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⇒

  get(): gets a page from the [remote] page cache ⇒ put(): sends a victim page to the remote page cache Local metadata with small memory footprint ⇒ amortized 64 bits/page, 2 MB of metadata per GB of cache Pages are directly stored into the existing page cache ⇒ Memory is reclaimed naturally Sequential I/O are detected and filtered ⇒ Disk bandwidth > network bandwidth Network latency monitoring ⇒ Puma is throttled when the latency becomes too high Puma solves the page cache fragmentation problem ⇒ It is based on an efficient kernel-level remote caching mechanism ⇒ It handles clean cache pages to quickly recover the memory ⇒ It works with co-localised VMs and remote VMs Ongoing work: detecting when a VM has unused memory ⇒ Our idea: toggle Puma service based on Linux's active/inactive LRUs activity Laboratoire d'Informatique de Paris 6, Inria -Regal team
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