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Résumé. Nous étudions l’estimateur polynomial local de la fonction de répartition
conditionnelle. Nous donnons un résultat de consistence uniforme de cet estimateur, puis
nous en déduisons des bandes de confiance asymptotiques de cette fonction. En corollaires,
nous pouvons obtenir des estimateurs et des bandes de confiance asymptotiques pour les
quantiles et la fonction de regression. Nous illustrons nos résultats par des simulations.

Mots-clés. Fonction de répartition conditionnelle, estimation polynomiale locale,
bandes de confiance asymptotiques, fonction de régression, quantiles.

Abstract. In this paper, we establish uniform asymptotic certainty bands for the
conditional cumulative distribution function. To this aim, we give exact rate of strong
uniform consistency for the local linear estimator of this function. The corollaries of this
result are the asymptotic certainty bands for the quantiles and the regression function.
We illustrate our results with simulations.

Keywords. Conditional cumulative distribution function, local polynomial estimator,
uniform asymptotic certainty bands, regression function, quantiles.

1 Introduction and hypotheses

Consider (X, Y ), a random vector defined in R×R. Throughout, we work with a sample
{(Xi, Yi)16i6n} of independent and identically replica of (X, Y ). We will assume that
(X, Y ) [resp .X] has density function fX,Y [resp. fX ] with respect to the Lebesgue measure.
In this paper, we will mostly focus on a non parametric estimator of the conditional
cumulative distribution function (cond-cdf) of Y given X = x, defined by :

∀t ∈ R, F (t|x) = E
(
1{Y 6t}|X = x

)
= P (Y 6 t|X = x) . (1)

Let I = [a, b], J = [a′, b′] ) I, two fixed compacts of R.

(F.1) fX,Y is continuous on J × R and fX is continuous and strictly positive on J ;

(F.2) Y 1{X∈J} is almost surely bounded on R.

K denotes a positive-valued kernel function defined on R, fulfilling the conditions :

(K.1) K is a right-continuous function with bounded variation on R ;

1



(K.2) K is compactly supported and
∫
RK(u)du = 1 ;

(K.3)
∫
R uK(u)du = 0 and

∫
R u

2K(u)du 6= 0. We note : ||K||22 =
∫
RK

2(u)du.

Further, introduce the following assumptions on the non-random sequence (hn)n>1 :

(H.0) for all n, 0 < hn < 1 ;

(H.1) hn → 0, as n→ +∞ ;

(H.2) nhn/ log n→ +∞, as n→ +∞ ;

Our aim will be to establish the strong uniform consistency of the local linear estimator
of the conditional cumulative distribution function, defined by :

F̂ (1)
n (t, hn|x) =

f̂n,2(x, hn)r̂n,0(x, t, hn)− f̂n,1(x, hn)r̂n,1(x, t, hn)

f̂n,0(x, hn)f̂n,2(x, hn)−
(
f̂n,1(x, hn)

)2 (2)

where (1) denotes the order 1 of the local polynomial estimator, and

f̂n,j(x, hn) =
1

nhn

n∑
i=1

(
x−Xi

hn

)j
K

(
x−Xi

hn

)
, for j = 0, 1, 2, (3)

r̂n,j(x, t, hn) =
1

nhn

n∑
i=1

1{Yi6t}

(
x−Xi

hn

)j
K

(
x−Xi

hn

)
, for j = 0, 1. (4)

Remarks :

1. The Nadaraya-Watson estimator F̂
(0)
n (t, hn|x) can be also written with the functions

f̂n,j and r̂n,j as

F̂ (0)
n (t, hn|x) =

r̂n,0(x, t, hn)

f̂n,0(x, hn)
·

It is the local polynomial estimator of order 0 of the conditional cumulative distri-
bution function.

2. The estimator F̂
(1)
n (t, hn|x) is better than the Nadaraya-Watson estimator when the

design is random and has the favorable property to reproduce polynomial of order 1.
Precisely, the local linear estimator has a high minimax efficiency among all possible
estimators, including nonlinear smoothers (see Fan and Gijbels [1]).

3. The local polynomial estimator can be generalized to the orders p > 2, but it is not
very interesting to study p > 3, see Fan and Gijbels [1], pp. 20-22 and 77-80. The
argument is that the mean square error increases with p.

Now, we study the consistency of the estimator F̂
(1)
n (t, hn|x) via the decomposition :

F̂ (1)
n (t, hn|x)− F (t|x) = F̂ (1)

n (t, hn|x)− Ê
(
F̂ (1)
n (t, hn|x)

)
︸ ︷︷ ︸

(1)

+ Ê
(
F̂ (1)
n (t, hn|x)

)
− F (t|x)︸ ︷︷ ︸

(2)
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where, following the ideas of Deheuvels and Mason (see [2]), the centering term is :

Ê
(
F̂ (1)
n (t, hn|x)

)
=
fn,2(x, hn)rn,0(x, t, hn)− fn,1(x, hn)rn,1(x, t, hn)

fn,0(x, hn)fn,2(x, hn)− f 2
n,1(x, hn)

where fn,j(x, hn) = E
(
f̂n,j(x, hn)

)
and rn,j(x, t, hn) = E (r̂n,j(x, hn)) for j = 0, 1, 2.

The random part (1) is the object of our theorem given in the following Section. Under
(F.1-2), (H.1) and (K.1-3), the deterministic term (2), so-called bias, converges uniformly
to 0 over (x, t) ∈ I × R.

2 Uniform consistency of the local linear estimator

The uniform law of the logarithm concerning the local linear estimator of the cond-cdf,
is given in Theorem 2.1 below.

Theorem 2.1 Under (F.1-2), (H.0-2) and (K.1-3), we have the convergence in probabi-
lity, as n→∞ :

sup
x∈I

√
nhn

log(h−1n )

∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣→ σF,t(I) (5)

where σ2
F,t(I) = 2||K||22 supx∈I

(
F (t|x)(1−F (t|x))

fX(x)

)
·

Moreover, we have, as n→∞ :

sup
t∈R

sup
x∈I

√
nhn

log(h−1n )

∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣→ σF (I) (6)

where

σ2
F (I) = 2||K||22 sup

t∈R
sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)
=

||K||22
2 inf
x∈I

fX(x)
·

We introduce the following quantity Ln(x) :=

√
2nhn

‖K‖22 log(h−1n )
f̂n,0(x, hn)

−1

. Note that

Ln tends uniformly on I to 0 as n → ∞. At the end of Section 1, assumptions are

listed under which F (t|x)− Ê
(
F̂

(1)
n (t, hn|x)

)
converges to 0 uniformly. But to obtain the

following result, this bias needs to be of order o (Ln(x)).

Proposition 2.2 Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1
∣∣∣F (t|x)− Ê

(
F̂

(1)
n (t, hn|x)

)∣∣∣ → 0 then we have, in probability, as
n→∞ :

sup
t∈R

sup
x∈I
{Ln(x)}−1

∣∣∣F̂ (1)
n (t, hn|x)− F (t|x)

∣∣∣→ 1. (7)
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3 Uniform asymptotic certainty bands

We show now how the Proposition 2.2 can be used to construct uniform asymptotic
certainty bands for F (t|x), in the following sense. Under the assumptions of the Proposi-
tion 2.2, we have, for each 0 < ε < 1, and as n→ +∞ :

P
{
F (t|x) ∈

[
F̂ (1)
n (t, hn|x)± (1 + ε)Ln(x)

]
, for all (x, t) ∈ I × R

}
→ 1 (8)

and
P
{
F (t|x) ∈

[
F̂ (1)
n (t, hn|x)± (1− ε)Ln(x)

]
, for all (x, t) ∈ I × R

}
→ 0. (9)

Whenever (8) and (9) hold jointly for each 0 < ε < 1, we have the following corollary :

Corollary 3.1 Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1|F (t, hn|x)− Ê
(
F̂

(1)
n (t, hn|x)

)
| → 0 then the interval[

F̂ (1)
n (t, hn|x)± Ln(x)

]
(10)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%)
for the cond-cdf F (t|x), uniformly in (x, t) ∈ I × R.

Let m(x) = E(Y |X = x) the regression function and m̂
(1)
n (x) =

∫
yF̂

(1)
n (dy, hn|x) its

local linear estimator. The Proposition 2.2 has the following corollary.

Corollary 3.2 Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1
∣∣∣F (t|x)− Ê

(
F̂

(1)
n (t, hn|x)

)∣∣∣ → 0 and the variable Y lives in the

real interval [α, β], then the interval[
m̂(1)
n (x)± (β − α)Ln(x)

]
(11)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%)
for the conditional regression function m(x), uniformly in x ∈ I.

For 0 < α < 1, let the conditional α-quantile qα(x) = inf{t ∈ R : F (t|x) > α} and its

local linear estimator q̂
(1)
α,n(x) = inf{t ∈ R : F̂

(1)
n (t, hn|x) > α}. The Proposition 2.2 has

the following corollary for the conditional quantiles.

Corollary 3.3 Under (F.1-2), (H.0-2) and (K.1-3), if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1
∣∣∣F (t|x)− Ê

(
F̂

(1)
n (t, hn|x)

)∣∣∣→ 0 and if the function x 7→ fX,Y (x, qα(x)) 6=
0 for all x ∈ I, then the interval[

q̂(1)α,n(x)± 2Ln(x)fX(x)

fX,Y (x, qα(x))

]
(12)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%)
for the conditional α-quantile qα(x), uniformly in x ∈ I.

The proofs of these results are available in our article [5].
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4 A simulation study

We consider the model Y = 2 sin(πX)+ε where X, ε are independent random variables
having a common distribution with density 1 − |x| on [−1, 1]. This is a model already
studied by [3] and [4].

We worked with the sample size n = 100 and the Epanechnikov kernel. The bandwidth
is selected by minimization of a cross-validation criteria (see [6]) :

CV (h, (Xi, Yi)16i6n) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(
1Yi6Yj − F̂

(1)
−i (Yj, h|Xi)

)2
where F̂

(1)
−i (y, h|Xi) is defined by :∑

j 6=i

(
Xj−Xi

h

)2
K
(
Xj−Xi

h

)∑
j 6=i 1Yj6yK

(
Xj−Xi

h

)
−
∑

j 6=i

(
Xj−Xi

h

)
K
(
Xj−Xi

h

)∑
j 6=i 1Yj6y

Xj−Xi

h K
(
Xj−Xi

h

)
∑

j 6=i

(
Xj−Xi

h

)2
K
(
Xj−Xi

h

)∑
j 6=iK

(
Xj−Xi

h

)
−
[∑

j 6=i

(
Xj−Xi

h

)
K
(
Xj−Xi

h

)]2
The Figure 1 gives the graph of a sample (Xi, Yi)i=1,...,n, and its associated cond-cdf.

The certainty bands are too narrow since Ln(x) is very small. It is not satisfactory since
the coverage probabilities is far from 1.
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Figure 1 – Graph of a sample (Xi, Yi)i=1,...,n and corresponding estimations.

Another solution is to computeB bootstrapped samples from (Xi, Yi)i=1,...,n and to take
the envelope of their B associated certainty bands (this envelope is named in the sequel
bootstrapped certainty band). The figure 2 shows the bootstrapped certainty bands for
x = 0, 0.7 and B = 100. The coverage probabilities of the bootstrapped certainty bands is
estimated by Nrep = 100 repetitions of the data generation, and the results are illustrated
in the figure 3. We used B = 30 and B = 100 (the optimal h is computed at each new
data generation, i.e. Nrep times). When B = 100, the coverage probabilities are higher
that 0.85.
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Figure 2 – Bootstrapped certainty bands of the cond-cdf for x = 0 (left) and x = 0.7
(right).
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Figure 3 – Coverage probabilities of the true cond-cdf after Nrep = 100 repetitions,
x = 0, B = 30 (left), x = 0, B = 100 (middle), and x = 0.7, B = 100 (right).
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