Maxime Lorrillere

Julien Sopena

Sébastien Monnet

Puma: pooling unused memory in virtual machines for I/O intensive applications

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

⇒

 get(): gets a page from the [remote] page cache ⇒ put(): sends a victim page to the remote page cache Local metadata with small memory footprint ⇒ amortized 64 bits/page, 2 MB of metadata per GB of cache Pages are directly stored into the existing page cache ⇒ Memory is reclaimed naturally Sequential I/O are detected and filtered ⇒ Disk bandwidth > network bandwidth Network latency monitoring ⇒ Puma is throttled when the latency becomes too high Puma solves the page cache fragmentation problem ⇒ It is based on an efficient kernel-level remote caching mechanism ⇒ It handles clean cache pages to quickly recover the memory ⇒ It works with co-localised VMs and remote VMs Ongoing work: detecting when a VM has unused memory ⇒ Our idea: toggle Puma service based on Linux's active/inactive LRUs activity Laboratoire d'Informatique de Paris 6, Inria -Regal team

Puma: Pooling Unused Memory in Virtual Machines for I/O intensive applications

 Maxime Lorrillere, Julien Sopena, Sébastien Monnet and Pierre Sens

					Sorbonne Universités, Université Pierre et Marie Curie, CNRS
	Context: virtualization fragments available memory	Existing solution: Memory Ballooning
		VM1	Host 1	VM2	VM3	Host 2	VM4
	Applications				
	Swap	pages Anonymous	Page cache		
							VM1	VM2
			virtio			virtio	Applications
		Hypervisor (KVM)	Hypervisor (KVM)
				10GB Ethernet			Balloon Balloon Balloon
							I/O	Swap
	Virtualization allows more flexibility and isolation
	Problem: it fragments available memory	virtio
	⇒ Memory cannot be reassigned as efficiently as CPU time	Hypervisor (KVM)
	⇒ Unused memory (i.e. idle caches) is wasted	
							Baseline	Auto-ballooning
	Our approach: Puma		

⇒ Allows to dynamically resize VM's memory ⇒ Cannot efficiently reclaim unused memory ⇒ Does not benefit of unused memory on other hosts ⇒ Slow to recover memory Rely on a fast network between VMs and hosts ⇒ Puma can reuse unused memory of VMs hosted on different hosts Handles clean cache pages ⇒ Writes are generally non-blocking ⇒ Simple consistency scheme ⇒ Fast to recover memory! Exclusive and non-inclusive caching strategies Puma design 2 basics operations