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SUPPLEMENTARY INFORMATION 

 

S1: MODEL DETAILS AND PARAMETERS ESTIMATIONS 

 

Table S1 summarizes the values of the parameters we used in the model and the hypotheses we made.  

 

Network 

For the Erdös-Rényi graph, the only parameter needed is the average number of injecting partners. 

Wylie et al. found that Canadian PWID had a median of 3.5 injecting partners for a period of 30 days 

(1). Sacks-Davis et al. reported a median number of 3 injecting partners/PWID, in Melbourne, with a 

median duration of 3 years for a partnership (2). Murray et al. estimated the annual number of 

injecting partners to be 6 in Australia (3). Due to the lack of data about network dynamics over the 

long term, we assumed that PWID had an average of 6 injecting partners for the whole period. We 

varied this parameterfrom 3 to 15 in a sensitivity analysis. 

 

Population 

Size of the population: we assumed a population of 10,000 PWID.  

Proportion of current PWID: we considered a population that consisted exclusively of current PWID, 

at the beginning of each simulation. 

From this point forward, we use the name of the stateof the model in Figure 1to describe the 

percentage of people in this state. 

Initial distribution in the model:from ANRS-Coquelicot study for the year 2011 (unpublished). 

In details, we estimated the seroprevalence inPWID to be 65.9%. Knowing that viral ARN is present 

in 65% of seropositive individuals PWID (4), we had a viral prevalence of 42.8%. Thus the percentage 

of uninfected PWID initially is S+S’=57.2%. Inour population, 5.4% of individuals were in their first 

year of injection, and we assumed that they were all susceptible to infection. SinceS+S’=57.2%, Thus 

S=5.4% and S’=51.8%. Due to the short duration of acute hepatitis C (6 months), we assumed that the 
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number of acute hepatitis C cases at a given moment was negligible: A=0%. In ANRS-Coquelicot, 

21.4% of infected people, which represent 42.8% of the whole population, were unaware of their 

infection, thus NDC=9.2%. 33.7% of those who were awareof their infection, i.e. the remaining 33.6% 

of the whole population, were not linked to care, thus DCNL=11.3%; 47.6% were linked to care, but 

not treated, so DCL=16.0%; 6.4% were linked and currently undergoing treatment, thus T=2.2%; and 

12.3% had a previous unsuccessful or interrupted treatment, so Non-SVR=4.1%.  

To avoid that all the initially treated people stop their treatment at the same time and ensure a smooth 

trajectory at the beginning of the simulations, we drew a past time under treatment for individual in T 

in a uniform distribution (between 0 and Tt). 

Distribution in the natural history model: we found no estimation of the distribution of chronically 

infected PWID according to Metavir Score for the whole infected group for the French PWID 

population. However, Melin et al. provide an estimate at the initiation of treatment, so we assumed 

that these two distributionswere similar (5). 

We assumed that at the beginning of each simulation, the number of cirrhosis complicationswas 

negligible. 

We required that in the initial population an individual in a state had a fibrosis score coherent with his 

state, i.e. no cirrhosis complications in NDC, DCNL, DCL (as we assumed that any individual with 

complications would always be linked to care), no F2-F3-F4 in DCNL (because we assumed people in 

these stages would get treated); and no fibrosis score <F2 in T and Non-SVR because in the base 

casePWID were only treatedaccording to current guidelines - between scoresF2 and F4. 

Proportion of men,𝑝𝑀: the proportion of men in PWID, 74.5%, was given by ANRS-Coquelicot study. 

 

Transitions and care 

Infection rate per infectious contact in S (high risk),𝛽, and in S’ (low risk),𝛽’:We fitted these rates 

using approximate Bayesian computation (ABC)from some statistics calculated on the ANRS-

Coquelicot population. The detailed methodsare given in Supplementary Information S2. 

Duration of acute hepatitis, Ta, and probability of spontaneous recovery, pr: Micallef et al. provided 

an estimated 𝑝𝑟=26% of spontaneous recovery during the 𝑇𝑎=0.5 years of acute hepatitis (6).  
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Testing rate in chronic hepatitis C,𝛿: We found no direct estimation of the testing rate in the literature. 

However, the ANRS-Coquelicot study contains data sufficient to derive the rates for active PWID and 

inactive PWID. From this point forward, we define “active PWID” as the PWID that injected in the 

past month, and “inactive PWID” as the PWID that did not inject in the past month. We used these 

two groups as a proxy for current PWID, and former PWID (see Supplementary Information S3). We 

found a mean duration between infection and diagnosis of 1/𝛿=1.25 years for current PWID and 1/

𝛿=1.45 years for former PWID. 

Linkageto care rate,𝜙𝐿𝑖𝑛𝑘 , and loss to follow up rate,𝜙𝐿𝑜𝑠𝑡 : we found no data about loss to follow-up 

for chronically HCV-infected PWID in France. However, the doctoral thesis work of Dr. Bakhao 

Ndiaye provides this rate among HIV-infected PWID (7). We assumed that the rate was similar for 

both HIV and HCV. Therefore, the annual probability of loss to follow up was 13.8/100 person-year.  

The linkage to care rate,𝜙𝐿𝑖𝑛𝑘 , was estimated at 0.39 by ABC (see Supplementary Information S2), 

corresponding to an average duration of 1/0.39=2.6 years before an individual links to care. 

Treatment: For incoming DAAs regimens, we used a 𝑒=90% SVR rate for a 12-week treatment (8-15).  

In order to take into account the lower effectiveness of treatment in real life compared to the efficacy 

of the same regimen in clinical trials, we applied a ratio 𝑟=90.3% to the SVR rate. This ratio 

corresponds to the ratio of the effectiveness in an observational study to the efficacy in clinical trials of 

the dual therapy in Melin et al.(5) (if we consider a SVR rate of 45% for genotype 1 and 80% for 

genotype 2/3 in clinical trials (16) in bitherapy peg-interferon + ribavirin).  

Cessation of drug use rate,𝜃: in the absence of data on a French PWID population, we used Scottish 

data to get the mean duration between first injection and cessation of drug use: 1/ 𝜃=13.9 years(17, 

18). 

Non-HCV mortality,𝜇: For mortality of PWID, Lopez et al. estimatethe annual mortality rateto be 

0.0077 per years(y
-1

 ) for men and 0.0054 y
-1

for women among heroin, cocaine and crack cocaine 

users (19). 
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For former-PWID, we found no data. We hypothesized that mortality among former-PWID was 

similar to the mortality of adults>20 years in the general population, which was 𝜇=0.0113 y
-1

 for men 

and 𝜇=0.0098 y
-1

 for women in 2011 (20, 21). 

 

Natural history parameters 

Estimates of the transition rates between stages F0/1, F2/3 and F4 specific to PWID were available in 

Thein et al.(22). For complications and HCV-related death rates, we found no estimate for a PWID 

population, but Salomon et al. provided an estimate of HCV-related cirrhosis rates for the general 

population (23, 24). We found no estimate of the HCC rate in decompensated cirrhosis𝜆𝐻𝐶𝐶−𝐷𝑒𝑐𝑜𝑚𝑝 , 

so we assumed that 𝜆𝐻𝐶𝐶−𝐷𝑒𝑐𝑜𝑚𝑝 ≈  𝜆𝐻𝐶𝐶 . 

 

Table S1 Parameters for the model 

Parameter Value References 

Population size 10,000*  

 

Initial distribution in the IBM 

Susceptible with high risk (S) 5.4% 
   ANRS-Coquelicot 

Susceptible with low risk (S’) 51.8% 

Acute hepatitis C (A) 0%* 
 

Non-diagnosed chronic hepatitis C (NDC) 9.2% 

 

 
  
 

  
 

 ANRS-Coquelicot 

Diagnosed, non-linked to care chronic hepatitis C (DCNL) 11.3% 

Diagnosed and linked to care chronic hepatitis C (DCL) 16.0% 

Under treatment (T) 2.2% 

Non-responders after treatment (Non-SVR) 4.1% 

 

Initial distribution in the natural history model 

F0/F1 35% 

   (5) F2/F3 51% 

F4 14% 

Decompensated cirrhosis 0%* 

 
HCC 0%* 

   

% Men among current PWID (𝑝𝑀) 75.5% ANRS-Coquelicot 

Number of injecting partners per PWID (𝑑 ) 6* 
See Supplementary 

Information S1 

Infection rate by injecting partner in S’ (𝛽’) 0.01 y-1partner-1 
See Supplementary 

Information S2 
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Relative risk of infection in S (𝛽/𝛽′) 3 
   (25) 

Duration of high risk period (1/𝜂) 1 y 

Duration of acute hepatitis C (𝑇𝑎) 0.5 y 
   (6) 

Probability of spontaneous recovery (𝑝𝑟 ) 26% 

Average time from chronic infection to diagnosis (1/𝛿)   

Current PWID 1.25 y Derived from ANRS-
Coquelicot data 

(See Supplementary 

Information S3) 
Former PWID 1.45 y 

Average time before linkage to care (1/𝜙𝐿𝑖𝑛𝑘 ) 2.6 y 
See Supplementary 

Information S2 

Loss to follow-up rate (𝜙𝐿𝑜𝑠𝑡 ) 14%/y (7) 

 
Treatment: incoming DAAs regimens 

  

Duration (𝑇𝑡 ) 12 weeks 
   (8-10, 12-14, 26-28) 

SVR rate (𝑝𝑆𝑉𝑅 ) – treatment naive - all genotypes- clinical trials 90% 

 

Ratio of the effectiveness in real life to the efficacy in clinical  
trials (𝑟) 

0.903 (5) 

Mortality (𝜇)   

Current PWID - men 0.0077 y-1 
   (19) 

Current PWID - women 0.0054 y-1 

Former PWID - men 0.0114 y-1 
   (20, 21) 

Former PWID - women 0.0098 y-1 

Duration of injecting career (1/𝜃) 13.9 y (17, 18) 

Transition rate F0/F1 F2/F3 (𝜆2/3) 0.052 y-1 
   (22) 

Transition rate F2/F3 F4 (𝜆4) 0.054 y-1 

Transition rate F4Decompensated cirrhosis (𝜆𝐷𝑒𝑐𝑜𝑚𝑝 ) 0.04 y-1 

 

 
 
 
 

 
 
 

 (23, 24) 

Transition rate F4HCC (𝜆𝐻𝐶𝐶 ) 0.021 y-1 

Transition rate Decompensated cirrhosisDeath related to HCV (𝜆𝐷𝑒𝑐𝑜𝑚𝑝 −𝑀) 0.306 y-1 

Transition rate HCCDeath related to HCV (𝜆𝐻𝐶𝐶−𝑀) 0.433 y-1 

Transition rate Decompensated cirrhosisHCC (𝜆𝐷𝑒𝑐𝑜𝑚𝑝 −𝐻𝐶𝐶 ) 0.021 y-1 

* Hypothesis 
IBM: Individual-based model 

SVR: Sustained virological response 

PWID: People who inject drugs 
y-1 : per year 

HCC: Hepatocellular carcinoma 

DAA: Direct-acting antiviral 

HCV: Hepatitis C virus
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S2: ESTIMATING THE INFECTION RATE 𝜷 AND THE LINKAGE TO CARE RATE 𝝓𝑳𝒊𝒏𝒌 

BY APPROXIMATE BAYESIAN COMPUTATION (ABC) 
 

For sophisticated models where likelihood can be numerically intractable, methods based onlikelihood 

fail to provide good estimates for parameters. Approximate Bayesian Computation (ABC) is a 

computational method used to infer some parameters without likelihood estimation (29). 

We denote by𝜃 the set of parameters to deriveand 𝑋 the set of observed data. 

 

Reminder: Bayesian inference 

To clearly understand the motivation of ABC, we begin with a quick reminder about the main 

principle of Bayesian inference. The main idea of the Bayesian inference is to consider 𝜃 as a random 

variable with a probability distribution. 

Let 𝜋(𝜃) be the prior distribution of the parameters. The prior distribution is chosen to reflect the 

uncertainty around𝜃before any data is observed. Ideally,the variable must be the most informative 

possible (for example, a choice for the parameter 𝑝 of an Erdős–Rényi model can be a beta 

distribution). 

Let 𝐿(𝜃,𝑋) be the likelihood of 𝜃 given the data 𝑋 in the model. This likelihood corresponds to the 

information given by the data. 

The posterior distribution of the parameters is defined as the distribution of 𝜃 taking into account the 

available data, i.e. 𝑝 𝜃 𝑋 . According to Bayes theorem, it is given by: 

𝑝 𝜃 𝑋 ∝ 𝐿(𝜃,𝑋)𝜋(𝜃) 

Where ∝ means that the two quantities are proportional. The posterior distribution is more informative 

than the prior distribution and we expect a tighter distribution. Bayesian inference aims at estimating 

this distribution and its mean or median can be chosen as estimates of the parameter 𝜃. 

 

Main idea of ABC 

The key point of Bayesian inference is the computation of the likelihood 𝐿(𝜃,𝑋). However, for a 

complex model, this may be intractable. The main idea of ABC is to 1) catch information from the 
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observed data by replacing the posterior distribution by the target distribution𝑝 𝜃 𝑆(𝑋) (called the 

partial posterior distribution), where 𝑆 is a vector of summary statistics of the data (for example, the 

number of edges or the number of triangles of the graph); and 2) use the generative model to avoid any 

likelihood-like computation. 

Let 𝑠𝑜𝑏𝑠  be the value of 𝑆(𝑋) in the data. ABC aimsto approximate 𝐿(𝜃|sobs )by considering 

simulations for which 𝑆 is closed to 𝑠𝑜𝑏𝑠 . 

The basic form of the ABC is thus based on a rejection algorithm, and implemented as follows: 

1. Generate N random draws (𝜃𝑖 , 𝑠𝑖), 𝑖 = 1,… ,𝑁 in the joint law of  𝜃, 𝑆 .  The parameter θi  is 

generated from the prior distribution π, and the vector of summary statistics si is calculated for 

the ith data set that is simulated from the model with parameter θi .  

2. Associate to the ith simulation, the weight 𝑊𝑖 = 𝐾𝛿(𝑠𝑖 − 𝑠𝑜𝑏𝑠 ), where 𝛿 is a tolerance 

threshold and 𝐾𝛿  a (possibly multivariate) smoothing kernel.  

3. The distribution  𝑊𝑖δθi

𝑁
𝑖=1 / 𝑊𝑖

𝑁
𝑖=1  in which δθ  denotes the Dirac mass at 𝜃, approximates 

the target distribution.  

In our study, we used an improved version of this rejection algorithm, based on linear adjustments of 

the parameters: we assumed a linear link between 𝜃 and 𝑆 for observations under the tolerance 

threshold, i.e. 𝜃 can be approximated by a function of the form 𝑎 + 𝑏𝑆,and θi  is replaced by: 

𝜃𝑖
∗ = 𝜃𝑖 −  b(𝑠𝑖 − 𝑠𝑜𝑏𝑠 ), 

The slope b is estimated by regressions of 𝜃𝑖  on 𝑠𝑖with 𝑁 simulations, using the package “abc” (30) of 

the statistical software R (31). 

 

Application of ABC 

We have two parameters of interest: 𝛽′the injection rate per infectious edge in the network for an 

experienced PWID, and 𝜙𝐿𝑖𝑛𝑘  the rate of linkage to care. We have also nuisance parameters (i.e. 

parameters necessary for the model): the distribution in DCL, DCNL, T, and Non-SVR in 2004. These 

parameters are estimated from the following data of ANRS Coquelicot study: 

 Prevalence among active PWID in 2011: 42.8% 
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 Distribution of inactive PWID in DCNL: 11.3% 

 Distribution of inactive PWID in NDC: 16% 

 Distribution of inactive PWID in T: 2.2%. 

Since the Coquelicot study allowed us to have the prevalence in the model in 2004, we performed 

simulations over the 2004-2011 period. We used specific data available for this period about the 

mortality among former PWID, the testing rate, and the distribution in S, S’, and NDC instead of the 

parameters we used in the base case (see Table S2). 

Concerning the parameters of ABC, we performed 25,000 simulations, the tolerance threshold δ was 

0.1 and we used an Epanechnikov kernel, i.e. for all 𝑢 in ℝ: 

𝐾𝛿 𝑢 =
3

4𝛿
 1−

𝑢²

𝛿²
 𝟙𝑢≤𝛿  

To ensure positivity of 𝛽 and 𝜙𝐿𝑖𝑛𝑘 , these parameters were log-transformed and the distribution in 

2004 of infected and diagnosed individuals was logit-transformed to ensure it corresponded to a 

distribution and summed to 100%. The prior law distributions 

were: log(𝛽)~𝑈 0.003;  0.3 ;log 𝜙𝐿𝑖𝑛𝑘  ~𝑈 0.1; 15  where 𝑈 a;  b  is a uniform law on  a;  b . The 

prior law distributions of DCL, DCNL, T ,and Non-SVR were uniform distributions (renormalized so 

that the distribution in the model summed to 100% with respective means of 14%, 8.8%,  2.1%. and 

4.5%  for the afore-mentioned states).  

 

Table S2 - parameters for ABC implementation 

Parameter Value References 

Distribution in 2004 in the IBM 

S 3% 

ANRS-Coquelicot 
S’ 43% 

NDC 16.7% 

% Men (current PWID) 80.7% 

Duration of treatment (bitherapy) 36 weeks (16) 

%SVR bitherapy (naïve, all genotypes) 58% (5) 

Former PWID mortality (Men -Women) 11.3 - 9.6/1000 PY (20, 21) 

IBM: Individual-based model 
PWID: People who inject drugs 

SVR: sustained virological response 

PY: person-year 
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Results 

We found the following results (with 95% confidence intervals), depending on the average number of 

injecting partners: 

Table S3Infection rate per partner 𝛽′ and time to linkage to care estimates by Approximate Bayesian 

Computation, according to theaverage number of injecting partners (with 95% confidence intervals) 

Average number of injecting 

partners 
 Infection rate per partner 𝛽′ (y-1) Time to linkage to care 1/𝜙𝐿𝑖𝑛𝑘  (y) 

3 0.019 (0.004-0.045) 2.6 (2.3-2.9) 

6 0.01 (0.003-0.02) 2.6 (2.3-2.9) 

15 0.004  (0.002-0.008) 2.6 (2.3-2.9) 
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S3: ESTIMATING THE TIME BEFORE DIAGNOSIS BY MAXIMUM LIKELIHOOD 

FROM THE DATA OF THE ANRS COQUELICOT STUDY 

We wanted to estimate the test rate 𝛿 using the data available in the Coquelicot study. PWID undergo 

test until they are diagnosed with HCV. We assume that to each PWID without HCV diagnosis is 

associated a Poisson process of rate 𝛿, that is to say that intervals between successive tests follow 

exponential distribution with parameter 𝛿. 

Let’s assume that we observed𝑛 PWID without HCV diagnosis, i.e. people non-infected or unaware of 

their infection.  

For each PWID𝑖, we observed :   

•𝑇 the delay between the beginning of his/her injecting career (i.e. the first injection) and the time of 

the Coquelicot study 

• 𝐶 indicator of the presence of a HCV test before the survey 

• 𝑆 the time of the last test done before the survey 

We denote by(𝑡𝑖 , 𝑐𝑖 , 𝑠𝑖)1≤𝑖≤𝑛  the observations of (𝑇,𝐶, 𝑆) for the 𝑛 PWID, and𝑁c =  1≤𝑖≤𝑛 𝑐𝑖  the 

number of PWID in the survey with a previous HCV test. 

We define the likelihood of 𝛿, (𝑐𝑖 , 𝑠𝑖)1≤𝑖≤𝑛  conditionnally to the (𝑡𝑖)1≤𝑖≤𝑛as  

𝐿 𝛿, (𝑐𝑖 , 𝑠𝑖)1≤𝑖≤𝑛  (𝑡𝑖)1≤𝑖≤𝑛) ∝  

𝑖|𝑐𝑖=0

𝑃(𝑁 𝑡𝑖 = 0|𝑇 = 𝑡𝑖)  

𝑖|𝑐𝑖=1

𝑓𝑡𝑖(𝑠𝑖)𝑃(𝐶 = 1|𝑇 = 𝑡𝑖) 

With 𝑁(𝑡𝑖) be the number of tests done on the interval  0, 𝑡𝑖  for the individual 𝑖, and 𝑓𝑡𝑖  the density of 

𝑆 knowing that and 𝑇 = 𝑡𝑖  and 𝐶 = 1 

Proposition: The maximum-likelihood estimator of 𝛿 is 

𝛿 =
𝑁c

 𝑖|𝑐𝑖=0 𝑡𝑖 +  𝑖|𝑐𝑖=1 𝑠𝑖
 

Proof:𝑁(𝑡) follows a Poisson distribution of parameter 𝛿𝑡. 

We have: 

1) 𝑃(𝑁(𝑡) = 0|𝑇 = 𝑡) = 𝑒−𝛿𝑡  

2) 𝑃 𝐶 = 1|𝑇 = 𝑡 = 1− 𝑃 𝑁 𝑡 = 0 = 1 − 𝑒−𝛿𝑡  

3) Knowing 𝑇 = 𝑡 and 𝐶 = 1, the survival function of 𝑆 is, ∀𝑠 < 𝑡 
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𝑃 𝑆 > 𝑠 𝑇 = 𝑡,𝐶 = 1 =  

𝑘>0

𝑃(𝑋𝑘 < 𝑡 − 𝑠|𝑇 = 𝑡,𝑁(𝑡) = 𝑘)𝑃(𝑁(𝑡) = 𝑘|𝑇 = 𝑡,𝑁(𝑡) ≥ 1) 

With 𝑋𝑘 the elapsed time between the first injection and the k
th
 test of the PWID. Knowing that 

he/shehad had 𝑘 tests, , the tests repartition on [0, 𝑡] follows a uniform distribution on the injecting 

period, as the PWID are tested following a Poisson process. Thus, if for 1 ≤ 𝑙 ≤ 𝑘, 𝑈𝑙  follows an 

uniform distribution on [0, 𝑡] we have :  

𝑃 𝑋𝑙 < 𝑡 − 𝑠 𝑇 = 𝑡,𝑁 𝑡 = 𝑘 = 𝑃  𝑚𝑎𝑥
1≤𝑙≤𝑘

𝑈𝑙 < 𝑡 − 𝑠 =  

1≤𝑙≤𝑘

𝑃(𝑈𝑙 < 𝑡 − 𝑠) =  
𝑡 − 𝑠

𝑡
 
𝑘

 

Moreover,  

𝑃(𝑁(𝑡) = 𝑘|𝑇 = 𝑡,𝑁(𝑡) ≥ 1) =
𝑃(𝑁(𝑡) = 𝑘|𝑇 = 𝑡)

𝑃(𝑁(𝑡) ≥ 1|𝑇 = 𝑡)
=

𝑒−𝛿𝑡(𝛿𝑡)𝑘

𝑘! (1− 𝑒−𝛿𝑡)
 

Thus,  

𝑃 𝑆 > 𝑠 𝑇 = 𝑡,𝐶 = 1 =  

𝑘>0

 
𝑡 − 𝑠

𝑡
 
𝑘 𝑒−𝛿𝑡(𝛿𝑡)𝑘

𝑘!  1− 𝑒−𝛿𝑡 
 

=
𝑒−𝛿𝑡

(1− 𝑒−𝛿𝑡)
 

𝑘>0

𝛿𝑘(𝑡 − 𝑠)𝑘

𝑘!
=
𝑒𝛿(𝑡−𝑠) − 1

𝑒𝛿𝑡 − 1
 

Then, 

𝑃 𝑆 > 𝑠 𝑇 = 𝑡,𝐶 = 1 =
𝑒−𝛿𝑠 − 𝑒−𝛿𝑡

1 − 𝑒−𝛿𝑡
 

Therefore, ∀𝑠 < 𝑡𝑖  

𝑓𝑡 𝑠 =
𝑒−𝛿𝑠

1− 𝑒−𝛿𝑡
 

And the likelihood for a sampling:  

𝐿 𝛿, (𝑐𝑖 , 𝑠𝑖)1≤𝑖≤𝑛  (𝑡𝑖)1≤𝑖≤𝑛) ∝  

𝑖|𝑐𝑖=0

𝑒−𝛿𝑡𝑖  

𝑖|𝑐𝑖=1

𝛿𝑒−𝛿𝑠𝑖 = 𝜆𝑁c𝑒−𝛿( 𝑖|𝑐𝑖=0 𝑡𝑖+ 𝑖|𝑐𝑖=1 𝑠𝑖) 

Therefore, 

𝑙𝑛 𝐿 𝛿, (𝑐𝑖 , 𝑠𝑖)1≤𝑖≤𝑛  (𝑡𝑖)1≤𝑖≤𝑛) = 𝑁c𝑙𝑛 𝛿 − 𝛿   

𝑖|𝑐𝑖=0

𝑡𝑖 +  

𝑖|𝑐𝑖=1

𝑠𝑖 + 𝐴 

Where𝐴is a constant. It followsthat the maximum-likelihood estimator of 𝛿be that proposed above. 
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Results 

Using the data of the ANRS Coquelicot survey, we found an estimate of 0.80 years
-1

 for active PWID 

and 0.69 years
-1

for inactive PWID (PWID after cessation of drug use), corresponding to an average 

duration of 1.25 and 1.45 years before diagnosis. 
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S4: EVOLUTION OF THE PREVALENCE, INCIDENCE, AND THE NUMBER OF 

CIRRHOSIS COMPLICATIONS OVER THE FIRST 40 YEARS 

A.

 

B.
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C.

 

Figure S1 evolution of A) the prevalence of HCV in the population, B) the incidence of HCV infection and C) 

the number of new cirrhosis complications over the first 40 years. 
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S5: SENSITIVITY ANALYSES 

We present the results of some sensitivity analyses. First, the parameters’ values used in the 

deterministic sensitivity analysis are summarized in Table S3. The results are represented in a tornado 

diagram (Figure S2), giving the most sensitive parameters according to each outcome. Briefly, the 

prevalence at 10 years is mainly sensitive to the infection rate per partner and the parameters 

determining the access to treatment (transition rate from F0/F1 to F2/F3, linkage to care and loss to 

follow-up rates). The incidence at 10 years is mainly impacted by parameters related to the infection 

risk: infection rate, average time before cessation of drug use, relative risk of infection during the first 

year. The cumulative number of cirrhosis complication over 10 years is mainly impacted by the 

transition rate to cirrhosis, the initial fibrosis distribution and the linkage to care and loss to follow-up 

rates; meanwhile over 40 years, the average time to diagnosis has also an impact on it. 

TableS4gives the results for settings with an average of 3, 6 (base case), and 15 injecting partners. The 

results show similar incidence and prevalence at 10 years, and number of new complications in the 

population at 40 years.   

FiguresS3 and S4 presents the results when we increased 𝛽to 5 and 10 times the base case. Base case 

analysis results also presented for comparison. These three settings correspond respectively to a stable, 

increasing and decreasing prevalence at 10 years in the reference scenario. The conclusion of the base 

case remains valid in these other two settings. The clinical benefits are even better in setting with 

higher infection rates. 

 

Table S3 Description of the sensitivity analysis 

Parameters Base case value Sensitivity analysis References 

 

Initial distribution in the natural history model 

F0/F1 35% 50% 

   Assumption F2/F3 51% 40% 

F4 14% 10% 

    

Number of injecting partners/PWID (𝑑 ) 6 3 – 15 Assumption 

Infection rate in S’ per infected injecting partner (𝛽’) 0.01 y-1partner-1 0.003 – 0.02 
See Supplementary 

Information S2 

Relative risk of infection in S (𝛽/𝛽′) 3 1 – 10 Assumption 
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Relative risk of reinfection after SVR per infected partner 1 1-10 Assumption 

Time between chronic infection and diagnosis (current 

PWID/former PWID) (1/𝛿) 
1.25/1.45 years 0.5 – 7.8 Scenario 2 -Value in UK (32) 

Average time before linkage to care (1/𝜙𝐿𝑖𝑛𝑘 )/ Loss to follow-up 

rate (𝜙𝐿𝑜𝑠𝑡 ) 
 

2.6 y 

/ 14%/year 

0.5 - 4 

/ 5 – 20  
Scenario 3 – Assumption 

Current PWID mortality (Men/Women) (𝜇) 
0.0077 y-1/ 

/ 0.0054 y-1 

0.0058 - 0.0097 

/ 0.0041 - 0.0068 
Assumption 

Former PWID mortality (Men/Women) (𝜇) 
0.0114 y-1 

/ 0.0098 y-1 
0.0086 - 0.0143 

/ 0.0074 - 0.0123 
Assumption 

Average duration of injecting career (1/𝜃) 13.9 years 9.5 – 17  (17, 18) 

Transition rate F0/F1 F2/F3 (𝜆2/3) 0.052 y-1 0.031 - 0.074 
   (22) 

Transition rate F2/F3 F4 (𝜆4) 0.054 y-1 0.025 – 0.101 

Transition rate F4Decompensated cirrhosis (𝜆𝐷𝑒𝑐𝑜𝑚𝑝 ) 0.04 y-1 0.032 – 0.052 

 

 
 
 
 
 
 

 
 
 
 
 

 (23, 24) 

Transition rate F4HCC (𝜆𝐻𝐶𝐶 ) 0.021 y-1 0.017 – 0.028 

Transition rate Decompensated cirrhosisDeath related to HCV 

(𝜆𝐷𝑒𝑐𝑜𝑚𝑝 −𝑀) 
0.306 y-1 0.129 – 0.395 

Transition rate HCCDeath related to HCV (𝜆𝐻𝐶𝐶−𝑀) 0.433 y-1 0.319 – 0.499 

Transition rate Decompensated cirrhosisHCC (𝜆𝐷𝑒𝑐𝑜𝑚𝑝 −𝐻𝐶𝐶 ) 0.021 y-1 0.017 – 0.028 

PWID: People who inject drugs 

y-1 : per year 

HCC: Hepatocellular carcinoma 
HCV: Hepatitis C virus 

SVR: Sustained Virological Response 
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Figure S2 Tornado diagrams for the sensitivity analysis of A. prevalence at 10 years; B. incidence at 10 years; C. cirrhosis complications avoided over 10 years; D. change in the number of 

cirrhosis complications occurring over 40 years. The diagrams represent the change in the outcomes for each parameter varied. Parameters are sorted according to the magnitude of variation of 

the outcome. Only the 10 most sensitive parameters were plotted. The values on the graph indicate the parameters’ values used. 
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Table S4Results per scenario for an average number of 3, 6 and 15 injecting partners. 

Scenario 
Average number of 

injecting partners 
Prevalence at 10 years (%) 

Incidence at 10 years 

(/100 PY) 

% cirrhosis complications avoidedcompared 

to Scenario 1 over 10 years 

% cirrhosis complications avoided compared 

to Scenario 1 over 40 years 

  
mean (95% CI) mean (95% CI) mean (95% CI) mean (95% CI) 

Scenario 1 

3 24.6 (24.5;24.7) 0.77 (0.74;0.79) / / 

6 24.9 (24.8;24.9) 0.84 (0.81;0.87) / / 

15 24.9 (24.9;25) 0.85 (0.82;0.88) / / 

Scenario 2 

3 24.4 (24.3;24.5) 0.75 (0.73;0.78) -1.2 (-2.6;0.3) -0.9 (-2.7;0.9) 

6 24.7 (24.6;24.8) 0.83 (0.8;0.86) -1.2 (-2.6;0.2) -0.8 (-2.6;0.9) 

15 24.8 (24.7;24.8) 0.86 (0.83;0.89) -1.2 (-2.6;0.1) -1.7 (-3.4;0.1) 

Scenario 3 

3 23.4 (23.4;23.5) 0.72 (0.69;0.74) -9.6 (-10.9;-8.2) -11.5 (-13.1;-10) 

6 23.7 (23.6;23.8) 0.8 (0.77;0.83) -9.8 (-11.1;-8.5) -11.5 (-13.1;-10) 

15 23.8 (23.7;23.8) 0.81 (0.79;0.84) -9.6 (-10.9;-8.3) -11.9 (-13.4;-10.3) 

Scenario 4 

3 23.3 (23.2;23.4) 0.72 (0.69;0.74) -11.7 (-13;-10.4) -13.1 (-14.6;-11.6) 

6 23.6 (23.5;23.7) 0.78 (0.76;0.81) -11.6 (-12.9;-10.3) -13.1 (-14.6;-11.6) 

15 23.7 (23.6;23.7) 0.81 (0.78;0.84) -11.6 (-12.9;-10.4) -13.2 (-14.7;-11.6) 

Scenario 5 

3 22.7 (22.6;22.7) 0.71 (0.69;0.74) -2.9 (-4.2;-1.5) -12.2 (-13.8;-10.7) 

6 22.9 (22.9;23) 0.78 (0.75;0.81) -3.2 (-4.6;-1.8) -11.7 (-13.3;-10) 

15 23 (22.9;23.1) 0.79 (0.77;0.82) -3.1 (-4.4;-1.7) -12.4 (-14;-10.9) 

Scenario 6 

3 11.5 (11.5;11.6) 0.36 (0.34;0.38) -0.2 (-1.6;1.3) -7.5 (-9;-5.9) 

6 11.6 (11.6;11.7) 0.39 (0.37;0.41) -0.6 (-2;0.9) -7 (-8.6;-5.4) 

15 11.6 (11.6;11.7) 0.4 (0.38;0.42) -0.5 (-1.9;1) -7.4 (-9;-5.8) 

Scenario 7 

3 7 (7;7.1) 0.21 (0.2;0.23) -15.1 (-16.4;-13.7) -29 (-30.1;-27.8) 

6 7 (7;7.1) 0. 23 (0.22;0.25) -15.3 (-16.6;-14) -29 (-30.1;-27.9) 

15 7 (7;7.1) 0. 23 (0.22;0.25) -15.3 (-16.6;-14.1) -29.6 (-30.7;-28.4) 

CI: Confidence interval  

PY: person-year
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Figure S3Boxplots of the prevalence and incidence at 10 years according to the scenario in three settings: base 

case rate, infection rate/infected partners x 5 and infection rate/infected partners x 10 



20 

 

 
% cirrhosis complications avoided compared to 

Scenario 1 over 10 years 

% cirrhosis complications avoided compared to 

Scenario 1 over 40 years 
B

as
e 

ca
se

 

  

In
fe

ct
io

n
 r

at
e 

x
 5

 

  

In
fe

ct
io

n
 r

at
e 

x
 1

0
 

  
Figure S4Average percentage of cirrhosis complications avoided over 10 and 40 years according to the scenario 

in three settings: base case, infection rate/infected partners x 5 and infection rate/infected partners x 10 
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