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3 CNRS ERL 7240 Créteil, 94000 France;
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ABSTRACT

Cilia are slender, microscopic, hair-like structures or or-
ganelles that extend from the surface of nearly all mam-
malian cells. Motile cilia, such as those found in the lungs
and respiratory tract, present a beating motion that keep the
airways clear of mucus and dirt. They are thus of primary
importance in many respiratory diseases. The performance of
mucous transportation in the nasal cavity can be represented
by a ciliary beating frequency. In this paper, we propose a
fully automated method that computes the beating frequency
from a sequence of images taken with high-speed videomi-
croscopy. The advantage of our approach is its capacity in
computing regionalized frequencies, i.e., various frequencies
each associated with one region in the image. Moreover we
propose a preprocessing pipeline to alleviate acquistion arte-
facts due to the camera or to the cell proper motions. We
demonstrate the robustness of our approach, and illustrate its
performance in comparison to the state-of-the-art.

Index Terms— Cilia, mucociliary clearance, optical flow,
registration, segmentation

1. INTRODUCTION

Muco-ciliary clearance is a crucial mechanism of defense
against aerial environmental attacks such as micro-organisms
or pollution. This clearance is achieved by the coordinated
beating of the cilia covering the nasal epithelium. Cilia
motility impairment can be either of genetic (primary ciliary
dyskinesia) or acquired origin due to environmental attacks
and may entailing chronic diseases such as chronic sinusitis
and bronchitis. It is of interest for practitioners to evaluate
ciliary beating frequency (CBF) easily, robustly and reliably.
The estimation of ciliary beating frequency has been a re-
search topic since the middle of the 20th century. One of the
first method of reference for measurement of cilary beating
frequency was proposed in 1962 and used a photo-sensitive
cell [1]. Stroboscopic methods have been replaced by more
accurate techniques that use photomultiplier, photodiode and

high-speed imaging. Those methods are described and com-
pared in [2]. Analysis via high-speed videomicroscopy is now
considered the most accurate method. Hence, the most com-
monly used technique today for evaluating ciliary function in
human being consists of collecting ciliated cells from nasal
or tracheobronchial surface mucosa, to observe them under a
microscope and to record their motion via high-speed video
acquisition. Evaluation, via these records, of ciliary beating
frequency and ciliary beating pattern was reported helpful in
the diagnosis of primary ciliary dyskinesia [3, 4, 5]. In clini-
cal research, there exist several methods that estimate ciliary
beating frequency. Cinematic analyzis [6] counts the number
of frames required to complete 10 ciliary beat cycles. It is a
time-consuming and user-dependent method, which has to be
repeated several times to obtain a reliable result. Kymograph
analysis [7] is a linescan-like method where the grey level of
a line drawn by the user is analyzed. It is sensible to illumi-
nation and vibrations, depends on the location of the line, and
is thus also user-dependent.

Some attempts to automate the measurement of CBF have
been proposed in the literature. The SAVA System [8] es-
timates frequencies from small 4×4 pixels windows. Whole
frequency spectra can be simultaneously estimated. It is based
on grey-level intensity variation, which has shown some lim-
itation if the contrast is not sufficient, rendering the reliability
of the technique questionable [9]. CiliaFA [10] provides a
frequency histogram of a large number of small regions of in-
terest, assuming low noise and no cell proper motion. The
method proposed in [11] uses a sparse optical flow to esti-
mate a single frequency per image. Thus, it is not applica-
ble when several different beating patterns are present in the
sequence. Moreover, the method is very sensitive to noise
and is easily perturbed by cells proper motion. A linescan-
based technique is proposed in [12], coupled with the Fast
Fourier Transform, and is evaluated on slices on brain ciliated
epithelium. It deals with acquisition problems: the removal
of artefacts due to the camera sensor, and frame stabilization.
However, the removal needs a blank acquisition sequence and
thus access to the camera. More problematic for our applica-



tion, the straight linescan technique needs a straight border of
cells, something not always possible with harvested cells.

In this paper, we propose a novel, fully automated tool for
the frequency estimation of beating cilia, that overcomes the
various limitations of the above methods. In particular, as de-
tailed in section 2.1, our method removes the camera artifacts
and stabilizes the inner parts of the cells, leading to greater
measurement robustness. More importantly, we propose in
section 2.2 to segment the cilia in several zones, each of pre-
senting a consistent area with the same beating frequency that
can be estimated using a dense optical flow. We demonstrate
in section 3 the validity of our approach, by comparing it to
two established methods for cilia beating frequency estima-
tion. Section 4 concludes the paper.

2. METHODOLOGY

In the field of view, multiple cell groups are often visible,
and cilia on a given cell can beat at different frequencies. As
a result, many frequencies can be measured in a single field
of view. Such frequencies provide information on cilia syn-
chronization, and ultimately on the status of the cells under
scrutiny. We seek to segment the field of view into regions
that are consistent from the point of view of the beating pat-
tern.

Our method is described as follows: in section 2.1, we re-
move acquisition artifacts due to the camera and to the exper-
imental protocol. We then segment the images into consistent
regions in section 2.2. We first remove the static elements
from each image of the sequence, obtaining images where
only moving cilia are visible. Inter-images variance allows us
to segment each image of the sequence into regions with sim-
ilar beating pattern. A dense optical flow provides an estimate
of the beating frequency on each one of those regions.

2.1. Preprocessing

Two different acquisition artifacts, inherent to the experi-
ment, need to be dealt with: a fixed sensor pattern (a grid-like
structure), due to the camera, is visible on the sequence, and
harvested cells live in a liquid environment, inducing unde-
sirable cell motion.

Sensor-pattern removal. A sensor pattern is often present
on high-speed camera. Since it is associated with the sensor,
it never moves, contrary to the content of the acquired se-
quence, consequently the pixel-wise average I = 1

n

∑
j Ij

of the image sequence integrates the non-moving parts, as
well as some residual texture due to the moving parts. A
Gaussian filter erases this texture. Subtracting the blurred av-
erage frame from the average frame yields a texture image
It = I − (I ? Gσ=1). This texture image is then subtracted
from each image of the sequence, leading to a pattern-free
sequence, as illustrated on Fig. 1.

(a) Average of the sequence (b) Blurred average image

(c) Texture (d) Image without texture

Fig. 1. Sensor-pattern removal (see text).

Sequence stabilization. We developped a robust adaptative
rigid registration technique, relying on SIFT keypoints [13].
We first remove SIFT outliers by brute-force matching. We
then compute candidate transforms by matching points in
pairs, obtaining a similarity transform. We project the trans-
form to the unit circle to estimate a rigid transform. As a
final step, we select the most explanatory model between
identity, translation-only and rigid transform. The result is a
texture-free, stabilized sequence Is.

2.2. Region segmentation and frequency estimation

By subtracting from each frame the mean of the stabilized
sequence, we obtain a sequence Imov of moving elements on
a grey-level background, i.e. ∀j ∈ {1 . . . n}, Imov

j = Isj −
1
n

∑
k I

s
k (Fig. 2.b). We compute the variance V of Sdiff ,

the sequence of difference of frames (Imov
i − Imov

i+1)i. We
then apply a Gaussian filter (G) on V leading to an image
G = V ? Gσ=5 in which each zone with a similar beating
pattern forms a white blob. We threshold G at 30% of the
maximum intensity, obtaining Gs = G≥0.3∗max(V). We calcu-
lateM1, the markers of the blobs by morphological erosion
and dilation on Gs. We then segment the blobs using a water-
shed WS [14] with ‖ ∇(G) ‖M the morphological gradient of
G

R = WS(‖ ∇(G) ‖M ,M1) (1)

We compute a dense optical flow using Färneback’s al-
gorithm [15], through which we obtain a dense displacement
vector field. In each one of the previously segmented regions,
the median of the vectors contained in that region provides
the displacement of that region.

Frequency is then estimated via a Fourier analysis of the



(a) Initial frame (b) Moving parts

(c) Variance of the sequence (d) Identification of areas

Fig. 2. The segmentation of the field of view into regions with
similar beating pattern relies on the variance of the sequence
of the difference between consecutive frames.

speed variation (i.e., the norm of the displacement vector)
over time (Fig. 3).

3. RESULTS AND VALIDATION

Data. We analyzed 10 nasal brushing biopsies from patients
of the ENT departement of Henri Mondor Hospital (Créteil,
France). Nasal brushing produces significant amounts of cells
with beating cilia. The diversity in sequence appearances can
be appreciated on Fig. 4.
Brushings were recorded under a microscope minutes after
the biopsy, at 358 frames per second with a high speed cam-
era. The spatial resolution was 0.13µm, and the resolution
was 256×192 pixels. The record was taken on the border of
the groups.

(a) Speed variation (b) Frequency spectrum

Fig. 3. Fourier analysis of speed variation for one of the sam-
ple yields to a frequency of 12.10 Hz.

Fig. 4. Four examples of ciliated cells, showing the large vari-
ability in our samples.

Software. We developped our method using python 2.7.6,
Pink [16] for python, numpy, scipy and OpenCV for python.
Our application runs in less than 20 seconds on an iMac
3.5GHz Core I7, with 32 GB of memory.

Validation. Bland-Altman diagrams show a repartition of the
distance between our method and the two methods of refer-
ence (cinematic analysis and kymography). We can observe
that our frequency estimations are all contained in the confi-
dence interval of 95% when compared with the kymography
method. By comparison with the cinematic anaysis, only one
measure is out of the interval, which remains acceptable.

Importance of preprocessing. Preprocessing steps are
meaningful in our context. Removing camera artefacts is
necessary for the success of image analysis process. The
importance of stabilization can be highlighted by some of
the image sequences. Indeed, one example shows a dead
cell sequence. If the stabilization is not performed, both our
algorithm and the classical techniques estimate a beating fre-
quency of 12Hz. A closer look to the video demonstrates that
this frequency corresponds to the motion of the cell due to
vibrations. After the stabilization, we obtained a frequency
of 0 Hz, as expected.

(a) Cinematic analysis (b) Kymography

Fig. 5. Bland-Altman plots show the consistency between our
proposed approach vs. cinematic analyis and kymography.



4. CONCLUSION

In this paper, we propose a regionalized automated mea-
surement of the ciliary beating frequency, capable of coping
with several cell groups, each with their own beating pat-
tern. Preprocessing deals with camera artefacts and stabilizes
cell proper movement and camera motion to enable a seg-
mentation of the moving parts that remain. Those moving
parts are cilia, and are segmented according to their motion.
Comparison with semi-automated kymography and cinematic
analysis for frequency measurement in the same segmented
areas shows that our results are significant.

In future work, we will confirm that our approach is in-
deed able to process more than one cell group in each field of
view. We will also validate our method on a larger database.
Furthermore, we believe that we can measure other charac-
teristics beyond frequency from the segmented regions. In
particular, an analysis of the qualitative components of beat-
ing patterns seems achievable, including a full description of
range, rhythm and structure.
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