓℓnn =
∅Cnnℓℓ =−

∅νnℓ
∅En

∅Ctttt =
1

∅Et

∅Cttnn =
∅Cnntt =−

∅νnt
∅En

∅Cnnnn =
1

∅En
∅Ctnnt =

1
∅Gtn

∅Cnℓℓn =
1

∅Gnℓ

∅Cℓttℓ =
1

∅Gℓt

The so formulated problem of the inflated tube was studied in [17] where it was

shown that the length ratio
L

L∅
satisfies the cubic equation

H∅
∅Eℓ

pR∅

(
L

L∅

)3

+3 ∅νℓt

(
L

L∅

)2

−
[

H∅
∅Eℓ

pR∅
+2

pR∅
H∅∅Et

(
1−∅νℓt

∅ν tℓ
)] L

L∅
−
(
1+∅νℓt

)
= 0

(8)

The input data are the tube geometry in the natural state: L∅,R∅, the material

properties of the membrane in the natural state: ∅EℓH∅, ∅EtH∅, ∅νℓt , ∅νtℓ, and the

pressure p. Note that use has been made here of the products of the elasticity moduli by

the membrane thickness, which actually are the material coefficients usually encoun-

tered in the study of textile membranes. The analytical expression for length L in the

inflated state is obtained by solving Equation (8) using Cardan’s formula. The radius R

in the inflated state is then given by(
R

R∅

)2

=
H∅

∅Eℓ

pR∅

L
L∅

[(
L

L∅

)2

−1

]
+2 ∅νℓt

(
L

L∅

)2

(9)

4. THE CONSTITUTIVE LAW RELATED TO THE PRESSURIZED PRE-STRESSED

STATE

In the previous study of the tube subjected to the internal pressure only, it is nat-

ural to make use of the orthotropic St Venant-Kirchhoff constitutive law related to the
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natural reference configuration. As regards the bending problem which will be investi-

gated in the sequel, its analysis requires the constitutive law related to the pressurized

pre-stressed configuration. This section describes how to derive such a law from the

constitutive law related to the natural state, it will be shown that (i) the constitutive law

related to the pre-stressed state remains orthotropic as in the natural state, (ii) however,

the material coefficients related to the latter state are different from those in the former

state.

4.1. The constitutive law written in the orthotropy basis

By means of (3) and (4), let us first establish the relationship between the defor-

mation gradient tensors ∅F ≡ ∂∅Φ(∅X)

∂∅X
and F =

∂Φ(X)

∂X
, respectively related to the

natural and the pre-stressed states:

∅F ≡ ∂∅Φ(∅X)

∂∅X
=

∂Φ(X)

∂X
∂∅Φ0(

∅X)

∂∅X

or
∅F = F ∅F0 hence ∅J ≡ det∅F = J ∅J0 (J ≡ detF) (10)

There follows the relation between the Green tensors ∅E =
1
2
(∅FT ∅F− I) and

E =
1
2
(FT F− I), respectively related to the natural and the pre-stressed states:

∅E−∅E0 =
1
2
(∅FT ∅F−∅FT

0
∅F0)=

1
2
(∅FT

0 FT F ∅F0−∅FT
0

∅F0)=
1
2
∅FT

0 (F
T F−I) ∅F0

or
∅E0 =

∅E−∅FT
0 E ∅F0 (11)

Let us now derive the relation between the stress tensors related to the different

configurations. The Cauchy stress tensor σ(x) can either be expressed in terms of the

Piola-Kirchhoff stress tensor ∅Σ(∅X) related to the natural reference configuration, or

in terms of Σ(X) related to the pre-stressed reference configuration:

σ =
1
∅J

∅F ∅Σ ∅FT =
1
J

F Σ FT

Hence
∅Σ=

∅J
J

∅F−1F Σ FT ∅F−T
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The above relation can be simplified using (10) and one reaches the following rela-

tion between the Piola-Kirchhoff stress tensors Σ and ∅Σ:

∅Σ= ∅J0
∅F−1

0 Σ ∅F−T
0 (12)

At time t0, i.e. when there is no other loads applied on the tube than the pressure,

the pressurized and bent configuration is identical to the pre-stressed reference config-

uration. Expression (12) then gives the relation between the pre-stress Σ0(X) and the

stress ∅Σ0(
∅X) involved in (6):

∅Σ0 =
∅J0

∅F−1
0 Σ0

∅F−T
0 (13)

Inserting (11) and (13) into the constitutive relation (6) related to the natural con-

figuration yields

∅E−∅FT
0 E ∅F0 =

∅C :
(∅J0

∅F−1
0 Σ0

∅F−T
0

)
Therefore

∅FT
0 E ∅F0 = ∅E−∅J0

∅C :
(∅F−1

0 Σ0
∅F−T

0
)

E = ∅F−T
0

(∅C : ∅Σ
)∅F−1

0 −∅J0
∅F−T

0
[∅C :

(∅F−1
0 Σ0

∅F−T
0

)]∅F−1
0

= ∅J0
∅F−T

0
[∅C :

(∅F−1
0 (Σ−Σ0)

∅F−T
0

)]∅F−1
0

or in components:

∀ i, j,k, ℓ∈{ℓ, t,n}, Ei j =
∅J0(

∅F−1
0 )mi(

∅F−1
0 )n j(

∅F−1
0 )pk(

∅F−1
0 )qℓ

∅Cmnpq (Σ−Σ0)ℓk

(14)

where implicit summation is implied over repeated indices m,n, p,q ∈ {ℓ, t,n}. Defin-

ing the 4th-order tensor C as

Ci jkℓ =
∅J0(

∅F−1
0 )mi(

∅F−1
0 )n j(

∅F−1
0 )pk(

∅F−1
0 )qℓ

∅Cmnpq (15)

one finds that the constitutive law related to the pre-stressed configuration is also of the

St Venant-Kirchhoff type:

Ei j =Ci jkℓ : (Σ−Σ0)ℓk ou E = C : (Σ−Σ0) (16)
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Note that definition (15) looks like that of the spatial elasticity tensor, see, for

instance, [18] p123, but it is in fact different in meaning. Relations (15) and (16)

are particularly significant since they highlight the fact that all the material coefficients

are affected by the change of the reference state. Tensor C defined in (15) appears as

the compliance tensor related to the pre-stressed reference configuration. It is linked

to the compliance tensor ∅C related to the natural configuration via the deformation

gradient tensor ∅F0 in (5) which expresses the geometry change from the natural to the

inflated state.

Inserting (5) and (7) into (15) leads to the matrix of the compliance tensor C in the

orthotropy basis (eℓ,et ,en) and enables one to write the constitutive law in this basis as

follows:
Eℓℓ
Ett
Enn
2Etn
2Enℓ
2Eℓt

=


Cℓℓℓℓ Cℓℓtt Cℓℓnn 0 0 0
Cttℓℓ Ctttt Cttnn 0 0 0
Cnnℓℓ Cnntt Cnnnn 0 0 0

0 0 0 Ctnnt 0 0
0 0 0 0 Cnℓℓn 0
0 0 0 0 0 Cℓttℓ




Σℓℓ−Σ0
ℓℓ

Σtt −Σ0
tt

Σnn −Σ0
nn

Σtn −Σ0
tn

Σnℓ−Σ0
nℓ

Σℓt −Σ0
ℓt


(17)

It can easily checked that Cℓℓtt =Cttℓℓ , Cℓℓnn =Cnnℓℓ and Cttnn =Cnntt . This means

that a material which is orthotropic with respect to the natural configuration remains

orthotropic with respect to the pressurized pre-stressed configuration. Recall that the

result has been obtained in the case when the orthotropy directions are parallel to the

axial and circumferential directions of the tube.

4.2. The constitutive law written in the fixed basis

Let us now write the constitutive law (16) in the fixed Cartesian basis (ex, ey, ez), by

applying, onto (17), a change of basis from the local orthotropy basis to the Cartesian

basis. Some simple algebraic calculations show that the compliance matrix in the fixed

Cartesian basis takes a form slightly different from that in the local orthotropy basis:


EXX
EYY
EZZ

2EY Z
2EZX
2EXY

=


CXXXX CXXYY CXXZZ CXXZY 0 0
CYY XX CYYYY CYY ZZ CYY ZY 0 0
CZZXX CZZYY CZZZZ CZZZY 0 0
CY ZXX CY ZYY CY ZZZ CY ZZY 0 0

0 0 0 0 CZXXZ CZXY X
0 0 0 0 CXY XZ CXYY X




ΣXX −Σ0
XX

ΣYY −Σ0
YY

ΣZZ −Σ0
ZZ

ΣY Z −Σ0
Y Z

ΣZX −Σ0
ZX

ΣXY −Σ0
XY


(18)
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The components of the compliance matrix in the Cartesian basis are, by denoting

c = cosφ , s = sinφ (see angle φ in Figure 2):

CXXXX =Cℓℓℓℓ

CXXYY =CYY XX =Cℓℓttc2 +Cℓℓnns2

CXXZZ =CZZXX =Cℓℓtts2 +Cℓℓnnc2

CXXZY =CY ZXX = 2(Cℓℓtt −Cℓℓnn)sc
CYYYY =Cttttc4 +2Cttnns2c2 +Cnnnns4 +Ctnnts2c2

CYY ZZ =CZZYY = (Ctttt +Cnnnn)s2c2 +Cttnn(s4 + c4)−Ctnnts2c2

CYY ZY =CY ZYY = 2(Cttttc3s−Cnnnns3c)+2Cttnn(s3c− c3s)−Ctnnt(c3s− s3c)
CZZZZ =Ctttts4 +2Cttnns2c2 +Cnnnnc4 +Ctnnts2c2

CZZZY =CY ZZZ = 2(Ctttts3c−Cnnnnc3s)−2Cttnn(s3c− c3s)+Ctnnt(c3s− s3c)
CY ZZY = 4(Ctttt +Cnnnn −2Cttnn)s2c2 +Ctnnt(c2 − s2)2

CZXXZ = c2Cnℓℓn + s2Cℓttℓ
CZXY X =CXY XZ = (Cℓttℓ−Cnℓℓn)sc
CXYY X = s2Cnℓℓn + c2Cℓttℓ

(19)

4.3. Taking account of the plane stress assumption

Let us denote ΣL =Σ−Σ0 the part of the stress tensor which is linear in terms of

the strain in the constitutive law (16) (here the superscript L reminds of the linear part

of the stress tensor, it should not be confused with the length L of the inflated tube).

From the mechanical point of view, tensor ΣL corresponds to the Piola-Kirchhoff

stresses (related to the pre-stressed reference configuration) which are exclusively due

to bending loads. It is assumed that ΣL satisfies the assumption of plane stress in the

local orthotropy basis of the membrane:

Mat(ΣL;eℓ,et ,en) =

[
ΣL
ℓℓ ΣL

ℓt 0
ΣL

tℓ 0 0
0 0 0

]
(20)

The assumption ΣL
tt = 0 means that, in bending, the tangential stress is negligi-

ble when compared with the axial and shear stresses. The components of ΣL in the

orthotropy basis are expressed in terms of the components in the Cartesian basis by

means of the change-of-basis matrix:

ΣL
ℓℓ = ΣL

XX
ΣL

tt = c2ΣL
YY + s2ΣL

ZZ +2csΣL
Y Z = 0

ΣL
nn = s2ΣL

YY + c2ΣL
ZZ −2csΣL

Y Z = 0
ΣL

tn = sc(ΣL
ZZ −ΣL

YY )+(c2 − s2)ΣL
Y Z = 0

ΣL
ℓn = cΣL

XZ − sΣL
XY = 0

ΣL
ℓt = cΣL

XY + sΣL
XZ

(21)
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Equations (21)2−4 give ΣL
YY = ΣL

ZZ = ΣL
Y Z = 0 and thus entail the following form of

the matrix of ΣL in the fixed global basis:

Mat(ΣL;ex,ey,ez) =

 ΣL
XX ΣL

XY ΣL
XZ

ΣL
Y X 0 0

ΣL
ZX 0 0

 with cΣL
XZ = sΣL

XY (22)

Applying the antiplane form (22) to the constitutive law (18)-(19) gives

EXX =CXXXX ΣL
XX =CℓℓℓℓΣL

XX
EYY =CYY XX ΣL

XX = (c2Cℓℓtt + s2Cℓℓnn)ΣL
XX

EZZ =CXXZZΣL
XX = (s2Cℓℓtt + c2Cℓℓnn)ΣL

XX
2EY Z =CY ZXX ΣL

XX = 2sc(Cℓℓtt −Cℓℓnn)ΣL
XX

2EZX =CZXXZΣL
ZX +CZXY X ΣL

XY = (c2Cnℓℓn + s2Cℓttℓ)ΣL
ZX + sc(Cℓttℓ−Cnℓℓn)ΣL

XY =CℓttℓΣL
ZX

2EXY =CXY XZΣL
ZX +CXYY X ΣL

XY = sc(Cℓttℓ−Cnℓℓn)ΣL
ZX +(s2Cnℓℓn + c2Cℓttℓ)ΣL

XY =CℓttℓΣL
XY

(23)

Among these relations, only the first and the last ones will be of use in the theory

of pressurized membrane tubes. Let us define the Young’s modulus Eℓ along the axial

direction of the tube and the shear modulus Gℓt , in the pre-stressed reference configu-

ration, as

Cℓℓℓℓ =
1
Eℓ

Cℓttℓ =
1

Gℓt

Relations (23)1 and (23)6 can be written as ΣL
XX = EℓEXX and ΣL

XY = 2GℓtEXY , or

ΣXX = Σ0
XX +EℓEXX ΣXY = Σ0

XY +2GℓtEXY (24)

The moduli Eℓ and Gℓt are related to their stress-free counterparts ∅Eℓ and ∅Gℓt by

(15) :

EℓH =

(
L

L∅

)3 R∅
R

∅EℓH∅ GℓtH =
L

L∅

R
R∅

∅GℓtH∅ (25)

These relationships clearly show how a geometry change due to the inflation modi-

fies the material coefficients. One has only to experimentally determine the coefficients
∅EℓH∅, ∅GℓtH∅ at the natural state, and it is then possible to derive the coefficients

EℓH, GℓtH for all sets of radius, length and pressure.

5. NUMERICAL COMPUTATIONS

In this section, numerical computations will be carried out in order to show the

change in the geometry and the change in the material coefficients when one goes from

the natural to the inflated configuration.
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Relations (25) show that the material coefficients EℓH and GℓtH in the pre-stressed

configuration are related to their values in the natural configuration via the ratios
L

L∅

and
R

R∅
. According to Relations (8) and (9), these ratios are themselves functions of

radius R∅ of the stress-free tube, of the mechanical properties of the membrane in the

natural state: ∅EℓH∅, ∅EtH∅, ∅νℓt , ∅νtℓ, and of the pressure p. As these ratios are

independent of L∅, we decide to perform the computations using only one value L∅

(2.5m) and three values for R∅ (0.1, 0.15 and 0.2m). Thus, the computations will be

done with three different tubes, whose characteristics are summarized in Table 1.

We consider one unbalanced orthotropic membrane, having two different elasticity

moduli along the warp and weft directions. The membrane is rolled up around the

tube axis in two different ways, giving rise to two different orientations which will be

referred to in the sequel as Orientation 1 and Orientation 2:

• with Orientation 1, the warp is parallel to the tube axis;

• with Orientation 2, it is the weft which is parallel to the tube axis.

The values of the material coefficients are given in Table 1, they are of the same

order as the coefficients found in the literature for fabrics (it also is the case for the

tensile strength). To change from one orientation to another, one just has to invert the

moduli ∅EℓH∅ and ∅EtH∅ and the Poisson’s ratios ∅νℓt and ∅νtℓ.

The internal pressure p applied ranges from 50 kPa from 600 kPa. The axial and

hoop stresses σ0
ℓℓ and σ0

tt in the inflated tube must fulfil the tensile strength criterion, i.e.

they must be less than a maximum stress σmax, which, for the considered membrane, is

so chosen that Hσmax = 360 daN/5cm. Since these stresses are related to the internal

pressure p by Hσ0
tt = 2Hσ0

ℓℓ = pR, the maximum pressure which can be prescribed on

the tube is

pmax =
Hσmax

R

The maximum value for the pressure depends on the radius R in the inflated state.

For the three tubes under consideration, of natural radius R∅ = 0.1, 0.15 and 0.2m, it is

found that the maximal internal pressures are about 600, 450 and 300 kPa, respectively.

In the sequel, all the curves will be drawn with internal pressure up to 600 kPa, and the
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portions of the curves beyond the maximal internal pressure will be shown by dashed

lines.

Table 1: Data for the inflation of the orthotropic membrane tube

TUBE GEOMETRY IN NATURAL CONFIGURATION
Natural length L∅ : 2.5 m
Natural radius R∅ : 0.1 m, 0.15m , 0.2 m

MATERIAL PROPERTIES IN NATURAL CONFIGURATION
Orientation 1 Orientation 2

Young’s modulus in the axial direction ∅EℓH∅ 600 kN/m 300 kN/m
Young’s modulus in the circumferential direction ∅EtH∅ 300 kN/m 600 kN/m
In-plane shear modulus ∅GℓtH∅ 12.5 kN/m 12.5 kN/m
Poisson’s ratio ∅νℓt 0.24 0.12
Poisson’s ratio ∅νtℓ 0.12 0.24
Tensile strength 360 daN/5cm 360 daN/5cm
LOADING
Internal pressure p : 50 kPa to 600 kPa

5.1. Change of geometry versus the pressure

For each given internal pressure p, application of formulas (8) and (9) gives the

length L and the radius R of the inflated tube. The ratios
L

L∅
and

R
R∅

are displayed

versus the internal pressure p in Figures 3 and 4 for both membrane orientations.

In the case of Orientation 1, the
L

L∅
curves are clearly nonlinear whereas the

R
R∅

curves appear to be nonlinear for larger pressures only. In the case of Orientation 2,

the nonlinearity of both
L

L∅
and

R
R∅

curves can be observed for larger pressures only.

The nonlinearity is the more marked as the internal pressure p is significant. More-

over, the larger the natural radius R∅ is, the more significantly
L

L∅
and

R
R∅

vary as

functions of the internal pressure p.

5.2. Moduli EℓH and GℓtH versus the pressure

For each given internal pressure p, the deformed geometry of the tube is computed

as described above and then use is made of the two Relations (25) in order to derive the

material coefficients EℓH and GℓtH in the pressurized configuration. The variation of

coefficients EℓH, GℓtH versus pressure p is displayed in Figures 5 and 6. It can be seen
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Figure 3: Change of geometry versus the internal pressure -Orientation 1
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Figure 4: Change of geometry versus the internal pressure - Orientation 2

that the larger the radius R∅ is, the more sensitive these coefficients are to the change

of the internal pressure p, which is consistent with the above remark on the variations

of
L

L∅
and

R
R∅

.

Orientation 1

• Figure 5 related to the case of Orientation 1 shows that modulus EℓH first de-

creases as the pressure p increases, passes through a minimum and then in-
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creases.

• The pressure value p corresponding to this minimum is all the smaller as R∅ is

greater.

• The minimum value of EℓH is exactly the same (575 kNm) for three different

radii R∅ and seems to be independent of the tube geometry in the natural ref-

erence configuration. The difference between the natural value ∅EℓH∅ and this

minimum is 4.3%.

• As regards the maximum pressure the tube can bear, it is found that, in the case

of unbalanced membrane with ∅EℓH∅ > ∅EtH∅, the modulus EℓH is always less

than ∅EℓH∅. For instance, with R∅ = 0.1 m and pmax = 600 kPa, the difference

is −4.2%. With R∅ = 0.15 m and pmax = 450 kPa, the difference is −4.0% while

with R∅ = 0.2 m and pmax = 300 kPa, it is −4.2%.

• The shear modulus GℓtH in the pre-stressed reference configuration depends on

the ratio product
L

L∅

R
R∅

and it increases almost linearly as a function of pressure

p in the range of pressures shown.

Let us quantify the relative difference of the shear modulus when the pressure

takes the maximum value in the tube. With R∅ = 0.1 m and pmax = 600 kPa,

the relative difference is 22.4%. With R∅ = 0.15 m and pmax = 450 kPa, the

difference is 25.5% while with R∅ = 0.2 m and pmax = 300 kPa, it is 22.4%.

These differences are significant.

Orientation 2

• Figure 6 related to the case of Orientation 2 shows that, contrary to the case

of Orientation 1, the modulus EℓH always increases with the pressure. At the

maximal tensile stress that each tube can bear, the relative difference is 15.8%

when R∅ = 0.1m, 18% when R∅ = 0.15m and 15.8% when R∅ = 0.2m.

• The modulus GℓtH also increases with the internal pressure p, as in the case of

Orientation 1. At the maximal tensile stress that each tube can bear, the relative

21



      0.15 m

p(kPa)

E
lH

(k
N

/m
)

0 50 100 150 200 250 300 350 400 450 500 550 600 650
570

575

580

585

590

595

600

605

R∅ =0.2 m

      0.1 m

∅ El H∅

(a) Young’s modulus EℓH

p(kPa)

G
ltH

(k
N

/m
)

0 50 100 150 200 250 300 350 400 450 500 550 600 650
12

13

14

15

16

17

18

19

20

R∅ =0.2 m

      0.1 m

∅ Glt H∅

      0.15 m

(b) Shear modulus Gℓt H

Figure 5: Material coefficients (EℓH, Gℓt H) versus the internal pressure - Orientation 1

difference is 17.9% when R∅ = 0.1m, 20.4% when R∅ = 0.15m and 17.9% when

R∅ = 0.2m.

As can be seen, the differences between the moduli in the natural configuration and

the pre-stressed reference configuration may be significant.
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Figure 6: Material coefficients (Et H, Gℓt H) versus the internal pressure - Orientation 2

The numerical values of the material coefficients EtH, GℓtH versus the internal

pressure are displayed in Table 2.
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Table 2: Geometry and material properties of the tube in the pressurized configuration

Orientation 1
R∅ (m) p (kPa) L (m) R (m)

EℓH GℓtH Change (%)
(kN/m) (kN/m) in EℓH in GℓtH

0.1

50 2.5057 0.10156 594.861 12.723 1. 2.
100 2.51196 0.10309 590.408 12.948 2. 4.
150 2.51876 0.10461 586.591 13.174 2. 5.
200 2.52608 0.1061 583.364 13.401 3. 7.
250 2.53391 0.10759 580.689 13.631 3. 9.
300 2.54224 0.10906 578.529 13.862 4. 11.
350 2.55104 0.11051 576.852 14.096 4. 13.
400 2.56031 0.11196 575.629 14.333 4. 15.
450 2.57003 0.1134 574.834 14.572 4. 17.
500 2.58018 0.11482 574.443 14.813 4. 19.
550 2.59077 0.11625 574.436 15.058 4. 21.
600 2.60176 0.11766 574.791 15.306 4. 22.

0.15

50 2.50876 0.15349 592.552 12.835 1. 3.
100 2.51876 0.15691 586.591 13.174 2. 5.
150 2.52993 0.16027 581.96 13.516 3. 8.
200 2.54224 0.16359 578.529 13.862 4. 11.
250 2.55562 0.16686 576.185 14.214 4. 14.
300 2.57003 0.1701 574.834 14.572 4. 17.
350 2.58542 0.1733 574.393 14.935 4. 20.
400 2.60176 0.17649 574.791 15.306 4. 22.
450 2.61901 0.17965 575.968 15.684 4. 26.
500 2.63712 0.1828 577.871 16.069 4. 29.
550 2.65606 0.18594 580.451 16.462 3. 32.
600 2.67581 0.18907 583.67 16.864 3. 35.

0.2

50 2.51196 0.20618 590.408 12.948 2. 4.
100 2.52608 0.21221 583.364 13.401 3. 7.
150 2.54224 0.21811 578.529 13.862 4. 11.
200 2.56031 0.22392 575.629 14.333 4. 15.
250 2.58018 0.22965 574.443 14.813 4. 19.
300 2.60176 0.23532 574.791 15.306 4. 22.
350 2.62495 0.24094 576.524 15.811 4. 27.
400 2.64966 0.24653 579.518 16.33 3. 31.
450 2.67581 0.25209 583.67 16.864 3. 35.
500 2.70332 0.25764 588.894 17.412 2. 39.
550 2.73214 0.26319 595.117 17.977 1. 44.
600 2.76219 0.26874 602.278 18.557 0.4 49.
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Orientation 2
R∅ (m) p (kPa) L (m) R (m)

EℓH GℓtH Change (%)
(kN/m) (kN/m) in EℓH in GℓtH

0.1

50 2.51592 0.10074 303.538 12.672 1. 1.
100 2.53203 0.10147 307.152 12.847 2. 3.
150 2.54831 0.10222 310.84 13.024 4. 4.
200 2.56476 0.10296 314.602 13.204 5. 6.
250 2.58137 0.10371 318.437 13.386 6. 7.
300 2.59816 0.10447 322.345 13.571 7. 9.
350 2.6151 0.10522 326.325 13.759 9. 10.
400 2.6322 0.10599 330.377 13.949 10. 12.
450 2.64946 0.10675 334.501 14.142 12. 13.
500 2.66688 0.10752 338.696 14.338 13. 15.
550 2.68444 0.1083 342.963 14.536 14. 16.
600 2.70216 0.10908 347.301 14.737 16. 18.

0.15

50 2.52395 0.15166 305.335 12.759 2. 2.
100 2.54831 0.15332 310.84 13.024 4. 4.
150 2.57304 0.15501 316.51 13.295 6. 6.
200 2.59816 0.1567 322.345 13.571 7. 9.
250 2.62363 0.15841 328.342 13.853 9. 11.
300 2.64946 0.16013 334.501 14.142 12. 13.
350 2.67564 0.16186 340.821 14.436 14. 16.
400 2.70216 0.16361 347.301 14.737 16. 18.
450 2.72901 0.16538 353.941 15.044 18. 20.
500 2.75619 0.16716 360.742 15.357 20. 23.
550 2.78369 0.16895 367.704 15.677 23. 25.
600 2.8115 0.17076 374.826 16.003 25. 28.

0.2

50 2.53203 0.20295 307.152 12.847 2. 3.
100 2.56476 0.20592 314.602 13.204 5. 6.
150 2.59816 0.20893 322.345 13.571 7. 9.
200 2.6322 0.21197 330.377 13.949 10. 12.
250 2.66688 0.21505 338.696 14.338 13. 15.
300 2.70216 0.21815 347.301 14.737 16. 18.
350 2.73803 0.22129 356.191 15.148 19. 21.
400 2.77448 0.22447 365.365 15.569 22. 25.
450 2.8115 0.22767 374.826 16.003 25. 28.
500 2.84907 0.23092 384.574 16.448 28. 32.
550 2.88718 0.2342 394.611 16.904 32. 35.
600 2.92582 0.23751 404.938 17.373 35. 39.

The obtained results show that the material coefficients in the pre-stressed reference

configuration may notably differ from the material coefficients in the natural reference

configuration. For this reason, it is quite essential to use the former coefficients, not

the latter, in mechanical problems with pre-stressed reference configuration, as is the

case of the membrane tube subjected to internal pressure and bending loads which we

are going to investigate.

It is noteworthy that modulus EℓH may decrease or increase, depending on ∅EℓH∅>

∅EtH∅ or ∅EℓH∅ < ∅EtH∅. Furthermore, the change in EℓH and GℓtH may be more

than 30% in some cases.
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6. EQUILIBRIUM EQUATIONS FOR THE BENDING OF AN INFLATABLE

BEAM

Let us now pass on to the study of the in-plane bending of the membrane tube in-

flated at a given pressure p. To do this, we shall extend the approach in [10] to the

orthotropic case and formulate the problem in some detail since the transition from the

isotropic to the orthotropic case is not so straightforward. From this point on, the refer-

ence configuration will be the pressurized pre-stressed one Ω0, the final configuration

will be the pressurized-and-then-bent configuration Ω. The transition from the former

to the latter configuration is represented by the deformation Φ defined in (1), see Fig-

ure 1. This Section briefly recalls - with some improvements - the formulation of the

inflatable beam theory by means of the virtual power principle as reported in [10].

Use will be made of the total Lagrangian formulation with the Lagrangian variables

defined with respect to the reference configuration Ω0: F is the deformation gradient

tensor, Π (respectively Σ) is the first (respectively second) Piola-Kirchhoff stress ten-

sor, ρ0f0 the force per unit mass in the reference state.

The equilibrium equations are derived from the virtual power principle which stip-

ulates that the following equality holds for any virtual velocity field V∗

−
∫

Ω0

(FΣ)T : gradV∗ dΩ0 +
∫

Ω0

ρ0f0V∗dΩ0 +
∫

∂Ω0

TV∗dS0 = 0 (26)

where ∂Ω0 is the boundary of region Ω0, T =ΠN is the nominal stress vector. Here,

for the membrane tube, the virtual power
∫

∂Ω0

TV∗dS0 of the surface loads includes

the contribution of the internal pressure. This contribution writes
∫

Sp

V∗pndS, where

Sp is the portion of surface on which pressure p is prescribed, in this case Sp is the

internal tube wall. Since the pressure is a follower load, Sp is the current surface (in

the deformed configuration) and n is the normal to the current surface.

6.1. Kinematics

The bending problem is conducted considering the tube as a thin-walled beam. In

order to account for shear effects, we assume the Timoshenko kinematics for the tube,
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according to which the cross-section remains plane during the deformation but is not

perpendicular to the deformed neutral axis.

Let us denote X the reference abscissa of the centroid G of the cross-section,

U(X) =
(
U(X),V (X),0

)
the displacement vector of G and θ(X) the rotation about

ez of the cross-section (all the components are related to the Cartesian basis (ex, ey, ez),

see Figure 7). The reference position of any particle in the cross-section is X(X ,Y,Z),

the current position x of the same particle is then defined from X by

x = Φ(X) = X+U(X)+(R− I).GX

=

{
X
Y
Z

}
+

{
U
V
0

}
+

[
cosθ −1 −sinθ 0
sinθ cosθ −1 0
0 0 0

]
.

{
0
Y
Z

}
=

{
X +U −Y sinθ
V +Y cosθ
Z

}
(27)

where R et I are the rotation and identity tensor, respectively; and the components in

the column-vectors and matrice are related to the Cartesian basis (ex, ey, ez).

L 

U(X,t) 

V(X,t) 

P0 

ey ey 

ez 

ex 

ez 

P 

θ(X,t) 

ez 

 

 

 

 

 

 

 

  

G0 

G 

Figure 7: Kinematics of the pressurized membrane tube

There follows the matrix of the deformation gradient tensor F in the fixed basis

(ex,ey,ez):

Mat(F;ex,ey,ez) =

[
U,X −Y cosθθ ,X +1 −sinθ 0
V,X −Y sinθθ ,X cosθ 0
0 0 1

]
(28)
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The components of the Green strain tensor E in the same basis write are

EXX = U,X −Y cosθθ ,X +
1
2
(U,2X +V,2X +Y 2θ ,2X )− (U,X cosθθ ,X Y +V,X sinθθ ,X Y )

EXY =
1
2
[
V,X cosθ − (1+U,X )sinθ

]
EYY = EZZ = EY Z = EZX = 0

(29)

6.2. Virtual kinematics

Let V∗(G)= (U∗(X),V ∗(X),0) be the virtual velocity of the centroid G and θ ∗(G)=

(0,0,θ ∗(X)) the virtual rotation of the current cross-section. The virtual velocity

V∗(X) of a current particle in Equation (26) is chosen as

V∗(X)=V∗(G)+θ∗(G)×gx=

{
U∗

V ∗

0

}
+

{
0
0
θ ∗

}
×

{
−Y sinθ
Y cosθ

Z

}
=

{
U∗−Y cosθθ ∗

V ∗−Y sinθθ ∗

0

}
(30)

It should be noted that, as in the case of rigid body mechanics, the virtual velocity

in Equation (30) involves the final position vector gx, not the initial position vector

GX. It remains to express gx in terms of the Lagrangian variables so that one can use

the virtual power principle (26) written in Lagrangian form. One has

gx = R.GX =

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
.

{
0
Y
Z

}
=

{
−Y sinθ
Y cosθ

Z

}

Therefore

V∗(X) =

{
U∗

V ∗

0

}
+

{
0
0
θ ∗

}
×

{
−Y sinθ
Y cosθ

Z

}
=

{
U∗−Y cosθθ ∗

V ∗−Y sinθθ ∗

0

}
(31)

The matrix of tensor gradX V∗(X) in the Cartesian basis (ex, ey, ez) is

Mat(gradX V∗(X);ex,ey,ez)=

[
U∗,X −Y cosθθ ∗,X +Y sinθθ ,X θ ∗ −cosθθ ∗ 0
V ∗,X −Y sinθθ ,X −Y cosθθ ∗,X θ ∗ −sinθθ ∗ 0

0 0 0

]
(32)

6.3. Virtual power of the external loadings

The virtual power of dead loads is calculated in a standard manner. By denoting

pX , pY the distributed loads per unit length along ex, ey; µ the distributed torque in
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the ez direction; X(.), Y (.), Γ(.) the resultant force and the resultant torque at the tips

X = 0 et X = L, this virtual power is expressed as

W ∗
dead loads =

∫
Ω0

ρ0f0V∗dΩ0 +
∫

∂Ω0

TV∗dS0

=
∫ L

0
(pXU∗+ pYV ∗+µθ ∗)dX +X(0)U∗(0)+Y (0)V ∗(0)+Γ(0)θ ∗(0)

+X(L)U∗(L)+Y (L)V ∗(L)+Γ(L)θ ∗(L)

(33)

In the above, only the dead loads are taken into account in the nominal stress vector

T. As previously said, one also has to consider the virtual power of the internal pressure

p:

W ∗
pressure =

∫
Sp

V∗pndS =P
∫ L

0

{
U∗ sinθθ ,X −V ∗ cosθθ ,X +θ ∗

[
V,X cosθ − (1+U,X )sinθ

]}
dX

+P(U∗ cosθ +V ∗ sinθ)
∣∣∣ L

0

(34)

where P ≡ pπR2 is the pressure resultant over the cross-section in the pre-stressed

reference configuration.

6.4. Virtual power of the internal forces

The internal virtual power is obtained from Relations (28) and (32) :

W ∗
int =−

∫
Ω0

(FΣ)T : gradV∗ dΩ0

=−
∫ L

0

{
[N(1+U,X )+M cosθθ ,X −T sinθ ]U∗,X +(NV,X +M sinθθ ,X +T cosθ)V ∗,X

+
[
−M(1+U,X )sinθθ ,X +MV,X cosθθ ,X −

[
(1+U,X )cosθ +V,X sinθ

]
T
]
θ ∗

+
[
M(1+U,X )cosθ +MV,X sinθ +M(2)θ ,X

]
θ ∗,X

}
dX

(35)

In the above equation, the stress resultants N, M, T , M(2) are defined by

N ≡
∫

S0

ΣXX dS0 M ≡−
∫

S0

Y ΣXX dS0 T ≡
∫

S0

ΣXY dS0 M(2) ≡
∫

S0

Y 2ΣXX dS0

(36)

where S0 is the reference cross-section of the tube.
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6.5. System of nonlinear equations of the problem

By inserting Relations (33), (34) and (35) into the virtual power principle (26) and

carrying out adequate integrations by parts yield the following equilibrium equations

for the pressurized and bent membrane tube:

−[N(1+U,X )],X − (M cosθθ ,X ),X +(T sinθ),X −Psinθθ ,X = pX
−(NV,X ),X − (M sinθθ ,X ),X −(T cosθ),X +Pcosθθ ,X = pY

−
[
M(1+U,X )

]
,X cosθ − (MV,X ),X sinθ −T (1+U,X )cosθ

−TV,X sinθ − (M(2)θ ,X ),X −P
[
V,X cosθ − (1+U,X )sinθ

]
= µ

(37)

together with the boundary conditions:

N(0)[1+U,X (0)]+M(0)cosθ(0)θ ,X (0)−T (0)sinθ(0)−Pcosθ(0) = −X(0)
N(L)[1+U,X (L)]+M(L)cosθ(L)θ ,X (L)−T (L)sinθ(L)−Pcosθ(L) = +X(L)
N(0)V,X (0)+M(0)sinθ(0)θ ,X (0)−T (0)cosθ(0)−Psinθ(0) = −Y (0)
N(L)V,X (L)+M(L)sinθ(L)θ ,X (L)−T (L)cosθ(L)−Psinθ(L) = +Y (L)
M(0)[1+U,X (0)]cosθ(0)+M(0)V,X (0)sinθ(0)+M(2)(0)θ ,X (0) = −Γ(0)
M(L)[1+U,X (L)]cosθ(L)+M(L)V,X (L)sinθ(L)+M(2)(L)θ ,X (L) = +Γ(L)

(38)

The (through the thickness) stress resultants (36) can be expressed in terms of the

displacements U , V and the rotation θ by means of the constitutive law (24) and the

strains (29):

N = N0 +EℓS0

[
U,X +

1
2
(U,2X +V,2X +

I0

S0
θ ,2X )

]
T = T0 + kGℓtS0 [V,X cosθ − (1+U,X )sinθ ]
M = M0 +EℓI0 [(1+U,X )cosθ +V,X sinθ)θ ,X ]

M(2) = M(2)
0 +EℓI0

[
U,X +

1
2
(U,2X +V,2X +

K0

I0
θ ,2X )

] (39)

where symbol S0 for the reference cross-section has been re-used to denote the area

of the same section, I0 the second moment of area of the cross-section, k is the shear

factor (equal to 1/2 in the case in hand of a round tube), K0 ≡
∫

S0

Y 4dS0 is a coefficient

which only depends on the cross-section geometry. Finally, the initial resultant stresses

N0,T0,M0,M
(2)
0 are defined in a similar way to (36), involving the pre-stresses Σ0

XX et

Σ0
XY appearing in the constitutive law (24):

N0 ≡
∫

S0

Σ0
XX dS0 M0 ≡−

∫
S0

Y Σ0
XX dS0 T0 ≡

∫
S0

Σ0
XY dS0 M(2)

0 ≡
∫

S0

Y 2Σ0
XX dS0

(40)

Equations (37) and (39) form a system of 7 nonlinear equations with 7 unknowns

U(X), V (X), θ(X), N(X), M(X), T (X) and M(2)(X).
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7. LINEARIZED EQUATIONS FOR THE BENDING PROBLEM

We proceed to linearize the previous equations around the pre-stressed reference

configuration, under the following assumptions which are satisfied in practice:

(i) assumption about the order of magnitude of the kinematical variables: V/L and

θ are infinitesimal of order 1; and U/L is infinitesimal of order 2;

(ii) assumption about the pre-stresses : Σ0
XX = const, Σ0

XY = 0.

Assumption (ii) entails firstly M0 = 0 and T0 = 0, and secondly N0 = S0Σ0
XX , M(2)

0 =

I0Σ0
XX =

N0

S0
I0. The linearized integrated constitutive laws can then be derived from

Relations (39):

N = N0 T = kGℓtS0(V,X −θ) M = EℓI0θ ,X M(2) =
N0

S0
I0 (41)

In the same time, the linearized equations for the bending of the inflated tube are

derived from Relations (37):

−N0,X = pX
−(N0 + kGℓtS0)V,2X +(P+ kGℓtS0)θ ,X = pY

−(Eℓ+
N0

S0
)I0θ ,2X −(P+ kGℓtS0)(V,X −θ) = µ

(42)

Finally, the linearized boundary conditions result from Relations (38):

N0(0)−P = −X(0)
N0(L)−P = +X(L)
(N0(0)+ kGℓtS0)V,X (0)− (P+ kGℓtS0)θ(0) = −Y (0)
(N0(L)+ kGℓtS0)V,X (L)− (P+ kGℓtS0)θ(L) = +Y (L)

(Eℓ+
N0(0)

S0
)I0θ ,X (0) = −Γ(0)

(Eℓ+
N0(L)

S0
)I0θ ,X (L) = +Γ(L)

(43)

Equation (42)1 and the boundary conditions (43)1−2 enable one to determine the

axial force N0 due to the pre-stress. Once N0 is known, Equations (42)2−3 and the

boundary conditions (43)3−6 allow to obtain the deflection V and the rotation θ .
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8. APPLICATION TO THE BENDING PROBLEM OF A CANTILEVER PRES-

SURIZED MEMBRANE TUBE

The results obtained in the previous Section will now be applied to the bending of

a cantilever pressurized membrane tube. In the pre-stressed reference configuration,

the tube is subjected to an internal pressure p, its geometry is a closed axisymmetric

cylindrical tube, of length L, radius R and thickness H, see Figure 8. The tube is

clamped at the end X = 0 and free at the other end X = L. After the pressurization, a

force Fey is applied at the end X = L.

ey 

2R 

L 

ex 

F 

Figure 8: Cantilever pressurized membrane tube subjected to a bending loading

From Equations (42)1 and (43)1−2, one gets N0(X) = P. The static boundary con-

ditions in terms of V and θ result from (43)3−6:

(P+ kGℓtS0)(V,X (L)−θ(L)) = F θ ,X (L) = 0 (44)

Solving (42)2−3 and (44) under the kinematic boundary conditions V (0)= θ(0)= 0

leads to the deflection and the rotation:

V (X) =
F

(Eℓ+
P
S0

)I0

(
LX2

2
− X3

6
)+

FX
P+ kGℓtS0

θ(X) =
F

(Eℓ+
P
S0

)I0

(LX − X2

2
)

(45)

These relations clearly show the significant role of the internal pressure p – via

the pressure resultant P ≡ pπR2 – in the bending and shear stiffnesses of the beam.

Equations (45) slightly differ from those given in [12]. With our notations, the modulus
∅Ēℓ =

∅Eℓ

1−∅νℓt
∅ν tℓ

in [12] is replaced here by Eℓ and the term
1
2

k∅GℓtS0 in [12] is

replaced here by kGℓtS0.
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Influence of the internal pressure on the stiffness moduli

Relations (45) show that the internal pressure modifies the shear stiffness kGℓtS0, as

is the case in Fichter’s formulas [6] for the isotropic beam. The pressure also modifies

the bending stiffness EℓI0, which extends the result proven in [10] for the isotropic

beam again. The formulation of the orthotropic beam may seem elaborate, but the

final result is rather intuitive: the transition from the isotropic to the orthotropic case

amounts to replacing the Young’s modulus E by Eℓ and the shear modulus G by Gℓt .

In order to quantify the impact of the pressure on the stiffness moduli, let us recast

the bending stiffness as

(Eℓ+
P
S0

)I0 = (Eℓ+
pπR2

2πRH
)πR3H = (EℓH +

pR
2
)πR3 (46)

Thus, the change in the Young’s modulus due to the pressure is expressed by the

correction term pR/2. Likewise, the shear stiffness can be rewritten as

P+ kGℓtS0 = pπR2 + kGℓt2πRH = 2πRk(GℓtH +
pR
2k

) (47)

which shows that the change in the shear modulus GℓtH is equal to pR, by taking

k = 0.5 (value for thin tubes).

Consider again the two beams corresponding to two different rolling directions of

the orthotropic membrane, denoted Orientation 1 and Orientation 2, with the numerical

data given in Table 1. By using the values in Table 2, one can compute the change of

the stiffness moduli due to the internal pressure. Table 3 displays the results obtained

with pressure p equal to 300kPa.

The shear modulus is more affected by the internal pressure, since it is smaller than

the Young’s modulus (as is usually the case with fabrics). However, it is found that the

change in the Young’s modulus - with and without the pressure correction term - is not

always negligible, it can be either small (3%) or significant (9%). The herein proposed

beam theory enables one to precisely compute the stiffness change due to the pressure

and decide when some term or other can be neglected.

Influence of the internal pressure on the deflections

Let us now examine the influence of the internal pressure on the beam deflections.

For the cantilever beam of interest, the tip deflection V (L) given by (45) can be split
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Table 3: Influence of the internal pressure on the stiffness moduli EℓH and Gℓt H pour p = 300kPa

Orientation 1
∅EℓH∅ = 600kN/m, ∅EtH∅ = 300kN/m, ∅GℓtH∅ = 12.5kN/m, ∅νℓt = 0.24

R∅ (m) R (m)
EℓH EℓH + pR

2 GℓtH GℓtH + pR Change (%)
(kN/m) (kN/m) (kN/m) (kN/m) in EℓH + pR

2 in GℓtH + pR
0.1 0.1091 578.53 594.89 13.86 46.58 -3. -70.
0.15 0.1701 574.83 600.35 14.57 65.60 -4. -78.
0.3 0.2353 574.79 610.10 15.31 85.90 -6. -82.

Orientation 2
∅EℓH∅ = 300kN/m, ∅EtH∅ = 600kN/m, ∅GℓtH∅ = 12.5kN/m, ∅νℓt = 0.12

R∅ (m) R (m)
EℓH EℓH + pR

2 GℓtH GℓtH + pR Change (%)
(kN/m) (kN/m) (kN/m) (kN/m) in EℓH + pR

2 in GℓtH + pR
0.1 0.1045 322.35 338.01 13.57 44.91 -5. -70.
0.15 0.1601 334.50 358.52 14.14 62.18 -7. -77.
0.3 0.2182 347.30 380.02 14.74 80.18 -9. -82.

into two parts, the bending component denoted VB(L) and the shear component VS(L)

as follows :

V (L) =
FL3

3(Eℓ+
P
S0
)I0

+
FL

P+ kGℓtS0
=VB(L)+VS(L) (48)

The numerical computations are performed using the data in Table 2 again. The

tip force F is taken equal to 1N. For the considered three geometries (natural radius

R∅ = 0.1, 0.15 and 0.2m), the internal pressure is given its maximal value 600, 450

and 300 kPa, respectively (see these values in Section 5).

Columns %VB(L) and %VS(L) in Table 4 give the part of the bending deflection in

comparison with the part of the shear deflection. As is the case of the classical beam

theory, the former is always preponderant compared to the latter.

In view of Table 3, one may think that it is possible to disregard the pressure cor-

rection in the bending stiffness EℓH+ pR
2 . In actual fact, since the bending deflection is

much greater than the shear deflection, it turns out that an error in the bending stiffness

entails an important error in the deflection V (L). To see this, let us denote V (1)(L) (resp.

V (2)(L)) the tip deflection obtained by omitting the pressure contribution in EℓH + pR
2
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Table 4: Influence of the internal pressure on the deflection in a cantilever beam, F = 1N

Orientation 1
R∅ p

% VB(L) % VS(L)
Difference (%) when using Difference (%) when using

(m) (kPa) V (1)(L) defined by (49) V (2)(L) defined by (50)
0.1 600 96. 4. 6. 19.
0.15 450 92. 8. 6. 43.
0.3 300 85. 15. 5. 68.

Orientation 2
R∅ p

% VB(L) % VS(L)
Difference (%) when using Difference (%) when using

(m) (kPa) V (1)(L) defined by (49) V (2)(L) defined by (50)
0.1 600 98. 2. 9. 10.
0.15 450 95. 5. 10. 23.
0.3 300 92. 8. 9. 38.

(resp. in GℓtH + pR) :

V (1)(L) =
FL3

3EℓI0
+

FL
P+ kGℓtS0

(49)

V (2)(L) =
FL3

3(Eℓ+
P
S0
)I0

+
FL

kGℓtS0
(50)

The last two columns of Table 4 show the errors made when using either V (1)(L)

or V (2)(L) instead of deflection V (L) in (48). As expected from Table 3, neglecting

P in P+ kGℓtS0 may lead to large errors. On the other hand, neglecting P in Eℓ+
P
S0

may also give rise to significant errors, up to 10% with Orientation 2 and 6% with

Orientation 1.

The proposed formulation makes it possible to quantify the role of different quan-

tities in the response of the beam. In the next section, the validity of the analytical

relations (45) will be checked by comparison with finite element computations using

the membrane elements. In this respect, it should be emphasized that the point of view

as well as the material coefficients to be used are different according to the chosen

approach :

• When using the membrane finite element computations, the material input data

are coefficients ∅EℓH∅, ∅EtH∅, ∅GℓtH∅ and ∅νℓt , all defined on the natural

state, which is the reference state. The first computational step is the inflation

of the membrane tube, the second step is the bending of the inflatable beam, see
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Figure 1.

• When using Relations (45), the material input data are EℓH and GℓtH, which

should be derived from the natural geometry and the applied pressure by means

of Relations (25). The reference state is the pressurized one and the bending is

the only stage to be considered in Figure 1.

Range of validity of the theory

The proposed theory is valid as long as no wrinkles appear in the membrane. When

transforming this into the condition that the principal stresses at any point of the mem-

brane are non-negative, one finds that the force F applied must be less than a value Fc

referred to as the wrinkling force:

Fc =
πR3 p

2L
(51)

This relation is the same as that given in [10] for an isotropic membrane. Here, the

wrinkling force depends on the internal pressure p, and also on the geometry of the

tube and the material properties in the natural configuration, via dimensions R, L, see

(25).

9. VERIFICATION OF THE BENDING THEORY BY FINITE ELEMENT COM-

PUTATIONS

In order to assess the proposed bending theory, the analytical results (45) will be

compared with those obtained by membrane finite element computations. Here, the

computations are carried out using an in-house finite element code developed for non-

linear structural mechanics analysis.

In the finite element approach, the inflated beam is formulated as a three-dimensional

nonlinear elasticity problem with the reference configuration taken equal to the natu-

ral one. The weak form employed is the virtual power principle (26) and the chosen

approach is the total Lagrangian formulation. The beam is modeled as a membrane

tube and discretized using membrane finite elements which are by definition elements
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without bending stiffness and satisfying the plane-stress assumption. The spatial dis-

cretization by finite elements of the weak form leads to a system of nonlinear algebraic

equations which can be solved by the iterative Newton scheme. The tangent stiffness

matrix is the sum of the standard stiffness due to the internal stresses and the stiffness

due to the pressure which is a follower load.

It should be emphasized that the bending theory proposed in this work and the

membrane finite element approach used here are quite distinct, especially on the two

following points:

- the bending theory has been constructed using the Timoshenko kinematics whereas

the membrane finite element is derived from the membrane kinematics, of the

shell type but without bending stiffness;

- in the bending theory, the reference configuration is the pressurized pre-stressed

configuration. In contrast, in the finite element approach the reference configu-

ration is natural.

The geometry of the tube and the elastic properties of the membrane in the natural

state are given in Table 1.

The analytical expressions (8)-(9), (25) and (45) has been proven assuming that

the tube remains cylindrical when inflated. Here, in the finite element computations,

one end of the tube is closed by an isotropic membrane and the consequence of this is

that when the pressure is prescribed, the tube is not quite cylindrical at the closed end.

In order to avoid the perturbations due to the bulging end, we consider a tube a little

longer than the theoretical natural length L∅, as shown in Figure 9. Provided that the

supplementary length is enough, the portion of the tube between X∅ = 0 and X∅ = L∅

remains practically cylindrical in the deformed state. All the deflections and rotations

displayed are in the cross-section X∅ = L∅.

Concerning the boundary conditions, the axial displacement of all nodes in the

cross-section X∅ = 0 is kept to zero whereas the displacements of nodes (A,B,C,D) in

the plane (ey,ez) are left free along the directions indicated in Figure 9 so as to preserve

symmetry and prevent rigid body motions.

36



L∅ 
ey 

ez 

A 

B 

C 

D 

ey 

ex 

ez 

 

 

 

Figure 9: (a) Mesh of the tube with membrane finite elements; (b) Points A,B,C,D on the cross-section

X∅ = 0 and the degrees of freedom which are left unprescribed

The internal pressure p is applied progressively. At the first increment, the stiff-

ness matrix is singular as is the case of any non-prestressed membrane structure, thus

a small fictitious pre-stress needs to be added to achieve convergence. This pre-stress

is immediately removed in the subsequent increments. Once the internal pressure p

has reached its prescribed value, the transverse load F is applied on the end X∅ = L∅.

Recall that the membrane finite element code is based on a large deformation formula-

tion and it provides results in the nonlinear framework. The force F applied should not

be too large so as to remain in the small deformation context around the pressurized

reference configuration and to make it possible to compare the finite element results

with the results (45) from the linearized theory. Tests conducted with the membrane

finite element code reveal that F can be given the value 1N in order to stay in the linear

range, value which is also less than the wrinkling force Fc in (51).

The mesh contains 3217 nodes and 1072 membrane elements (Figure 9), which

proves to be sufficient for the numerical purposes since in the case R∅ = 0.2m, p =

300kPa for instance, a finer mesh with 6643 nodes gives an identical tip deflection

within 0.03% and an identical tip rotation within 0.02%.

Figures 10 and 11 display the deflection and rotation at the cross-section X∅ = L∅

versus the internal pressure, for the three tubes of different natural radii R∅, and for
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the two orientations no.1 and no.2 (see Table 1). The results obtained from the theory

of beam bending (45) will be referred to as analytical solutions, as opposed to the

finite element solutions. The curve portions behind the vertical line correspond to

the pressures which exceed the maximal admissible pressure in the tube. Logically,

comparisons between numerical results should be made with pressures less than the

maximal admissible pressure in each tube.

In all cases, the analytical results (45) are found to be in very good agreement with

the results from the membrane finite elements. The maximal difference in the deflec-

tion is 1.6% and the difference in the rotation is 2.9% with Orientation 1 (resp. 1.6%

and 1.8% with Orientation 2).
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Figure 10: Deflection V (L) and rotation θ(L) of the cross-section at the tip of the tube versus internal

pressure p - Orientation 1

REMARK. The material coefficients EℓH and GℓtH involved in the analytical solu-

tion (45) are related to the pressurized reference configuration and must be computed

from coefficients ∅EℓH∅ and ∅GℓtH∅ by means of Relations (25). What happens if
∅EℓH∅ and ∅GℓtH∅ are used in (45) instead of EℓH and GℓtH, in other words what

happens if one does not take account of the fact that the material coefficients vary with

the pressure?
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Figure 11: Deflection V (L) and rotation θ(L) of the cross-section at the tip of the tube versus internal

pressure p - Orientation 2

As seen in Section 5.2, in the Orientation 1 case ∅EℓH∅ is slightly larger than EℓH

while ∅GℓtH∅ is less than GℓtH. If these two coefficients ∅EℓH∅ and ∅GℓtH∅ are used

in (45), the deflection and rotation obtained at the cross-section X = L are slightly less

than those given by the analytical solution. Compared with the results obtained by the

membrane finite elements, the maximal differences in deflection and rotation are 2.5%

and 2.7%. The results obtained this way are referred to as Analytical solutions without

correction in Figures 10 and 11.

On the other hand, in the Orientation 2 case, the material coefficients in the natu-

ral configuration ∅EtH∅ and ∅GℓtH∅ are both less than their counterparts in the pre-

stressed reference configuration. The deflection and rotation obtained without correc-

tion are then far above those of the analytical solution. In comparison with the results

obtained by the membrane finite elements, at the maximum working pressure of the

tube and with R∅ = 0.1m, the difference is 15.8% in deflection and 16.3% in rotation.

With R∅ = 0.15m, the difference is 17.2% in deflection and 17.9% in rotation. Finally,

with R∅ = 0.2m these differences are 14.6% and 15.6% �

The comparisons above show that it is necessary to use the material coefficients
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related to the pre-stressed reference configuration, not the natural configuration, when

computing the bending problem. The very good accordance between the analytical

results (45) and the membrane finite element results prove the validity of the proposed

theory.

10. CONCLUSIONS

The bending of an inflatable beam made of an orthotropic membrane has been

investigated in the total Lagrangian framework. The following results have been ob-

tained:

(i) The material coefficients to be used in the analysis take different values, depend-

ing on whether they are related to the natural or the pre-stressed configuration.

The relationships (25) between the material coefficients related to the two con-

figurations have been established. They clearly show how the change of the tube

geometry from the natural to the pre-stressed state comes into play.

(ii) A nonlinear system of equations, Equations (37) and (39), has been obtained,

showing the significant role of the internal pressure in the response of inflatable

beams.

(iii) Eventually, linearization of the above nonlinear system around the pres-stressed

reference configuration has led to linear Equations (42)–(43), which enable one

to determine the deflection and the cross-section rotation of the beam. With all

these results, the proposed formulation can be considered as giving a new and

comprehensive tool for handling orthotropic inflatable beams. As an application,

the analytical relations (45) have been derived for a cantilever beam and numer-

ical computations have been carried on this example in order to show how the

internal pressure modifies the flexural and shear stiffnesses on the one hand, and

the flexural and shear deflections on the other hand.

(iv) The numerical results for different tube geometries, materials and internal pres-

sures have been found to agree very well with the membrane finite element re-

sults obtained from an independent code.
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