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a b s t r a c t

Carbonated apatites represent an important class of compounds encountered in many fields including

anthropology, archeology, geology, medicine and biomaterials engineering. They constitute, in particular,

the mineral part of bones and teeth, are found in sedimentary settings, and are used as biomimetic

compounds for the development of bone tissue engineering scaffolds. Whether for assessing the degree

of biomimetism of synthetic apatites or for better understanding diagenetic events, their thorough

physico-chemical characterization is essential, and includes, in particular, the evaluation of their car-

bonate content. FTIR is especially well-suited for such a goal, as this spectroscopy technique requires only

a low amount of specimen to analyze, and carbonate ions exhibit a clear vibrational signature. In this

contribution, we critically discuss several FTIR-approaches that may be (or have been) considered in view

of carbonation quantification. The best methodology appears to be based on the analysis of the n3(CO3)

and n1n3(PO4) modes. The area ratio rc/p between these two contributions was found to be directly

correlated to the carbonate content of the samples (R2 ¼ 0.985), with the relation wt.% CO3 ¼ 28.62*rc/

p þ 0.0843. The method was validated thanks to titrations by coulometry assays for various synthetic

reference samples exhibiting carbonate contents between 3 and 7 wt.%. The FTIR carbonate quantifica-

tion methodology that we propose here was also tested with success on three skeletal specimens (two

bones/one tooth), after elimination of the collagen contribution. Comparative data analysis is also pre-

sented, showing that the use of other vibration bands, or only peak heights (instead of peak areas), leads

to significantly lower correlation agreement. This FTIR data treatment methodology is recommended so

as to limit errors on the evaluation of carbonate contents in apatite substrates.

1. Introduction

Hard tissues (bones and teeth) in vertebrates are natural com-

posite materials (Price et al., 1985) consisting of well-organized

organic and inorganic moieties in tridimensional arrangements

(Gomez-Morales et al., 2013; Landis et al., 1996), in order to fulfill

appropriately physicochemical, biological, and mechanical func-

tions. The mineral part is composed of an apatite phase that derives

from hydroxyapatite (HA), Ca10(PO4)6(OH)2. In the case of enamel,

the chemical composition of the apatite phase closely resembles

that of HA (in a microcrystalline setting), whereas the apatite phase

constituting bone mineral or dentin is clearly nanocrystalline and

significantly departs from stoichiometry. In all cases, trace ele-

ments can also enter the structure, such as fluorine, magnesium or

strontium among others (Elliott, 1994). These considerations typi-

cally illustrate the exceptional capacity of the apatite structure to

adapt its composition and crystal dimensions to the functions that

it has to achieve in vivo (low solubility, resistance to acidic attacks

for enamel; greater solubility for bone mineral which has to un-

dergo remodeling processes and remain active in homeostasis).

In all cases, carbonate ions are also found to substitute anions in

biological apatites (Rey et al., 1989; Pasteris et al., 2014; Shimoda

et al., 1990; Gomez-Morales et al., 2013; Elliott et al., 1985): phos-

phates (leading to “B-type” carbonated apatites) or hydroxides (“A-

type”), or the mixed “AB-type”. The incidence of carbonation in

biological apatites is not anecdotic: carbonate ions, CO3
2!, are
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known to be growth inhibitors for the apatitic structure (Shimoda

et al., 1990); their presence is thus expected to modulate mineral-

ization processes. Also, carbonate ions are thought to stabilize the

non-apatitic surface layer present on apatite nanocrystals. Indeed,

for a similar maturation time in solution, carbonated apatites

exhibit a lower degree of maturity than their non-carbonated

counterparts (internal communication). The presence of carbon-

ate ions during the mineralization of collagenic proteins in vivo is

thus likely to influence the final characteristics of the apatite

crystals that are being formed, although the level of carbonation is

known to increase with the maturity of the biomineral (Pellegrino

and Biltz, 1972; Legros et al., 1987).

It is possible to prepare by soft chemical route some “bio-

mimetic” apatite nanocrystals approaching the composition,

structure, and microstructure of biological apatites, and their

physico-chemical features can be tailored by controlling adequately

the precipitation conditions (Vandecandelaere et al., 2012). Bio-

mimetic analogs can be either precipitated in the presence or in the

absence of carbonate ions. Recently, we highlighted some of the

similarities existing between a carbonated apatite matured for one

week (Grunenwald et al., 2014) and a typical modern bone spec-

imen. Such synthetic apatite compounds can be considered as

“models” of the mineral part of bones, allowing one to investigate

interfacial phenomena in a simplified and more controlled way

than with biologically-derived samples, as we did recently in the

field of ancient DNA preservation (Grunenwald et al., 2014). Syn-

thetic carbonated apatites are also good candidates for the setup of

scaffolds for bone tissue engineering or for coating prosthetic de-

vices, taking into consideration their intrinsic biocompatibility and

similarity to bone mineral.

Whether of natural origin or of synthetic nature, carbonated

apatites can be encountered in various fields of interest, from an-

thropology or forensic sciences (analysis of skeletal remains) to

biomaterials engineering, aswell as fundamental research aiming at

better understanding biomineralization processes. In all cases,

sample characterization is a necessary step, which includes the

determination of the carbonation content. As regards synthetic

samples, this determination is necessary to evaluate the degree of

analogy (biomimetism) to bone mineral with varying maturity

stages after bone remodeling. The CO3 content in apatite com-

pounds progressively increases upon maturation of the crystals

(Pellegrino and Biltz, 1972). In the case of biological apatites, the

knowledge of the carbonation level may help understanding

diagenetic phenomena since the alteration of the CO3 content from

skeletal specimens appears to be site-specific (Trueman et al., 2008;

Cazalbou et al., 2004; Kohn et al., 1999). Also, Roche et al. argued for

changes to the A-B ratio in fossils compared tomodern tissues, thus

pointing out that the carbonate component of biogenic phosphates

can change during diagenesis (Roche et al., 2010). In geochemistry

andpaleoenvironment/paleobiology domains, itmayhelp to extract

precious information via isotopic titrations of carbon or oxygen

isotopes contained in the CO3
2� anions (Suarez and Kohn, 2011;

Lecuyer et al., 2010; Sponheimer and Lee-Thorp, 2001; Kohn et al.,

1996; Tütken and Vennemann, 2011; Price et al., 1985).

The list of techniques that may potentially come into play for

assessing the amount of carbonate ions associated with the apatite

phase is however quite limited. Methods based on total carbon

titration after sample calcination are generally associatedwith non-

negligible uncertainties (estimated to several weight percent),

which limits their practical usefulness. Methods based on the

release of carbon dioxide upon acidification and subsequent elec-

trochemical quantification (coulometry assays) yield significantly

more accurate results (Eichert et al., 2007; Engleman et al., 1985),

but require a substantial amount of sample (typically of the order of

several tens to hundreds of milligrams) which is not often an option

in the case of archeological or forensic specimens where only a very

limited quantity of matter is available.

In this context, the use of vibrational spectroscopies such as

Raman or Fourier Transform Infrared (FTIR) spectroscopies appears

particularly relevant due to the high sensitivity of these techniques

and the very low amount of specimen that they require (typically

1e2 mg). Lebon et al. have pointed out however some difficulties

related to the use of Raman spectroscopy due to fluorescence of

biological/fossil systems as well as to the low intensity of the car-

bonate contribution (Lebon et al., 2011). The n2(CO3) and n3(CO3)

vibration modes of carbonate ions incorporated in an apatitic lat-

tice are on the contrary quite easily detectable by FTIR. This tech-

nique thus appears as a potentially adapted technique for

carbonation quantification. Puceat et al. proposed to follow, by FTIR,

the carbonation of apatites on the basis of the ratio of peak heights

between the 1415 cm�1 band of the n3(CO3) band, mostly assign-

able to B-type carbonate, and the sum of the two peaks (i.e. 601 and

560 cm�1) of the n4(PO4) contribution (Puceat et al., 2004). In a

rather similar intention, Featherstone et al. had previously inves-

tigated a method based on the ratio of extinction coefficients at

1415 and 575 cm�1 (Featherstone et al., 1984). However, this

method based on a comparison of peak heights at selected wave-

numbers can hardly account for the variability of carbonate

chemical environments in all apatite specimens, where not only B-

type carbonates but also A-type or even labile carbonates (per-

taining to the non-apatitic surface layer on apatite nanocrystals

(Gomez-Morales et al., 2013; Eichert et al., 2007; Rey et al., 2011))

may coexist in variable proportions (Rey et al., 2011). Moreover, the

hydroxylation of apatite e which may be variable depending on

stoichiometry e leads to a libration band at 632 cm�1 super-

imposed to the n4(PO4) band (Drouet, 2013). It has also been sug-

gested (Puceat et al., 2004; Sosa et al., 2013; Boskey et al., 2005)

evaluating the carbonate contribution using the area or intensity

ratio of the 1415 cm�1 band alone (not considering the rest of the

n3(CO3) contribution) relative to the n3(PO4) phosphate band,

instead of n4(PO4), or exploiting the n2(CO3), for example, through

the n2(CO3)/n3n1(PO4) area ratio. However, in the case of HPO4-

containing apatites, the occurrence of overlapping HPO4-related

contributions in the n2(CO3) domain adds some obvious complexity

in IR data which does not seem to have received attention so far.

Yet, most synthetic apatites obtained by wet chemistry as well as

biological bone or dentin specimens are expected to be non-

stoichiometric and to incorporate non-negligible proportions of

HPO4
2� ions (Gomez-Morales et al., 2013), the presence of which

has thus to be considered prior to developing IR methodologies.

In this context, the present contribution intends to 1) discuss

which carbonate and phosphate vibrational contributions should

be favored in view of carbonation quantification, and 2) to develop

and test an FTIR-based methodology adapted to the evaluation of

the CO3 content of both synthetic and biological specimens. The

validation of the method has been made through the use of direct

carbonate titrations via coulometry assays. To this end, we have

prepared a set of carbonated apatite reference compounds to be

used for calibration purposes, allowing us to check relationships

between IR data (integrated intensities of several vibrational con-

tributions) and coulometric results. The skeletal specimens tested

in this work arose, on the contrary, from archeological settings.

2. Materials and methods

2.1. Synthetic apatite compounds

Several synthetic carbonated apatite samples, used as reference

materials in this work, were synthesized by precipitation in

aqueous medium, at close-to-physiological pH (experimental



value ~ 7.2) and at different temperatures, namely 10 �C, 20 �C,

room temperature (22 �C), 37 �C, 50 �C, and 70 �C. Except for ex-

periments run at room temperature or at 70 �C, the temperature

was controlled using a double-envelope reactor and a circulating

device allowing the recirculation of a fluid between the two en-

velopes for precise temperature regulation. The sample prepared at

70 �C could not be stabilized in the sameway due to the inadequacy

of using the recirculating device at this temperature. For this

sample, the precipitation was undergone in an Erlenmeyer flask

connected to a reflux condenser to avoid water evaporation.

Two solutions, A and B, were prepared prior to the precipitation.

A calcium-containing solution (solution A, typically 75 ml) was

prepared by dissolving Ca(NO3)2
. 4H2O (Merck Emsure grade, purity

 99.0%) in deionized water, up to reaching the concentration of

0.3M. In parallel, solution B (150ml) containing a phosphate source

and a carbonate source was prepared by dissolving (NH4)2HPO4
(VWR Normapur grade, purity  99.0%) and NaHCO3 (purity

 99.0%) up to the respective concentrations of 0.45 M and 0.71 M.

Solutions A and B were then mixed and allowed to mature in the

mother solution, with or without magnetic stirring (as indicated in

the text), for a maturation time varying between 0 and 15 days

(aging time in solution). The precipitating medium was then

filtered on Büchner funnel, thoroughly washed with deionized

water and freeze-dried (freeze-dryer set to !80 �C and residual

pressure 10 mbar). The freeze-dried powders were collected and

stored in a freezer at !18 �C, to avoid any subsequent evolution

prior to physico-chemical analyses.

These synthetic reference samples will be named “hacXX-Yd”,

where XX corresponds to the synthesis temperature (in degrees

Celsius) and Y denotes the number of maturation days in solution

prior to filtration.

2.2. Skeletal specimens

Three skeletal specimens, corresponding to various geograph-

ical areas and epochs (Iron Age, Middle Ages and twentieth cen-

tury) were investigated. The samples were provided by the AMIS

laboratory (CNRS, UMR 5288, France). The specimens will be

identified, in the present work, using the following names: “20th

Cent”, “mid-ages”, and “Iron age”. The first sample, “20th Cent”,

corresponds to an adult male femur dating from the mid-twentieth

century. The second, “mid-ages”, is part of an adult male tooth

originating from Roeschwoog Alsace, France, and dating from the

Middle Ages (registry ref. #R3189B); this sample was obtained by

crushing the entire tooth, thus mixing dentin and enamel. The third

specimen, “Iron age”, comes from the Iron Age period (around

1800e1400 BC) and corresponds to a female bone from Kras-

noyarsk region, Russia (registry ref. #S09).

No chemical pretreatment was performed so as to limit possible

alterations of the mineral part contained in the samples. The

specimens were first roughly ground using a 6870 SamplePrep

Freezer Mills (Fischer Bioblock, Illkirch, France) and then subjected

to a milling process (Spex 5010 Freezer Mill) for the obtainment of

fine powders in view of physicoechemical characterizations.

2.3. Physicoechemical characterization

Powder X-ray diffractionwas used to confirm the apatitic nature

of the crystallized phase contained in the samples (as well as the

absence of secondary deposits such as calcite in the case of fossil

bones/teeth). The XRD analyses were carried out on an INEL CPS

120 curved-counter diffractometer using the monochromatic Co-

balt Ka radiation (lCo ¼ 1.78892 Å).

The carbonate content of reference synthetic apatites was

measured by coulometry using a CO2 coulometer (UIC, Inc. CM 5014

coulometer) measuring in a closed system the carbon dioxide (CO2)

released during sample dissolution in acidic conditions (CM 5130

acidification unit, use of HClO4 2 M for synthetic samples and 6 M

for biological specimens). The CO2 released was automatically

transferred into a photometric cell and titrated through an acid-

ebase reaction (Engleman et al., 1985; Huffman, 1977). Barium

carbonate (Prolabo, purity >99%) was used as a reference material

for checking the calibration of the apparatus. Measures were made

at least in duplicate. The uncertainty of this method is evaluated to

±0.5 wt.% CO3.

Fourier Transform Infrared spectroscopy (FTIR), using KBr as a

solid diluent, was used to analyze vibrational features of the

specimens. About 1.5 mg of each sample was mixed and ground

with 200 mg of KBr. Composite pellets were prepared out of this

mixture by uniaxial compression under 8 tons cm!1 for ca. 10 s. The

FTIR spectra were acquired by transmission, in the wavenumber

range 400e4000 cm!1 using a Nicolet 5700 spectrometer (64

scans, with a resolution of 4 cm!1). The spectra were subsequently

analyzed with the OMNIC 8 software (Thermo Nicolet). Background

deviations on FTIR spectra were corrected using the automatic

background correction tool of the software (the background line

consisting in a series of joint linear segments). This led to zeroing in

particular the absorption levels at points such as 4000, ~2000, ~800

and 400 cm!1. Fig. AR1 in the Additional Resources shows an

example of spectrum (synthetic carbonated apatite) after back-

ground correction, in the 400e2000 cm!1 range.

Several analysismethodologies have been tested in this work for

the reference samples, in view of seeking correlations between IR

data (related to carbonate and phosphate species) and coulometry

data. The different methodologies will be explained where

adequate in the text; they essentially differ by the considered

vibrational domains. In each case, the analytical reproducibility of

intensity ratios was checked by performing the same quantification

method in triplicate.

3. Results and discussion

3.1. Carbonated apatite reference compounds

The apatitic nature of the synthesized samples studied in this

work has been verified by XRD analyses. In all cases a pattern

typical of an apatitic phase was indeed detected, as attested in

accordance to the JCPDS card no. 09-432 relative to hydroxyapatite.

The typical pattern obtained relative to sample hac22-15d (i.e.

prepared at Tamb ~22
�C and matured for 15 days) is reported in

Fig. 1 as illustrative example, along with the indexation of the main

diffraction lines.

The carbonation level of the reference samples (carbonated

apatites prepared by precipitation in various conditions) was then

evaluated by coulometry assays. A summary of the results obtained

in terms of weight percent of carbonate associated with the apatite

phase is given in Table 1. As may be remarked, for systems prepared

in similar stirring conditions, the degree of carbonation of the

apatite phase clearly rises upon increasing the synthesis tempera-

ture (comparing samples hac10-15d, hac20-15d, hac37-15d, hac50-

15d) or the maturation time in solution (comparing samples hac22-

0d, hac22-1d, hac22-15d). Note that the samples hac22-15d and

hac70-15d (prepared respectively at 22 and 70 �C) display a lower

carbonation level than what could be expected at first from the

general temperature-driven tendency. Sample hac22-15d, howev-

er, cannot be directly comparedwith the other samples matured for

15 days, due to distinct stirring conditions; the absence of stirring

potentially limiting the kinetics of carbonation (but being closer to

“natural” conditions). The lower carbonation of sample hac70-15d

is due to a different cause; it can be related to a temperature that



approaches the boiling temperature of the solution. In this respect,

the elimination of dissolved gases (including CO2) is facilitated.

These eight samples may be considered as a set of reference

carbonated apatite samples, with a wide range of carbonation

levels between 3 and 6.9 wt.% CO3 (bone and teeth specimens being

known to exhibit carbonate contents of up to about 4e8 wt.% CO3,

(Gomez-Morales et al., 2013; McElderry et al., 2013)).

3.2. FTIR data analysis for carbonated apatite reference compounds

Fig. 2 shows typical FTIR data found for such carbonated apatite

reference materials; Fig. 2a gives an overview of the full spectra in

the range 400e4000 cm�1; and Fig. 2b reports an enlarged view of

the range 400e1800 cm�1 where characteristic carbonate absorp-

tion corresponding to the n2(CO3) and n3(CO3) IR-active vibration

modes can be evidenced respectively around 840e900 and

1350e1550 cm�1. The former being less intense than the latter,

Fig. 2c gives a zoomed viewof the n2(CO3) domain (which is merged

with a vibrational contribution around 875 cm�1 assignable to

HPO4
2�). Finally, the attribution of each vibrational contribution is

given in Fig. 2d in the typical case of sample hac37-15d. Apart from

carbonation bands, the characteristic features of apatitic com-

pounds are also clearly visible on these spectra, with apatitic hy-

droxide (OH�

ap) bands at 3572 (OeH stretching) and 632 cm�1 (OH

libration), as well as phosphate modes n1(PO4), n2(PO4), n3(PO4), and

n4(PO4) as indicated in Fig. 2d. Water bands are also seen in the

OeH stretching domain (3000e3600 cm�1) as well as HOH defor-

mation domain (1640 cm�1).

As a general trend, it may be remarked that, upon increasing the

maturation temperature from 10 to 70  C, the resolution of the

spectra is enhanced, with, in particular, an increasingly separated

n1(PO4) contribution from the n3(PO4) domain. Also, the global

amount of water associated with the samples progressively de-

creases. These observations may be related to an increased degree

of crystallinity as can be expected from apatites precipitated in

higher temperature conditions. This increase in crystallinity state

has been investigated by analysis of the n4(PO4) band (Fig. 3), by

following two parameters as in Fig. 3b. First, the difference in po-

sition between the two maxima of this band was followed versus

the maturation temperature, this parameter being related to the

level of distortion existing in the PO4 tetrahedrons. Second, a

crystallinity index CI (aka “splitting factor”) was evaluated from the

“depth” of the pit between the two maxima using a method pro-

posed in the literature (Shemesh, 1990; Weiner and Wagner, 1998;

Thompson et al., 2011; Termine and Posner, 1966; Weiner and Bar-

Yosef, 1990) and consisting of the ratio (after baseline correction)

between the sum of the absorbance of the two maxima divided by

the absorbance of the minimum between them. Despite non-

negligible error bars, the two parameters conjointly suggest an

evolution (decrease of splitting and increase of CI) toward better

crystallized apatitic systems upon increasing the synthesis tem-

perature, which confirms our above hypothesis. It may also be

noted that the CI values were found here to range between ca. 3 and

4, which was also the case for pristine sedimentary apatites

(Shemesh, 1990) as well as fossil or modern bones (Weiner and

Wagner, 1998). Taking also into account the above-mentioned

carbonation range of the reference compounds prepared here, the

observations confirm that these compounds exhibit physico-

chemical characteristics that are in perfect agreement with

“target” unknown specimens susceptible to be analyzed (apatites

from sediments, bones, synthetic analogs). These reference com-

pounds thus appear as particularly relevant for the establishment

of an FTIR methodology for carbonate quantification.

3.3. Selection of FTIR contributions to be considered for carbonate

quantification

It is essential at this stage to discuss which FTIR contributions

have to be considered in view of carbonation quantification. In

order to inspect the degree of carbonation of a phosphate matrix, as

is the case here, the follow-up of a ratio between a carbonate

contribution (numerator) and a phosphate contribution (denomi-

nator) appears coherent. Numerous factors such as HPO4:PO4 ratio,

A:B ratio of CO3, labile surface CO3, and lattice distortion from

variable minor element chemistry all affect band position, shape,

and intensity. Thus, an area-based method appears preferable to

considering peak heights at selected wavenumbers.

3.3.1. Selection of carbonate contribution

As mentioned above, the presence of CO3
2� ions leads to two

vibration modes active in IR, namely n2(CO3) and n3(CO3) (Rey et al.,

2011). However, the PeOH stretching vibration at 875 cm�1 of

HPO4
2� ions, that are also generally present in nonstoichiometric

apatites, is superimposed with the n2(CO3) mode which falls typi-

cally in the range 840e900 cm�1. The consideration of this car-

bonate mode to assess the degree of carbonation of apatitic

compounds thus becomes problematical. It may be attempted, via

spectral decomposition, to separate each contribution arising in

this spectral range, especially for removing the part linked to HPO4.

However, this task is made difficult by the possible presence of

many contributions with maxima found to be rather close in po-

sition, including B-type and A-Type carbonates (respectively

around 872 and 883 cm�1, (Rey et al., 2011)), but also labile car-

bonates giving rise to a large band for which the exact position is

Table 1

Carbonation levels for the carbonated apatite references prepared in this work, and temperature control conditions.

Sample hac22-0d hac22-1d hac10-15d hac20-15d hac22-15d hac37-15d hac50-15d hac70-15d

Stirring no no yes yes no yes yes yes

Wt%. CO3 3 3 5.9 5.9 5.5 6.8 6.9 5.3

Fig. 1. Typical XRD pattern of the hac22-15d carbonated apatite sample, and index-

ation in reference to JCPDS card no. 09-432 relative to stoichiometric hydroxyapatite.



not well-known (carbonation in amorphous calcium phosphate

leading to absorption at 866 cm�1 (Rey et al., 2011)) as well as

the HPO4
2� contribution at 875 cm�1. Moreover, the external

titration of HPO4
2� ions by methods such as thermogravimetry

(TGA) or spectrophotometry (e.g. using the yellow phos-

phoevanadoemolybdenum complex (Gee and Dietz, 1953)) is

extremely delicate (Elliott, 1994) in the co-presence of carbonate

ions due to parasite reactions such as CO3
2�
þ 2HPO4

2�
/

CO2 þ H2Oþ 2PO4
3�. Therefore, the use of the n2(CO3) does not

appear appropriate for the evaluation of the carbonate content in a

general situation where the presence of HPO4
2� ions cannot be

excluded.

In contrast, the n3(CO3) vibration mode is well separated from

the main phosphate absorption bands, which makes it suitable for

carbonate quantification. In the case of biological specimens,

however, a complication arises due to vibrations of collagen

(Kimura-Suda et al., 2009), the amide bands of which lead to ab-

sorptions typically in the range 1930e1230 cm�1. This superim-

position of IR bands from carbonate and collagen therefore

prevents a direct analysis of mineral carbonation. Chemical treat-

ments aiming at dissolving the collagen matrix could also lead to

modifications of the apatite features, and it is thus not advised.

Since the added complexity is due to the presence of amide bands

from collagen, it is, however, theoretically possible to subtract this

contribution by subtracting e with an adequate multiplying factor

(until minimizing the intensity of amide vibrations in the

1930e1230 cm�1 domain) e the spectrum of pure collagen ac-

quired in the same experimental conditions. Consequently,

whether for synthetic or biological apatitic samples, the evaluation

of carbonation seems to be appreciable based on the analysis of the

n3(CO3) mode. This mode has thus been selected (see the following

section for the experimental validation on both synthetic and

biological specimens).

Fig. 2. FTIR spectra for carbonated apatite reference compoundss: a) typical spectra obtained for various maturation temperatures (for 15 days of maturation), b) zoom on the

400e1800 cm�1 range, c) detail on the n2(CO3) region, d) indexation of bands (example of sample hac37-15d).

Fig. 3. Analysis of the n4(PO4) vibrational domain for carbonated apatite references

prepared at various temperatures: a) spectra in the 400e750 cm�1 range, and b)

evolution of n4(PO4) maxima separation and crystallinity index CI (or “splitting factor”)

evaluated from the n4(PO4) domain.



3.3.2. Selection of phosphate contribution

Phosphate ions lead to various FTIR contributions. However,

since the n1(PO4) and n2(PO4) modes are only poorly active in

infrared, considering them for quantification purposes would lead

to increased uncertainties. In contrast, the n3(PO4) and n4(PO4)

domains are significantly more intense, which is expected to limit

propagated errors. The libration band of apatitic OH� ions, how-

ever, appears at 632 cm�1, which superimposes to the n4(PO4)

domain. Since apatite compounds are often nonstoichiometric due

to the presence of vacancies in calcium and hydroxide sites, the

level of hydroxylation may significantly vary from one sample to

another, thus modifying the overall shape of the n4(PO4) band. As

this libration contribution can be non-negligible in intensity but

also because it cannot easily be distinguished from the phosphate

vibrations belonging to the n4(PO4) domain (unless using time-

consuming spectral decomposition methods), the exploration of

the n4(PO4) domain for in carbonate quantification methodology

does not seem appropriate.

Overall, the n3(PO4) appears the best choice to assess carbonate

contents of apatite. However, especially in low-crystallinity sam-

ples, the n1(PO4) singlet vibration is not cleanly separated from the

n3(PO4) band (e.g. Fig. 2b), and appears as a shoulder to n1(PO4).

Thus the combined n1n3(PO4) domain appears most practical in

avoiding additional spectral treatment to subtract the n1(PO4)

contribution.

3.4. Exploration of FTIR methodologies

The vibrational domains retained for this carbonation analysis

are n3(CO3) for carbonate ions and n1n3(PO4) for phosphates. Based

on our experimental IR spectra, we measured for each of the

reference samples, using the OMNIC 8 software, the integrated

intensities (¼peak areas) corresponding to these three compo-

nents. These measurements were carried out after a preliminary

baseline correction of the complete 4000e400 cm�1 spectrum. The

integration of the n3(CO3) bandwas done in such away as to include

the totality of the n3(CO3) contribution, typically between 1570 and

1330 cm�1. The n1n3(PO4) contribution was integrated between

1230 and ~900 cm�1. This lower limit was selected as the local

minimum in order to avoid including the band expanding from ca.

800 to ca. 900 cm�1 due to n2(CO3) and to HPO4
2�. The upper limit

of 1230 cm�1 was chosen because collagen subtraction for biolog-

ical samples is bound to alter the region 1930e1230 cm�1 where

amide bands are located (Boskey et al., 2005). The evaluation of the

band area corresponding to n1n3(PO4) was found, in contrast, to be

essentially unaffected (data not presented graphically here) by the

collagen subtraction between these limits of 1230 and 900 cm�1,

therefore confirming the possibility of using this wavenumber

range. The integration areas of interest for the determination of the

carbonate/phosphate ratio denoted “rc/p” between the integrated

intensity of n3(CO3) and that of n1n3(PO4) are shown graphically in

Fig. 4a.

The evolution of the amount of carbonate in reference samples

(as measured by coulometry) has been plotted in Fig. 4b versus the

ratio rc/p. Interestingly, a linear trend could be evidenced (see raw

data on Table AR1 in the Additional Resources), with good corre-

lation parameters (R2 ¼ 0.985), leading to the relationship given in

Equation (1):

wt:% CO3 ¼ 28:62*rc=p þ 0:0843 (1)

Despite absolute uncertainties on data points, this correlation

confirms advantageously the possibility to exploit IR data for

drawing quantitative assessments on the level of carbonation of

apatitic compounds, and using the areas of the two spectral

components n3(CO3) and n1n3(PO4). The ordinate values (y-axis)

given by this method are associated with an absolute error close to

±0.5% on the final wt.% CO3. In this Figure, the fitted line was

graphically prolonged (dashed line) down to 2 wt.% CO3 and up to

13 wt.% CO3 to access visually the correspondence between rc/p and

wt.% CO3 for a larger range of carbonation levels.

If the same type of relationship is sought by considering the

n4(PO4) domain instead of n1n3(PO4), a poorer correlation is

reached: when applied to reference samples from Table 1, a cor-

relation coefficient of R2 ~ 0.82 is found (see Fig. AR2 in the

Additional Resources). This poor agreement was expected based

on the above discussion (see previous section), because the level of

hydroxylation of the apatite phase is bound to vary between sam-

ples, and the nlib(OH) libration band at 632 cm�1 cannot be easily

separated from the large n4(PO4) band, therefore generating a bias

to the use of the n4(PO4) band in the determination of a carbonation

ratio.

If rc/p is calculated by considering the area of the n2(CO3) band

instead of n3(CO3), an even poorer correlation is observed with the

amount of carbonate of the reference compounds, with a coefficient

of R2 ~ 0.46 (Fig. AR2). Again, this illustrates the inadequacy

mentioned in the previous section to inspect the carbonation level

on the basis of the n2(CO3) band, which in fact also contains a non-

negligible and varying HPO4 contribution among the samples.

Fig. 4. FTIR methodology for carbonate quantification: a) evaluation of the ratio rc/p
between the integrated intensity of n3(CO3) and that of n1n3(PO4), and b) correlation

between rc/p and the carbonation amount (in wt.% CO3) in the apatite phase of syn-

thetic reference compounds and for three biological samples.



As indicated in the introduction, the use of peak heights rather

than areas has been proposed to follow the carbonation level of

apatites, especially by considering the maximum at 1415 cm�1 (in

the n3(CO3) domain) relative to the phosphate maximum of the

n3(PO4) band, around 1040 cm
�1 (exact position depending on the

samples). Plotting the carbonate content measured by coulometry

versus this height ratio led, when applied to the reference samples,

to a correlation coefficient of R2 ~0.76 (Fig. AR2). Although a rather

linear trend can be observed here, the quality of this correlation

remains lower than the one obtained using the rc/p area ratio

(R2 ~ 0.99).

All of these findings validate the rc/p area ratio between n3(CO3)

and n1n3(PO4) as the most adapted FTIR parameter to consider for

carbonation quantification in apatites, this ratio being defined as

the quotient between the full area of the n3(CO3) band (typically in

the range 1570e1330 cm�1) and the area of the n1n3(PO4) band

(typically in the range 900e1230 cm�1).

At this point, it was interesting to check the validity of this %

CO3 ¼ f(rc/p) relationship also for biological apatites. Three skeletal

specimens (two from bones and one from a tooth), as described in

the experimental section, were selected to this end. The absence of

calcite as secondary deposit in these biological/fossil specimens

was confirmed by XRD analyses as well as IR spectroscopy (absence

of the calcite band at 712 cm�1). In a first step, the carbonation of

each of these three samples was directly measured by coulometry.

This was made possible by the occurrence of enough bone/tooth

matter for the selected specimens, as 50e80 mg of sample was

needed in each coulometry experiment (performed at least in

duplicate). As always for coulometry assays, a calibration was pre-

liminarily done with barium carbonate (BaCO3). Since skeletal

specimens are also associated with an organic matrix, most of

which is collagenic in nature, we also ran a test with a known

quantity of BaCO3 added with bovine collagen (type I from bovine

Achilles tendon, Sigma Aldrich), 12 wt.% in proportion, in order to

check whether the presence of this protein in the reacting cell could

modify the response of the coulometer. Advantageously, no devi-

ation of the apparatus outcome was pointed out, confirming that

coulometry assays could also be run on biological specimens.

Considering bone and tooth samples as containing respectively 20

and ~5% of organic matter, the coulometry results (obtained

initially with 50e80 mg of bone/tooth specimen) could be cor-

rected to derive the amount of carbonation relative to the mineral

phase (apatite only) in these samples. This led to a carbonation

level in the apatite phase contained in the biological samples “20th

Cent”, “mid-ages”, and “Iron age” of wt.% CO3 ¼ 5.1, 4.1, and 6.1%

(±0.5%), respectively.

In addition, FTIR spectra were collected for these three skeletal

specimens, in the same conditions as was done above for synthetic

reference compounds. Fig. 5 reports a typical example obtained for

such biological specimens. Due to the presence of the organic

matrix, the spectral signature of collagen appears clearly on the

spectrum with amide bands distinguishable in the region of

1930e1230 cm�1, thus partly overlapping with inorganic carbon-

ate. In order to take into account, in the %CO3 ¼ f(rc/p) relationship,

only the vibrational contribution of carbonate, a spectral treatment

was carried out by subtracting a typical spectrum of type I bovine

bone collagen (modern collagen from own collection; access to IR

spectra for collagen with varying preservation states in link with

diagenesis were not accessible to us) until minimizing the amide

contributions in the above-cited region (Fig. 5). In practice, this

subtraction of the collagen contribution thus consisted in

increasing the multiplying factor “g” in the global equation [cor-

rected spectrum]¼ [initial spectrum]� g*[collagen spectrum] until

obtaining visually a negligible absorption for the amide contribu-

tions. This collagen subtraction resulted in spectra judged

satisfactory in terms of global appearance as compared with usual

FTIR data recorded for synthetic carbonated apatites (see Fig. 2).

Notably, the n1n3(PO4) domainwas found to be only affected around

the base of the absorption band without noticeable alteration of its

general shape, thus making it potentially usable for quantification

purposes. It may be noted that non-collagenous residues may also

be present in biological/fossil specimens, however their amounts

remain limited as compared to that of collagen. By analyzing by

FTIR the organic residue found after acidic dissolution of the apatite

mineral, we confirmed for the samples studied here that collagen

was main organic component, and that non-collagenous matter led

to very minor modifications of the 1530e1330 cm�1 carbonate

domain (Fig. AR3 in the Additional Resources).

After collagen subtraction, the integrated intensities of the full

n3(CO3) domain (range 1530e1330 cm�1) and of the n3n1(PO4) band

(between 1230 and 890 cm�1) were measured as done previously

for synthetic samples, allowing us to derive the corresponding rc/p
ratios. The application of Equation (1) to these data led to the

respective carbonate contents of 4.9 ± 0.5, 3.9 ± 0.5 and 5.7 ± 0.5%,

for samples “20th Cent”, “mid-ages”, and “Iron age” (to be

compared with 5.1 ± 0.5, 4.1 ± 0.5 and 6.1 ± 0.5). A good agreement

is, therefore, found between estimated carbonate contents calcu-

lated from Equation (1) and coulometric data for these biological

samples. The three datapoints corresponding to these biological

specimens have been added to the %CO3 ¼ f(rc/p) plot in Fig. 4b,

which shows graphically that the IR-based methodology described

in this paper for the quantification of carbonation of apatite phases

is also applicable to skeletal specimens, provided that the vibra-

tional contribution of collagen is preliminarily subtracted.

4. Concluding statements

The question of carbonate quantification in apatitic compounds,

whether of synthetic or biological origin, is relevant for many

reasons. In synthetic systems, the determination of the level of

carbonation allows to draw conclusions relative to the degree of

“biomimetism” of the sample, for example, as compared with

mature or newly-formed bone matter. The presence of carbonation

ions can clearly influence crystallization processes and these ions

may also stabilize the non-apatitic surface layer on apatitic nano-

crystals. Synthetic carbonated apatites could also serve as reference

materials in view of the establishment of calibration curves, for

example, in relation to biogenic phosphates that may have been

Fig. 5. Example of FTIR spectrum for biological specimen (case of Iron age bone

sample) and for collagen (modern bovine bone collagen type I from own collection),

and subtraction result (obtained by minimizing the intensity of amide vibrations in the

1930e1230 cm�1 domain).



formed at various temperatures. In this contribution, we noted the

direct effect of synthesis temperature on the level of carbonation

and on other parameters such as crystallinity, evidenced on the

basis of FTIR spectral analysis. In the case of skeletal specimens, the

exploration of the carbonate content is of prime importance for

characterizing these samples and drawing conclusions on bio-

mineralization, diagenetic evolutions, paleoecology, etc., especially

by exploiting 13C and 18O isotopic responses.

In this contribution, based on FTIR data, we discussed which

carbonate and phosphate vibrations bands appear the most

appropriate for carbonation quantification. We then developed and

tested a quantification methodology based on an area ratio be-

tween the n3(CO3) band and the n1n3(PO4) contribution, with inte-

gration limits that have been defined. We also checked this

methodology quantitatively in comparison with direct coulometry

measurements performed both on synthetic reference samples

(R2 ¼ 0.985) and biological/fossil specimens, pointing out a good

overall correlation. The absence of carbonated secondary deposits

such as calcite should be verified for fossil specimens, for instance

on the basis of XRD and/or IR analyses (e.g. absence of sharp band at

712 cm 1).

The obtained relationship, expressed by Equation (1) (wt.%

CO3 ¼ 28.62*rc/p þ 0.0843), is intended to serve in the future for

more systematic and comparable studies dedicated to carbonated

apatites, whether of synthetic or natural origin.
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