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Abstract

The manipulation of trapped charged particles by electric fields is an accurate, robust and reliable

technique for many applications or experiments in high-precision spectroscopy. The transfer of the

ion sample between multiple traps allows the use of a tailored environment in quantum information,

cold chemistry, or frequency metrology experiments. In this article, we experimentally study the

transport of ion clouds of up to 50 000 ions. The design of the trap makes ions very sensitive to

any mismatch between the assumed electric potential and the actual local one. Nevertheless, we

show that being fast (100 µs to transfer over more than 20 mm) increases the transport efficiency

to values higher than 90 %, even with a large number of ions. For clouds of less than 2000 ions, a

100 % transfer efficiency is observed.
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I. INTRODUCTION

An ion cloud confined in a linear radiofrequency (RF) quadrupole trap is an example of

a non-neutral plasma (NNP), a plasma consisting exclusively of particles with a single sign

of charge. Its thermal equilibrium state has been studied in detail by Dubin, O’Neil and

coworkers in the context of large ensembles in Penning traps (for a complete review, see

[1]) and extrapolated to ions in RF-quadrupole traps [2, 3] and even to ions in multipole

traps [4]. Thanks to Doppler laser cooling, the transition of an ion cloud to a liquid and a

Coulomb crystal phase was observed [5, 6] after it was theoretically studied [2, 7].

In this paper, we address an out-of-equilibrium issue with the transport of ion clouds

by the translation and deformation of the trapping potential. Our aim is to shuttle ions

between separate trapping zones, and the objective is to do this as fast as possible without

loss. This problem is related to the transport of single ions in micro-traps, which has been

realized mainly for quantum information processing (QIP) applications. In our experiment,

a more general problem is studied as the transported ensemble is a many-body system with

long-range interaction. However, we can compare the center-of-mass motion of the ion cloud

to the trajectory of a single ion, and we therefore use the QIP transports as model systems.

Different groups have addressed the question of transport of single ions [8–10] as it is

a crucial issue for scalable architectures of QIP in ion traps. One of the main concerns in

these experiments is to avoid heating issues during the transport, the implementation of

robust gate operations also requires very high transfer efficiencies [11]. In micro-traps, the

transport distances for a single ion are of the order of 100µm. Care is taken to translate

the ion in a quasi-constant potential well, which requires a large number of electrodes to

tailor the trapping potential along the transport path. Speed is an additional issue which

has to be taken into account, as shuttling ions between different sites is only a preparatory

or intermediate task in a more sophisticated protocol and should not last longer than the

computational gate.

Our experiment comprises two macroscopic linear quadrupole RF traps, storing ion clouds

of a thousand up to a million ions. The trapping and shuttling along the common trap z-

axis are controlled by three DC-electrodes. Such large traps are typically used in frequency

metrology in the microwave domain [12], exotic ion studies [13] or experiments in physical

chemistry [14]. Two different trapping zones are useful to keep one zone free from contact
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potential induced by neutral atom deposit or to accumulate ions in one of the trapping zones.

High efficiencies for transfer are mandatory, and rapid transport protocols can reduce dead

times which are detrimental to frequency stability in the case of atomic clocks and to sample

conservation in case of short-lived species.

Many-body transport is also a concern for experiments with an ensemble of cold neutral

atoms and Bose-Einstein condensates (BECs) which have been transported without heating,

making use of shortcuts to adiabacity [15, 16]. In [15] a cloud of a few 106 cold atoms is

shuttled back and forth with an optical tweezer over a distance of 22.5 mm, in times as short

as four trap oscillation periods. The use of an optical tweezer is very advantageous as it can

be moved without deformation and the faster than adiabatic transport scheme relies on this

non-deformation. The scheme designed in [16] allowed the authors to translate a cold gas in

the non-interacting limit as well as a BEC and the non-condensed fraction by more than half

a millimeter. The transport and decompression of the atomic sample was engineered using

dynamics invariants. Because of the Coulomb repulsion, the method used for cold atoms can

not be extrapolated to ion clouds. For most experiments, adiabatic transfer is not a relevant

solution. For the trapping potentials in our experiment, the adiabatic transfer time is of

the order of several tens of seconds, incompatible with a majority of precision experimental

protocols.

This article is organised as follows : the experimental set-up and techniques are presented

in section II. Section III is devoted to results and analysis of the transfer efficiency and the

heating induced by the transport is analysed in section IV. Section V deals with the ion

number effect for a specific transport duration with a focus on smaller clouds. Conclusion

of this work can be found in section VI.

II. DESCRIPTION OF THE EXPERIMENTAL SET-UP AND PROTOCOL

A. Trapping and laser cooling

Calcium ions are trapped in a two-part linear quadrupole trap of inner radius r0 =

3.93 mm which is designed to have reduced non-harmonic components in the trapping po-

tential : the RF-electrodes are four cylindrical rods of total length 58 mm connected in

a balanced way (±(VRF/2) cos(Ωt)) to the RF supply (no grounded electrodes). The RF-
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frequency, Ω/2π, is 5.23 MHz and the potential difference between neighbouring electrodes

oscillates with a peak-to-peak amplitude of 1045 V (if not mentioned otherwise) which gives

a Mathieu parameter of qx = 0.15, well within the adiabatic approximation regime where

the RF-trapping can be approximated by a static harmonic potential (the pseudo-potential)

with frequency ωx0 = qxΩ/(2
√
2) = 2π × 277 kHz.

Trapping along the symmetry axis is reached by DC-voltages applied to electrodes per-

pendicular to the rods. Three DC-electrodes are located at equal distances along the rods,

creating two distinct trapping zones of 21 mm length, each. This double well configuration

is used for accumulation in one of the wells before further transport of the ions to other

traps, in line with the quadrupole one. In [17] our protocol for genuine accumulation of

ions is described in detail. In order to laser-cool the ions in both trapping regions using

the same laser beam, the DC-electrodes must leave the trap z-axis free, which justifies the

open shape of the three of them. Their design, detailed in [18], results from a compromise

between reduction of the non-harmonic contributions in the potential and of the screening

effect induced by the RF-rods.

Calcium ions are produced by photo-ionization of neutral calcium atoms from an effusive

beam crossing the trap axis perpendicularly in the horizontal plane. The photo-ionization

process implies two photons and the first step (423 nm) is a resonant excitation tuned to

select the most abundant isotope, 40Ca [19, 20]. The second photon, at 375 nm, takes the

atomic system above the ionization threshold. Both beams co-propagate along the trap axis.

Ions are laser-cooled by two collimated 397 nm-beams on the [4S1/2 − 4P1/2]-transition, of

equal power (2 mW on a 2 mm 1/e2 diameter), counter-propagating along the trap axis.

Once excited from the ground state, calcium ions can relax to a long-lived metastable state

[3D3/2] from which they have to be re-pumped to maintain efficient laser cooling. This re-

pumping process is assured by a 866 nm laser beam [3D3/2−4P1/2] of approximately 2.5 mW

and 4 mm 1/e2 diameter which co-propagates with one of the cooling lasers. Simultaneous

ion creation and cooling allow to trap clouds as large a several hundreds of thousands of ions.

For the work presented here, we tuned the ion creation parameters to reach a cloud size of

the order of 20 000 ions, which takes typically an integration time of 15 seconds for laser

powers of 80 µW at 423 nm and 4 mW at 375 nm. Ions are detected by their laser-induced

fluorescence at 397 nm which is collected through a dedicated objective with anti-reflection

coating and a high numerical aperture (Sill Optics, f = 66.8 mm, N.A = 0.28).
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a)

b)

FIG. 1. (a): Scheme of the experimental set-up and (b): calculated DC- potential along the trap

axis if 1000V are applied to each electrode. The distance between electrode centers is 23 mm and

the thickness of each electrode is 2 mm.

The distance L between the center of adjacent DC-electrodes is 23 mm and the trapping

along the z-axis results from the electric potential gradient of the sum of each electrode

contribution. A solution of the Laplace equation by a finite difference method software

(Simion [21]) gives the potential profile associated to each electrode of thickness 2 mm.

The characteristic shape of the resulting potential wells along the trap z-axis are shown in

Figure 1. The effective potential well, which can be estimated by the difference between

the maximum and minimum total contribution, is lower than the DC voltage applied to the

electrodes because of the screening by the RF-electrodes [18] and by the overlapping of the

potential profiles at the center of the trapping zones which offsets the potential minimum.

The large distance between electrodes results in a very small overlap of the profiles and as a

consequence, in a low potential minimum. Nevertheless, the screening effect sets a limit to

the axial trapping efficiency : for 1000 V applied to each electrode, the voltage calculated

at the electrode center is 29 V for the central one and 28.8 V for the end electrodes whereas

the minimal potential value is 1.16 V. The small overlap which leads to a deep potential

well is a drawback for transport issues, as explained in the following.
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B. Transport protocol

As pointed out in the introduction, single ion transport without heating is a major issue

for the scalability of trapped ion based quantum computer and is the subject of several

experiments [8–10]. In these works, the authors characterize and compare different transport

protocols with respect to the heating they induce on the ion motion. To guide us with

our experiments, we have extrapolated these analysis for an ion cloud by using molecular

dynamics (MD) simulations in [22]. We use the notations of previous work and we call

φi(x, y, z) the electric potential created by the DC-electrode i when 1V is applied to it.

Then, the total DC potential inside the trap can be expressed as [23]

Φ(t, x, y, z) =

N
∑

i

Vi(t)φi(x, y, z) (1)

if Vi(t) is applied to electrode i.

As the laser-cooled ions explore less than a tenth of the radial trap extension, we assume

that the dependence of the DC-potential with the coordinates x and y, perpendicular to the

trap axis, is not relevant and we call φi(z) the on-axis evaluated function φi(x = 0, y = 0, z).

With our electrode geometry, the electric potential spatial distribution created on the axis

is very well fitted around its maximum by the equation :

fi(z) = ai

(

1 +
(z − zi)

2

w2
i

)

−4

(2)

with zi the position of the center of electrode-i, wi = 8.9 mm and a1,3 = 28.8 mV and

a2 = 29 mV when 1 V is applied on the i-electrode. The non-symmetric environment of

the trap explains the small variation between the ai values. If |z − zi| = wi, fi(z) = ai/16

and we can consider that 2wi is a good enough approximation of the effective width of the

potential profile. When the three DC-electrodes are connected to the same potential, the

potential well can be considered as harmonic around each potential minimum, behaving like

mω2
z(z − zc)

2/2. The value of ωz deduced from a fit of the potential around its minimum

is 2π × 107.5 kHz for Vi = 1000 V whereas a measurement by parametric excitation of

the ion cloud [24] gives 2π × 124 kHz. The difference between these two values shows that

the potential deduced from the calculation does not reproduce exactly the real potential

experienced by the ions.
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The transport protocol relies on the time variation of the Vi potential, designed to make

the potential minimum obey a time profile zmin(t). This condition translates into

∂Φ

∂z

∣

∣

∣

zmin(t)
= 0 (3)

There are two local minima which meet each other when they reach the centre of the cen-

tral electrode and the challenge of the experiment is to design a potential evolution which

transfers the ions from the minimum in zone 1 to the minimum in zone 2 (see figure 1). In

the following, we call zmin(t) the path we want the ions to follow and it can be written like

[10]

zmin(t) = g(t)(H(t)−H(t− tg)) + LH(t− tg)− L/2 (4)

with L the shuttling distance, g(t) the time profile of the transport, tg its duration, and

H(t) the Heaviside step function. Guided by numerical results detailed in [22], we used for

the experiments presented here the time profile described by

g(t) =
L

2

(

tanh (4(2t/tg − 1))

tanh(4)
+ 1

)

. (5)

These simulations showed that among four compared time profiles, the one following Eq. 5

is the most robust against transfer duration variations. They also give evidence that the

deformation of the trapping potential along the transport is responsible for the heating of

the center of mass motion and of the ions’ motion in the center of mass frame [22] . In our

experimental set-up, the distance between electrodes is larger than the effective width of the

potential they create, therefore, keeping the axial potential undeformed while translating

its minimum requires huge voltages that we cannot provide. With the applied voltages Vi

limited to 2000 V, we can only change the depth of the effective harmonic potential but

cannot compensate for its deformation.

In practice, the potential minimum is forced to obey the time profile zmin(t) if

V2(t) = −V1(t)φ
′

1(z) + V3(t)φ
′

3(z)

φ
′

2(z)

∣

∣

∣

zmin(t)
(6)

and the harmonic contribution of the resulting axial potential along the transport can be

deduced by

ω2
z(t) =

Q

m

∂2Φ

∂z2

∣

∣

∣

zmin(t)
(7)

where Q is the ion charge and m its mass.
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Computing V2(t) through Eq. 6 requires to know the potential profile created by each

electrode to estimate the first order derivative φ
′

i(z). Single-ion experiments have shown the

great sensitivity of the transport induced heating on the precise knowledge of the potential

geometry. Reference [25] proposes a characterisation method for micro-traps where a single

ion explores the potential and its flaws. The size of our trap and of the ion sample are

not suited for this method, and we have hence based our calculations on φi(z) ≃ fi(z) (see

Eq 2). Eq (6) leads to a discontinuity of V2(t) for zmin(t) = z2, the center of the electrode 2

where φ′

2(z2) = 0. To avoid this discontinuity, a constant relation between V1(t) and V3(t)

is imposed, given by

V3(t) = −V1(t)
f ′

1(z2)

f ′

3(z2)
(8)

In our experiments, V1 and V3 are kept constant. In a perfectly symmetric device V3(t) =

V1(t) would solve the problem but any asymmetry in the electrode environment breaks this

equality. The reader is referred to [22] for details about how to avoid discontinuities in

numerical simulations.

III. TRANSFER EFFICIENCY FOR LARGE ION CLOUDS

A. Estimation of the number of ions

We are primarily interested in the transport efficiency as a matter of the relative number

of ions passing from trapping zone 1 to zone 2. A precise quantitative study requires the

measurement of the number of trapped ions, which is of the order of a few tens of thousands.

The ion’s fluorescence signal is split between a photomultiplier and an intensified CCD

camera. For fixed laser frequencies and trapping parameters, the fluorescence counting

rate depends on the number of ions in the trap but also on their temperature. Because

the transport can induce heating and ion loss, and because RF-heating depends on the

ion number and their temperature [26], there is no simple relation between the recorded

fluorescence signal and the number of trapped ions. Indeed, we very often observe a signal

increase when the ion number has decreased, because of a smaller RF-heating.

To develop a quantitative diagnostic independent of the signal counting rate, we use the

density characteristics of the liquid phase of an ion cloud. One can show that in the cold fluid

limit, a singly-charged sample in a harmonic potential has a uniform density [27], bound by
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an ellipsoid of revolution where the density falls to zero on the scale of the Debye length.

This results from the Boltzmann-Poisson equation in the low temperature limit and for ions

in a linear quadrupole trap the density depends only on the trapping pseudo-potential [4].

This property, as well as the predicted aspect ratio of the ellipsoid [28], have been verified

quantitatively very accurately for ions in a linear quadrupole trap in [29].

Every ion ensemble is cooled to the liquid phase before and after transport in order to

quantify the ion number. The difference between liquid and gas phase is easily detected

by the variation in the fluorescence level [29]. The calculated density in the liquid phase is

1.40 × 105 mm−3 and for a typical temperature of 100 mK, the Debye length is 1.85 µm,

which fits within two pixels on the camera with an optical magnification of the order of

13. The typical size for the ion cloud in the liquid phase is of the order of 700 µm for the

semi-major axis and 300 µm for the semi-minor axis of the ellipse. The Debye length is

then negligible compared to the cloud size and we consider a uniform density all over the

cloud in the liquid phase. By changing the laser cooling efficiency and thereby the sample

temperature, we checked that, for ion clouds smaller than 50 000 ions, once the ellipsoid

is formed by laser cooling, the measured dimensions for the ellipse are independent of the

fluorescence signal level and the slight modification of the Debye length has no impact on

the measured values. For larger clouds, transition to the liquid phase requires to reduce the

RF-voltage amplitude and the border of the ellipses spread over a larger scale. We have

developed a software which automatically fits and extracts the dimensions of an ellipse from

the recorded picture of the collected fluorescence and the method used by this software is

now developed.

The first step is to define the contour of the fluorescence signal. This requires the defini-

tion of a threshold for the signal, independent from the number of photons scattered per ion.

The threshold criteria is provided by the analysis of the section of the signal along one pixel

line across the image. The derivative of the signal with respect to the pixel position shows

two sharp extrema, X1 and X2 at the ellipse border (see figure 2). Their position falls in

the same pixel as the one chosen by a fit ”by the eyes” and does not depend on the absolute

level of the signal. As some of the ellipse pictures are longer than the camera detector, we

base our protocol on a section located approximately on the small axis and define the level

threshold as the mean signal (S(X1) + S(X2))/2.

The second step is to fit the contour by an ellipse equation, including a possible angle
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FIG. 2. (a) example of the picture of an ion cloud (dimensions in pixels) in the liquid phase with

the fit of the contour (exposure time 0.5 s). The trap axis and laser propagation direction are

vertical. (b) Smoothed section of the signal along the short axis of the ellipse, and (c) its derivative

between the ellipse semi-axis and the detector rows. This is done through a 2D fit subroutine

and produces a fit which falls in the same pixels as the original contour, which confirms the

ellipsoid shape of the cloud. To valid our fit procedure, for the same ion cloud, simply

deformed by changing the trapping parameters, we use the two calculated semi-axis lengths

Re and Le to estimate the ellipse aspect ratio ρe = Re/Le and volume Ve = 4πR2
eLe/3

extracted from experimental data. We can compare the aspect ratio with the expected one,

deduced from the effective pseudo-potential ρ = f(ωz/ωr) by an equation demonstrated in

[28] and experimentally confirmed in [30]. More precisely, we measure the relative shift δL

between the length deduced from the fit and the one deduced by the fitted radius, assuming

a known aspect ratio : δL = (Le − Re/ρ)/Le. Furthermore, we can check that the volume
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modifications obey what is expected from the density n(r) at low temperature :

n(r) = ǫ0∆Ψpp(r)/Q (9)

where Ψpp(r) is the harmonic pseudo-potential, characterised by

Ψpp(r) =
1

2Q
m(ω2

x − ω2
z/2)(x

2 + y2) +
1

2Q
mω2

zz
2 (10)

which leads to a uniform density n(r) = n0 = ǫ02mω2
x/Q

2. As we want to reach a 1%

level accuracy in relative volume estimation, we have to go beyond the first order adiabatic

approximation. By expanding the calculation of the coefficient in the Mathieu solutions to

the second order in (q2x, ax), one can show that

ω2
x = ω2

x0

(

1 +
q2x
2

+ ax

)

. (11)

In our case, ax is induced by the z-axis trapping-voltage VDC , ax = −2ω2
z/Ω

2 and with

our operating parameters, the correction is in the 1% range. Taking that into account, for

the same RF amplitude but different DC-voltages, we observe relative fluctuations lower

than ±1% for both the length and the volume of the same cloud in zone 2. In zone 1,

we observe volume fluctuations that can reach 6 %, far larger than the length fluctuations

δL which remain in the ±1% range. We attribute this difference to the contact potential,

identified in zone 1, and induced by calcium deposition on the quadrupole rods, in front

of the calcium oven. For different trapping parameters, the cloud is displaced in the trap,

giving an optical image with a slightly different size. This is in particular true when the

RF amplitude is changed and where apparent ion numbers can vary by 10%. For constant

trapping parameters, like used for estimating the relative number of ions after a transport

protocol, the uncertainty on the volume is ±1% for zone 2 and ±1.5% for zone 1 (6σ

confidence). Precise investigations of transport efficiencies in terms of ratios of ion numbers,

only requires measurement of the volume of the ellipses as we compare cold clouds with

identical density. As for an estimation of the number of ions in a cloud, the fluctuations of

the apparent particle number for the same cloud, when it is deformed and shifted, lead us

to fix a 5% uncertainty on the absolute number (and the uncertainty induced by the optical

magnification is negligible here).
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B. From one local minimum to the other

In a first step, we study our ability to transfer ions from one trapping zone to the other,

depending on the duration of the transfer tg for given trapping parameters. Bandpass

limitations of the DC-supplies prevent us from investigating transport durations shorter

than 80 µs. All the experiments were done with an ion cloud with a typical size ranging

from 5000 to 20000 ions. For some well identified transport protocols, we checked that the

transport efficiency is independent of the ion number as long as this number is larger than

2000. For clouds smaller than 2000, the efficiency is higher than for larger clouds and can

reach 100 %. A focus on smaller cloud transfer is presented in section V. As our detection

is based on the observation of induced fluorescence, the cooling laser beams remain applied

during the transport. For some specific transport protocols, we compared the transport

efficiency with and without the cooling laser during transport. The observed differences

were only of the order of a few % showing that the cooling effect does not play an important

role. Indeed, the capture range of the Doppler laser cooling is 9.2 m/s, smaller or far smaller

than the average shuttling velocity which ranges from 20 to 200 m/s.

Figure 3 shows the fraction of ions leaving the trapping zone 1 for tg between 80µs and

2.6 ms. The first major observation is that the number of leaving ions depends strongly

on tg, alternating between nearly 0 and 100% several times before these oscillations are

damped. Changing the axial trapping potential by changing the DC voltages, shifts these

oscillations with tg and makes more oscillations observable for a larger value of the DC

voltages. If the same protocol is applied to a smaller ion cloud (typically 1000 ions and

smaller), oscillations are also observed with identical temporal imprint, excluding a number

dependent effect. A possible explanation for this interchange between a high and low transfer

probability is the oscillation of the ions from zone 1 to zone 2 and their return to trapping

zone 1 before the transport function is completed. This assumption is tested by setting V3 to

-2000 V during the transport protocol, which means opening the second trapping zone. For

this configuration, oscillations are still observed, shifted in tg with respect to the previous

symmetric configuration. These observations are consistent with the hypothesis that ions

that were still in trapping zone 1 once the transport protocol was completed, entered zone 2

far enough to see their trajectories modified by the deformation of the potential, but not far

enough to be attracted by the negatively polarised electrode. For transport durations longer
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FIG. 3. Fraction of ions leaving the trapping zone 1 vs the transport duration tg for different

on-axis DC-voltages : (a) Vi = 600 V, (b) Vi = 1200 V. The lines are a means to guide the eye.

than 1 ms, the fraction of transferred ions reaches a stationary value. In an ideal, symmetric

system this value is expected to be 50 %. In our dual trap, an asymmetry, very probably

due to the contact potential in trapping zone 1, can be responsible for this imbalance in ion

repartition for long transport.

To get more insight into this issue, we use a MD simulation to compute the trajectory

of a single ion in the translated and deformed potential applied in the experiment, as a

good approximation of the center of mass motion [22]. Actually, the results of this simula-

tion depend on the method used to describe the potential. If the equations of motion are

integrated in the calculated axial potential fitted by Eq. 2, the probability for the ion to

be transferred to zone 2 is unity, whatever is the transfer duration. To come closer to the

experimental situation, we keep the waveforms Vi(t) as used in the experiments but inte-

grate the equation of motion in the potential grid calculated by the finite difference method

software, Simion [21]. In this condition, oscillations of the probability to transfer the ion

to trapping zone 2 are observed, depending on the transfer duration. The consequence of

the discrepancy between the two descriptions of the potential is visible on figure 4 where

several examples of ion trajectories are ploted. For tg = 189 µs, the ion trajectory follows

the potential minimum from trapping zone 1 to zone 2. For longer transfer durations, the

ion is ahead of the potential minimum and for tg = 884 µs, makes a U-turn in zone 2 before
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FIG. 4. Single ion trajectories computed by MD, versus the relative time elapsed during the

transfer. The trajectories are computed in the potential grid provided by the Simion software,

based on our electrode geometry, when V2(t) obeys Eq. 6 computed with φi(z) = fi(z). Red

dashed line : tg = 189 µs, solid blue line : tg = 884 µs, green dot-dashed line : tg = 1621 µs.

The black dotted lines are the position of the two potential minima along the transfer. Horizontal

dash-dotted lines indicate the positions of the centres of the traps.

ending in zone 1, like assumed previously. For even longer transfer times (tg = 1621 µs), the

calculated trajectory shows a U-turn in zone 2, followed by a U-turn in zone 1 to finally have

an ion efficiently transferred to zone 2. Longer transfer durations give rise to an increasing

number of U-turns which results in an oscillation between trap 1 and trap 2 for the ion final

position. The experimental results exhibit a shorter timescale than the simulations. This

can be explained by a larger difference between the potential assumed to compute the Vi(t)

and the one experienced by the ions in the trap. The inconsistency identified above cannot

be avoided in a large-scale experiment where it seems unrealistic to generate a precise map

of the complete electric field seen by the ion cloud along its transport. Nevertheless, the

experimental results show that it is still possible to force the ion to transfer even if the cor-

responding time scale can not be exactly foreseen. The next step in the transport efficiency

analysis is to look at how many ions effectively settle in the other part of the trap.

C. Transport induced ion loss

The third step in our transport efficiency characterisation is to check that all ions leav-

ing zone 1 are trapped in zone 2 by the end of the transport protocol. As only a single

14



fluorescence collecting optics is used in the experiment, the precise characterisation of the

transfer efficiency requires that the ions are transferred back to their original position for a

comparison between the cloud sizes. To circumvent this drawback and be able to estimate

the one-way transfer efficiency, we identified a transfer protocol that is efficient enough to

serve as a standard operation. This is the case for the transfer of 100 µs duration. Like

mentioned previously, the transfer efficiency depends very little on the ion number as long

as this number is larger than two thousand ions. This efficiency was estimated from several

consecutive transport protocols to be of the order of 90% for 100 µs. By using always the

same protocol for the zone 2 to zone 1 transfer, we can observe the dependence of the zone 1

to zone 2 transfer efficiency as a function of its duration, like shown on figure 5. The results
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FIG. 5. Blue squares : Proportion of ions transferred from zone 2 to zone 1 by a transfer protocol

of duration 100 µs and then transferred back to zone 2 by a transfer protocol of duration tg. Red

dots (deduced from Fig. 3(b)): Proportion of ions not leaving zone 1 after transfer protocol of

duration tg. The DC voltages are 1200 V (the lines are a guide to the eye)

show oscillations with the transfer duration, out of phase with the proportion of ions not

leaving trapping zone 1, which is also reproduced from Fig.3(b) on the same figure. The

largest two-way transfer efficiency is as high as 90% and is observed for a transport made of

two consecutive 100 µs transport protocols. Increasing the duration of a transport protocol

does not result in a higher transfer efficiency. Numerical simulations detailed in [22] show

how the cloud spreading makes long transport inappropriate for large clouds. The extra

information brought by the comparison of the two curves of Figure 5 is that the ion number

budget evidences transfer-induced ion loss. In the following we quantify the transfer-induced

cloud heating to look for possible correlations with the ion loss.
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IV. EXCITATION OF MOTION

The transport-induced motional excitation has a signature on the time evolution of the

fluorescence. All laser frequencies are kept constant during the experiment and the temporal

evolution of the fluorescence directly after the transport depends on the Doppler effect, which

depends on the ion velocity along the trap axis. Heating may occur during transport, in

that case, a re-cooling phase can be observed. The time Tf required for the fluorescence

rate to reach its stationary value after a transfer operation is plotted in figure 6. The chosen

transport durations are large enough to make sure that a non-negligible proportion of the

ion cloud arrives in zone 2. The re-cooling time Tf can vary from short (2 s) to long (10 s)

times which shows that the Doppler shift induced by the transport depends on the duration

of the transport. Also on figure 6 (b) is plotted the maximum fluorescence rate, which can be

considered as a crude indication for the ion number. The graph confirms that a fast recovery

of the signal is not due to a lower number of ions. As seen on the comparison of the two

curves of figure 6, the amplitude variations of the signal are anti-correlated with the recovery

time of the fluorescence rate. In a hand-waving argument, we can interpret the time Tf as

an indicator for the motional excitation, and deduce from this figure that a larger number of

ions is efficiently transferred to trapping zone 2 when this excitation is low. When a smaller

RF amplitude is used (which results in qx = 0.12 instead of 0.15), the signal recovery time

can be as small as 200 ms, showing that the ion velocities are less modified by the transport

process. The largest observed signal recovery time is 5 s for this lower potential value. The

global increase of the signal recovery time with the RF-amplitude can be interpreted by

non-linear terms in the equation of motion coupling the motion along the radial and axial

directions, and giving rise to RF heating of the motion. In our experimental context, the

axial potential is deformed and the non-harmonic contributions are non-negligible when the

potential minimum crosses the site of the central electrode. The anharmonic contributions

induce a coupling between the center of mass motion and the motion in the center of mass

frame which is responsible for an increase of the kinetic energy of the center of mass. MD

simulations of the transport of an ion cloud [22] showed that this contribution increases with

the transport duration, as the cloud spreads further out. The experimental results do not

show such a behaviour for the time-scale explored, leaving the cause of duration-dependent

cloud heating unexplained.
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V. TRANSFER EFFICIENCY VERSUS ION NUMBER

We analyse the ion number effect for the transport duration which gives the highest

two-way transport efficiency. In the described case, the protocol uses transport functions

of duration tg = 100µs. Figure 7 shows that for clouds of less than 5 000 ions, the round-

trip transfer efficiency increases with shrinking cloud size and can reach unity for ensembles

of less than 2000 ions. We assume that this size effect is due to the spatial spreading of

the cloud. This figure also shows that for this chosen transport function, the round-trip

efficiency for shuttling is typically higher than 80 %. These high ratios can be realised with

ion clouds of up to 105 ions. This very fast and efficient shuttling is in particular interesting

for experiments in frequency metrology, as for example [12].

VI. CONCLUSION

We have experimentally studied the transport of ion clouds in a macroscopic rf trap for

cloud sizes as large as several tens of thousands. This transport is efficiently controlled by

the potential applied to the central DC-electrode splitting the trap in two zones. We have

700 800 900 1000 1100 1200 1300 1400
0

2

4

6

t
g
 (µs)

S
(k

co
un

ts
/m

s)

700 800 900 1000 1100 1200 1300 1400
0

5

10

T
f (

s)

(a)

(b)

FIG. 6. a): Time Tf it takes for a transported cloud in zone 2 to recover its maximal fluorescence

rate after a transfer from zone 1 of duration tg. b): Value of this maximal signal. The DC initial

voltages are 1800 V.
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FIG. 7. Ratio of the number of ions after shuttling back and forth from trapping zone 2 with two

identical transport protocols, versus the initial number of ions.

used a time profile for the transport function which is designed for single ion shuttling, and

which can result in unity transfer of an ion cloud. We have also investigated the cloud’s

response to the potential deformation induced by the spatial translation. Our experimental

results and their comparison with MD simulations show that the mismatch between the ideal

and the real DC-potential profiles explains the varying temporal response of the transport

efficiency on the duration of the transport function. We can observe oscillations between

high and low probability for an ion-cloud transfer from one trapping zone to another. The

transfer induced heating also shows such oscillations with a comparable time scale.

The observed oscillations in the transfer efficiency can be modified by choosing different

trapping parameters, and the minimum heating can be lowered by using smaller RF am-

plitudes. It is therefore possible to find conditions for which the transfer efficiency is high

and the motional excitation is low for the same transfer duration. For clouds containing less

than 2000 ions, 100 (±1.5)%-transfers can be achieved. This is another step approaching

our objective which is to transfer large ion clouds with 100% efficiency without heating. Our

best results for clouds larger than 5000 ions, are transfers of 92%.

We can tailor the temporal response to the transfer protocol by tuning the applied DC-

voltages. It is possible to choose a ”no-return” parameter set, where ions are transferred

with a very high probability from a first trap to a second trap, but at the same time they

do have an extremely low probability to leave the second trap. This asymmetric protocol

allows to implement a true accumulation process, the experiment is described in [17].
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[5] R. Blümel, J. M. Chen, E. Peik, W. Quint, W. Schleich, Y. R. Shen, and H. Walther, Nature

334, 309 (1988).

[6] M. Drewsen, C. Brodersen, L. Hornekær, J. S. Hangst, and J. P. Schiffer, Phys. Rev. Lett.

81, 2878 (1998).

[7] J. P. Schiffer, Phys. Rev. Lett. 70, 818 (1993).

[8] R. Reichle, D. Leibfried, R. Blakestad, J. Britton, J. Jost, E. Knill, C. Langer, R. Ozeri,

S. Seidelin, and D. Wineland, Fortschritte der Physik 54, 666 (2006).

[9] S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, Fortschritte der Physik 54, 648

(2006).

[10] D. Hucul, M. Yeo, S. Olmschenk, C. Monroe, W. K. Hensinger, and J. Rabchuk, Quantum

Info. Comput. 8, 501 (2008).

[11] K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. Charles Doret, H. Hayden, C.-S. Pai,

D. W. Landgren, D. Denison, T. Killian, R. E. Slusher, and A. W. Harter, New Journal of

Physics 15, 033004 (2013).

[12] J. Prestage and G. Weaver, Proceedings of the IEEE 95, 2235 (2007).

[13] F. Herfurth, Nuclear Instruments and Methods in Physics Research Section B: Beam In-

teractions with Materials and Atoms 204, 587 (2003), 14th International Conference on

19



Electromagnetic Isotope Separators and Techniques Related to their Applications.

[14] R. Wester, Journal of Physics B: Atomic, Molecular and Optical Physics 42, 154001 (12pp)

(2009).

[15] A. Couvert, T. Kawalec, G. Reinaudi, and D. Gury-Odelin, EPL (Europhysics Letters) 83,

13001 (2008).

[16] J.-F. Schaff, P. Capuzzi, G. Labeyrie, and P. Vignolo, New Journal of Physics 13, 113017

(2011).

[17] M. R. Kamsap, C. Champenois, J. Pedregosa, M. Houssin, and M. Knoop, (2015), submitted.

[18] J. Pedregosa, C. Champenois, M. Houssin, and M. Knoop, International Journal of Mass

Spectrometry 290, 100 (2010).

[19] S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, and W. Hogervorst, Appl. Phys.

B 73, 861 (2001).

[20] D. Lucas, A. Ramos, J. Home, M. McDonnell, S. Nakayama, J.-P. Stacey, S. Webster,

D.N.Stacey, and A. Steane, Phys.Rev. A 69, 012711 (2004).

[21] Http://www.simion.com.

[22] J. Pedregosa-Gutierrez, C. Champenois, M. Kamsap, and M. Knoop, International Journal

of Mass Spectrometry (2015), to be published.

[23] K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, and F. Schmidt-Kaler,

Rev. Mod. Phys. 82, 2609 (2010).

[24] C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, and F. Vedel, Eur.

Phys. J. D 15, 105 (2001).

[25] M. Brownnutt, M. Harlander, W. Hänsel, and R. Blatt, Applied Physics B 107, 1125 (2012).

[26] V. L. Ryjkov, X. Zhao, and H. A. Schuessler, Phys. Rev. A 71, 033414 (2005).

[27] S. A. Prasad and T. M. O’Neil, Physics of Fluids (1958-1988) 22, 278 (1979).

[28] L. Turner, Phys. Fluids 30, 3196 (1987).

[29] L. Hornekær and M. Drewsen, Phys. Rev. A 66, 013412 (2002).

[30] L. Hornekær, N. Kjrgaard, A. Thommesen, and M. Drewsen, Physical Review Letters 86,

1994 (2001).

20


