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Introduction and hypotheses

Consider (X, Y ), a random vector defined in R×R. Throughout, we work with a sample {(X i , Y i ) 1 i n } of independent and identically replica of (X, Y ). We will assume that (X, Y ) [resp .X] has density function f X,Y [resp. f X ] with respect to the Lebesgue measure. In this paper, we will mostly focus on a non parametric estimator of the conditional cumulative distribution function (cond-cdf) of Y given X = x, defined by :

∀t ∈ R, F (t|x) = E 1 {Y t} |X = x = P (Y t|X = x) . (1) 
Let I = [a, b], J = [a , b ] I, two fixed compacts of R.

(F.1) f X,Y is continuous on J × R and f X is continuous and strictly positive on J ;

(F.2) Y 1 {X∈J} is almost surely bounded on R.

K denotes a positive-valued kernel function defined on R, fulfilling the conditions :

(K.1) K is a right-continuous function with bounded variation on R ;

1 (K.2) K is compactly supported and R K(u)du = 1 ; (K.3)
R uK(u)du = 0 and R u 2 K(u)du = 0. We note : ||K|| 2 2 = R K 2 (u)du. Further, introduce the following assumptions on the non-random sequence (h n ) n 1 :

(H.0) for all n, 0 < h n < 1 ; (H.1) h n → 0, as n → +∞ ; (H.2) nh n / log n → +∞, as n → +∞ ;
Our aim will be to establish the strong uniform consistency of the local linear estimator of the conditional cumulative distribution function, defined by :

F (1) n (t, h n |x) = f n,2 (x, h n ) r n,0 (x, t, h n ) -f n,1 (x, h n ) r n,1 (x, t, h n ) f n,0 (x, h n ) f n,2 (x, h n ) -f n,1 (x, h n ) 2 (2) 
where (1) denotes the order 1 of the local polynomial estimator, and

f n,j (x, h n ) = 1 nh n n i=1 x -X i h n j K x -X i h n , for j = 0, 1, 2, (3) 
r n,j (x, t, h n ) = 1 nh n n i=1 1 {Y i t} x -X i h n j K x -X i h n , for j = 0, 1. (4) 
Remarks :

1. The Nadaraya-Watson estimator F (0) n (t, h n |x) can be also written with the functions f n,j and r n,j as

F (0) n (t, h n |x) = r n,0 (x, t, h n ) f n,0 (x, h n ) •
It is the local polynomial estimator of order 0 of the conditional cumulative distribution function.

2. The estimator F

n (t, h n |x) is better than the Nadaraya-Watson estimator when the design is random and has the favorable property to reproduce polynomial of order 1. Precisely, the local linear estimator has a high minimax efficiency among all possible estimators, including nonlinear smoothers (see Fan and Gijbels [START_REF] Fan | Local polynomial modeling and its applications[END_REF]).

3. The local polynomial estimator can be generalized to the orders p 2, but it is not very interesting to study p 3, see Fan and Gijbels [START_REF] Fan | Local polynomial modeling and its applications[END_REF], pp. 20-22 and 77-80. The argument is that the mean square error increases with p.

Now, we study the consistency of the estimator F

n (t, h n |x) via the decomposition :

F (1) n (t, h n |x) -F (t|x) = F (1) n (t, h n |x) -E F (1) n (t, h n |x) (1) 
+ E F (1) n (t, h n |x) -F (t|x) (2) 
where, following the ideas of Deheuvels and Mason (see [START_REF] Deheuvels | General asymptotic confidence bands based on kerneltype function estimators[END_REF]), the centering term is :

E F (1) n (t, h n |x) = f n,2 (x, h n )r n,0 (x, t, h n ) -f n,1 (x, h n )r n,1 (x, t, h n ) f n,0 (x, h n )f n,2 (x, h n ) -f 2 n,1 (x, h n ) where f n,j (x, h n ) = E f n,j (x, h n ) and r n,j (x, t, h n ) = E ( r n,j (x, h n )) for j = 0, 1, 2.
The random part (1) is the object of our theorem given in the following Section. Under (F.1-2), (H.1) and (K.1-3), the deterministic term (2), so-called bias, converges uniformly to 0 over (x, t) ∈ I × R.

Uniform consistency of the local linear estimator

The uniform law of the logarithm concerning the local linear estimator of the cond-cdf, is given in Theorem 2.1 below.

Theorem 2.1 Under (F.1-2), (H.0-2) and (K.1-3), we have the convergence in probability, as n → ∞ :

sup x∈I nh n log(h -1 n ) F (1) n (t, h n |x) -E F (1) n (t, h n |x) → σ F,t (I) (5) 
where

σ 2 F,t (I) = 2||K|| 2 2 sup x∈I F (t|x)(1-F (t|x)) f X (x)
• Moreover, we have, as n → ∞ :

sup t∈R sup x∈I nh n log(h -1 n ) F (1) n (t, h n |x) -E F (1) n (t, h n |x) → σ F (I) (6) 
where

σ 2 F (I) = 2||K|| 2 2 sup t∈R sup x∈I F (t|x)(1 -F (t|x)) f X (x) = ||K|| 2 2 2 inf x∈I f X (x) •
We introduce the following quantity

L n (x) := 2nh n K 2 2 log(h -1 n ) f n,0 (x, h n ) -1
. Note that L n tends uniformly on I to 0 as n → ∞. At the end of Section 1, assumptions are listed under which F (t|x) -E F

n (t, h n |x) converges to 0 uniformly. But to obtain the following result, this bias needs to be of order o (L n (x)). Proposition 2.2 Under (F.1-2), (H.0-2) and (K.1-3), and if h n is such that the bias term

sup t∈R sup x∈I {L n (x)} -1 F (t|x) -E F (1)
n (t, h n |x) → 0 then we have, in probability, as n → ∞ :

sup t∈R sup x∈I {L n (x)} -1 F (1) n (t, h n |x) -F (t|x) → 1. ( 7 
)
3 Uniform asymptotic certainty bands

We show now how the Proposition 2.2 can be used to construct uniform asymptotic certainty bands for F (t|x), in the following sense. Under the assumptions of the Proposition 2.2, we have, for each 0 < ε < 1, and as n → +∞ :

P F (t|x) ∈ F (1) n (t, h n |x) ± (1 + ε)L n (x) , for all (x, t) ∈ I × R → 1 (8) and P F (t|x) ∈ F (1) n (t, h n |x) ± (1 -ε)L n (x) , for all (x, t) ∈ I × R → 0. (9) 
Whenever ( 8) and (9) hold jointly for each 0 < ε < 1, we have the following corollary :

Corollary 3.1 Under (F.1-2), (H.0-2) and (K.1-3), and if h n is such that the bias term

sup t∈R sup x∈I {L n (x)} -1 |F (t, h n |x) -E F (1) 
n (t, h n |x) | → 0 then the interval

F (1) n (t, h n |x) ± L n (x) (10) 
provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the cond-cdf F (t|x), uniformly in (x, t) ∈ I × R.

Let m(x) = E(Y |X = x) the regression function and m

(1)

n (x) = y F (1) 
n (dy, h n |x) its local linear estimator. The Proposition 2.2 has the following corollary. 

m (1) n (x) ± (β -α)L n (x) (11) 
provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the conditional regression function m(x), uniformly in x ∈ I.

For 0 < α < 1, let the conditional α-quantile q α (x) = inf{t ∈ R : F (t|x) α} and its local linear estimator q

(1) α,n (x) = inf{t ∈ R : F (1) n (t, h n |x)
α}. The Proposition 2.2 has the following corollary for the conditional quantiles.

Corollary 3.3 Under (F.1-2), (H.0-2) and (K.1-3), if h n is such that the bias term sup t∈R sup x∈I {L n (x)} -1 F (t|x) -E F (1) n (t, h n |x) → 0 and if the function x → f X,Y (x, q α (x)) = 0 for all x ∈ I, then the interval q (1) α,n (x) ± 2L n (x)f X (x) f X,Y (x, q α (x)) (12) 
provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the conditional α-quantile q α (x), uniformly in x ∈ I.

The proofs of these results are available in our article [START_REF] Ferrigno | Certainty bands for the conditional cumulative distribution function and applications[END_REF].

A simulation study

We consider the model Y = 2 sin(πX)+ where X, are independent random variables having a common distribution with density 1 -|x| on [-1, 1]. This is a model already studied by [START_REF] Hall | Methods for estimating a conditional distribution function[END_REF] and [START_REF] Veraverbeke | Preadjusted non-parametric estimation of a conditional distribution function[END_REF].

We worked with the sample size n = 100 and the Epanechnikov kernel. The bandwidth is selected by minimization of a cross-validation criteria (see [START_REF] Li | Optimal bandwidth selection for nonparametric conditional distribution and quantile functions[END_REF]) :

CV (h, (X i , Y i ) 1 i n ) = 1 n(n -1) n i=1 n j=1,j =i 1 Y i Y j -F (1) -i (Y j , h|X i ) 2 where F (1) -i (y, h|X i ) is defined by : j =i X j -X i h 2 K X j -X i h j =i 1 Y j y K X j -X i h -j =i X j -X i h K X j -X i h j =i 1 Y j y X j -X i h K X j -X i h j =i X j -X i h 2 K X j -X i h j =i K X j -X i h - j =i X j -X i h K X j -X i h 2
The Figure 1 gives the graph of a sample (X i , Y i ) i=1,...,n , and its associated cond-cdf. The certainty bands are too narrow since L n (x) is very small. It is not satisfactory since the coverage probabilities is far from 1. Another solution is to compute B bootstrapped samples from (X i , Y i ) i=1,...,n and to take the envelope of their B associated certainty bands (this envelope is named in the sequel bootstrapped certainty band). The figure 2 shows the bootstrapped certainty bands for x = 0, 0.7 and B = 100. The coverage probabilities of the bootstrapped certainty bands is estimated by N rep = 100 repetitions of the data generation, and the results are illustrated in the figure 3. We used B = 30 and B = 100 (the optimal h is computed at each new data generation, i.e. N rep times). When B = 100, the coverage probabilities are higher that 0.85. 
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 32 Under (F.1-2), (H.0-2) and (K.1-3), and if h n is such that the bias term sup t∈R sup x∈I {L n (x)} -1 F (t|x) -E F

( 1 )

 1 n (t, h n |x) → 0 and the variable Y lives in the real interval [α, β], then the interval
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 1 Figure 1 -Graph of a sample (X i , Y i ) i=1,...,n and corresponding estimations.
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 2 Figure 2 -Bootstrapped certainty bands of the cond-cdf for x = 0 (left) and x = 0.7 (right).
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 3 Figure 3 -Coverage probabilities of the true cond-cdf after N rep = 100 repetitions, x = 0, B = 30 (left), x = 0, B = 100 (middle), and x = 0.7, B = 100 (right).