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Abstract

We endow the space Cr of nondecreasing functions on the unit
interval [0, 1] with the uniform metric and consider its subspace Ccr
of continuous nondecreasing functions. Then, we mainly prove:
1) In the sense of Baire categories, for most f ∈ Ccr, and also for
most f ∈ Cr, we have: (a) the Stieljes measure mesf of f is carried by
a set of Hausdorff dimension zero, (b) More precisely, f has zero left
and right Diny lower derivatives everywhere outside a set of Hausdorff
dimension zero, (c) For any 0 ≤ α ≤ ∞, the set of all t ∈ [0, 1] at
which α is the left and right Diny upper derivative of f , is of Hausdorff
dimension 1.
2) For most f ∈ Ccr, we have: (a) the set of all t at which f has an
infinite Diny derivative contains a Cantor set in any nonempty open
subset of [0, 1], (b) the same is true for the set of t at which f has
positive and finite Diny lower derivative.
3) If A is any countable subset of [0, 1], then for most f ∈ Cr (a) mesf
is atomic, and f is (left and right) discontinuous at each t ∈ A, (b) f
has a zero lower derivative at each of its continuity point.

Some other properties are proved which often mean that the fact
that the measure mesf is carried by a set of null Hausdorff dimension
does not imply similar properties for the derivative of f .
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We give direct and elementary proofs of all these properties, except
(1c)(when 0 < α <∞) which is the more tricky one, and except (2b)
and (3b) for the proof of which we need a geometric approach, using
closely results and methods of [9].

Finally, we also explain how the property 1c can be adapted to the
case of typical functions with bounded variations.

Keywords: Typical monotone function, Diny derivatives, upper
Hausdorff dimension of a measure, convex function, curvature, cut
locus.

Mathematical Subject Classifications (2010): 26A27, 26A48, 28A78;
26A30, 26A51.

Thanks are due to Zoltán Buczolich who gave me indications for the main
result as mentioned in Remark 5 p. 6.

1 Introduction

The aim of this section is to introduce the definitions and to present our
main results.

We denote by [a, b], ]a, b[, [a, b[, and ]a, b] the real intervals, respectively
closed, open, left-closed-right-open and left-open-right-closed.

DEFINITION 1 (Hausdorff measures) By a dimension function, we mean
a map h : [0,+∞[→ R continuous, nondecreasing, with h(0) = 0 and
t > 0 ⇒ h(t) > 0. Let A be a subset of a metric space (E, δ), µ a mea-
sure on E and h a dimension function.

diamA denotes the diameter sup{δ(a, b) | a ∈ A and b ∈ B} of the set A.

Hh
ε (A) = inf{

∑
h(diamAn) | (An) is a countable covering of A by sets

satisfying diamAn ≤ ε}, for ε > 0.

Hh(A) = sup
ε>0
Hh
ε (A) is the Hausdorff measure of A with respect to the

dimension function h.
When h(t) = ts, we also write

Hs and Hs
ε

instead of Hh and Hh
ε . Here Hs is the s-dimensional measure.
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The Hausdorff dimension dimH(A) of A is defined by the fact that Hs(A) = 0
if s > dimH(A) and that Hs(A) =∞ if 0 < s < dimH(A).

A carries µ if µ(E \ A) = 0. For example the support Suppµ of µ is
the smallest closed subset of E carrying µ. Only atomic measures are
carried by a minimal set.

The upper Hausdorff dimension dims
H µ of µ is the infimum of the Hausdorff

dimensions of the subsets of E carrying µ (see [3] or [2], chapter 10).

Using dimension functions, we can precise the information given by the
Hausdorff dimension of a set, as in Propositions 1 p. 8, ?? p. ?? and 2 p. 14
below.

Let X be a topological space and A ⊂ X.
The subset A is a Gδ of X if it is the intersection of a countable family of

open subsets of X. The subset A is a Fσ of X if it is the union of a countable
family of closed subsets of X. The subset A is meager if it is included in the
union of a countable family of closed subsets of X of empty interiors.

A property P is said to be “generic” inX (in the sense of Baire categories),
or shared by “most elements” of X, or by “typical” elements of X, if the
exceptional set of all the x ∈ X not satisfying P is meager. We will consider
more specifically the generic properties of two topological spaces.

DEFINITION 2 (spaces of nondecreasing functions)

Cr denotes the space of all nondecreasing functions endowed with the uni-
form metric

||g − f || = ||g − f ||[0,1] where ||g − f ||I = sup
t∈I
|g(t)− f(t)|.

Cr is complete, but not separable. We observe that {f ∈ Cr | f([0, 1] is
finite} is everywhere dense in Cr.

Ccr denotes the separable subspace of Cr, of all f ∈ Cr which are continuous
on [0, 1].
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Remark. We could consider functions defined on any interval I of R, in-
stead of [0, 1], and then use the topology of the uniform convergence on every
compact subset of I. All our results in this paper can be adapted with almost
the same proof to such a case.

We will consider the usual (sometimes left, right, or lower, or upper) Diny
derivatives of a function f at a real number t:

f ′(t) = lim
s→0

f(t+ s)− f(t)

s

f ′s(t) = lim sup
s→0

f(t+ s)− f(t)

s
f ′i(t) = lim inf

s→0

f(t+ s)− f(t)

s

f ′r(t) = lim
s→0+

f(t+ s)− f(t)

s
fl(t) = lim

s→0−

f(t+ s)− f(t)

s

f ′r,s(t) = lim sup
s→0+

f(t+ s)− f(t)

s
f ′r,i(t) = lim inf

s→0+

f(t+ s)− f(t)

s

f ′l,s(t) = lim sup
s→0−

f(t+ s)− f(t)

s
f ′l,i(t) = lim inf

s→0−

f(t+ s)− f(t)

s
.

f(t+) and f(t−) will denote the right and left limit of f at t and we also
set f(0−) = f(0) and f(1+) = f(1) when f ∈ Cr.

We will use brackets to denote some sets of points associated to f : for
example

[f ′r,s = 2]

denotes the set of points where the right upper Diny derivative of the function
f equals 2.

DEFINITION 3 For f ∈ Cr we define:

• mesf the Stieljes measure of f , thus 0 ≤ t < 1⇒ f(t+) = mesf [0, t].

• disct(f) = mesf ({t}) (= f(t+)− f(t−) when 0 < t < 1),

• Disc f = {t ∈ [0, 1] | disct(f) > 0}.

Thus mesf is atomic if it is carried by Disc f .
We now recall some previous results.

Young 1911 [11]. Every f ∈ Cr is differentiable at almost every t ∈ [0, 1]
(Lebesgues 1904 for the case where f is continuous). Other similar
properties are reviewed by D.L. Renfro in [7].
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Zamfirescu 1981 [12] For most f ∈ Ccr (and also for most f ∈ Cr) and
for almost every t ∈ [0, 1], f ′(t) = 0 and we have:

• ∀t ∈]0, 1], f ′l,i(t) = 0 or f ′l,s(t) = +∞
• ∀t ∈ [0, 1[, f ′r,i(t) = 0 or f ′r,s(t) = +∞

For the second point, one observes that {f ∈ Ccr | ∃0 ≤ t ≤ 1− 1/n |
∀s ∈ [t, t+ 1/n], (s− t)/n ≤ f(s)− f(t) ≤ n(s− t)} is a nowhere dense
closed subset of Ccr. The first assertion follows then by Young’s result
above.

Buczolich and Nagi 1999 [1] For most f ∈ Ccr and for all 0 ≤ α ≤ 1,
dimH Ef,α = 1 where Ef,α is the set of the t ∈ [0, 1] where α is the
Höder exponent of f , that is the larger real number such that the
function s 7→ |f(s) − f(t)|/|s − t|α is bounded. Moreover mesf is
carried by Ef,0 and thus dims

H mesf = 0.

the support Supp mesf of the measure mesf is the smallest closed set
carrying mesf , but it is well known that, when mesf is not atomic, there is
no canonical A ⊂ [0, 1] carrying mesf and of Hausdorff dimension dims

H mesf .
However one could expect some link between dims

H mesf and dimH[f ′s > 0], for
instance. This is (typically!) not the case, because we may have dims

H mesf =
0, and dimH[f ′s > 0] = 1 by our following result.

THEOREM 1 1. For most f ∈ Ccr, and also for most f ∈ Cr, we have:

(a) dims
H mesf = 0,

(b) dimH[f ′l,i > 0] ∪ [f ′r,i > 0] = 0,

(c) ∀0 ≤ α ≤ ∞, 1 = dimH[f ′l,s = f ′r,s = α].

2. For most f ∈ Ccr, we have:

(a) [f ′ = ∞] contains a Cantor set in any nonempty open subset of
[0, 1],

(b) [0 < f ′i <∞] contains a Cantor set in any nonempty open subset
of [0, 1].

3. If A is a countable subset of [0, 1], then for most f ∈ Cr
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(a) mesf is carried by Disc f ⊃ A, and f(t−) < f(t) < f(t+) for all
t ∈ Disc f ,

(b) Disc f = [f ′ =∞] and [0, 1] \Disc f = [f ′i = 0].

Remarks.

1. 1a was already proved for Ccr in [1], as mentioned above (our proof is
shorter and will give a slightly more precise statement concerning the
size of set [f ′l,i > 0] ∪ [f ′r,i > 0] carrying mesf , see Prop.1 p. 8). 1b
and 1c implies that 1 = dimH[f ′l,s = f ′r,s = α and 0 = f ′l,i = f ′r,i] and
hence the Hausdorff dimension of the set of all points where f is not
differentiable is one (see also the remark 2 p.10) and the remark 3 p.11
after Proposition 1 about the size of [f ′l,i = f ′r,i = 0] ∩ [f ′l,s = f ′r,s =∞].

2. (1b) implies (1a). Concerning most f ∈ Cr, (3a) implies (1a) and (3b)
implies (1b).

3. Let λ ∈ [0, 1] and Crλ = {f ∈ Cr | ∀t ∈ Disc f, f(t) = (1 − λ)f(t−) +
λf(t+)}. Thus Crλ is a closed subspace of Cr and Cr1 is the set of
right continuous f ∈ Cr.
Then Theorem 1 remains true if we delete “f(t−) < f(t) < f(t+) for
all t ∈ Disc f” in 3a, if we add in 3 that λ = 0 ⇒ 1 6∈ A and that
λ = 1 ⇒ 0 6∈ A, and if we substitute everywhere Cr for Crλ; with the
same proof (in which we make the same substitution).

4. Note the paradox in the easy result 3a: For every f ∈ Cr, Disc f is
countable; but for each t ∈ [0, 1], for most f ∈ Cr we have t ∈ Disc f .

5. We consider 1c , when 0 < α <∞, as our main result.

The case α = 0 is clear: the set has even full Lebesgue measure.

The case α = ∞ is also simpler and more precise: for all H1-null
compact setA ⊂ [0, 1] and for most f ∈ Cr, we haveA ⊂ [f ′s =∞].
For the case f ∈ Ccr and the symmetric derivative, it is also a
consequence of the mentioned result of [1].

1c obviously implies that 1 = dimH[0 < f ′s < ∞]. This was our
main result in a previous version of this work. The given proof
used closely [9], which involves geometric tools, and were more
intricated that the proof that we will give of 1c (see the beginning
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of section 3 for more details).
This proof of 1c has been suggested to us by Zoltán Buczolich who
advised us to adapt some of the proofs of [1] to get the result (it
could also apply to the case α =∞).

6. Lemma 1 below gives a way, for the explicit construction of strictly
increasing f ∈ Cr such that mesf is atomic and such that

f ′i = 0 on [0, 1] and f ′r,i = 0 on [0, 1[

(but we must have f ′r,s = f ′l,s = +∞ on a dense Gδ of [0, 1] for such an
f). Lemma 2 describes the construction of f ∈ Cr with mesf atomic
and with large a set of points at which f ′ = 1. Lemmata 1 and 2 will
not be used for the study of typical functions.

LEMMA 1 Let (an)n≥1 be a sequence of pairwise distincts elements of ]0, 1[
and A = {an | n ≥ 1}. Let (pn)n≥1 be some non increasing sequence of
positive numbers satisfying (1): lim sup pn+1/pn < 1 and (2): pn/min{|an −
ak| | 0 ≤ k < n} → 0. Let f ∈ Cr such that A = Disc f carries mesf and
such that mesf ({an}) = pn. Thus for t ∈ [0, 1] we must have

f(t+)− f(0) =
∑

n≥1,an≤t

pn.

Then we also have for all t ∈ [0, 1]: (a) : f(t) = f(t+) ⇒ f ′r,i(t) = 0 and
(b) : f(t) = f(t−)⇒ f ′l,i(t) = 0.

Remark. The function f of Lemma 1 is strictly increasing when the se-
quence (an) is dense in [0, 1] and we can ask it to be right continuous.

Proof of Lemma 1. Let be t ∈ [0, 1[ such that f(t) = f(t+). We define in-
ductively a decreasing sequence (bn) in ]t, 1] converging to t, by the conditions
b0 = 1 and, for n ≥ 1, bn is the first of the real numbers ak which belongs to
]t, bn−1[. We also define qn = mesf ({bn}). From (2) we have qn/(bn−bn−1)→
0, hence from (1) we also have (f(bn) − f(bn−1))/(bn − bn−1) → 0, hence
(f(bn) − f(t))/(bn − t) → 0 and thus f ′r,i(t) = 0. This proves (a), the proof
of (b) is quite similar.

LEMMA 2 Let K be a H1-null compact subset of ]0, 1[, then there is f ∈ Cr
such that Discf = A carries mesf , A ∩K = ∅, f ′ = 1 on K and Supp f =
K ∪ A.
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Proof of Lemma 2. We can choose a discrete and closed subset A of [0, 1]\
K such that for all n ∈ N∗ and t ∈ [0, 1], dist(t,K) ≤ 1/n ⇒ dist(t, A) ≤
1/n2 (we need K ∪ A to be “porous” at no point of K). Then one can take
for the wanted f , the only right continuous f ∈ Cr such that f(t) = t if
t ∈ K ∪ A and f ′(t) = 0 if t 6∈ K ∪ A.
Questions. We do not know if for most f ∈ Ccr, there exist points t ∈]0, 1[
at which f ′l,i(t) ∈ R∗+ and f ′r,i(t) ∈ R∗+.

We do not know if for most f ∈ Cr, we have [0, 1]\Disc f = [f ′l,i = f ′r,i = 0]
(it is compatible with 3a by Lemma 1).

Concerning Lemma 2, we actually do not know what can be the size, for
instance the Hausdorff dimension, of the set [f ′ = ∞] for a function f ∈ Cr
with mesf atomic. In a previous version of this paper, we made a mistake in
“proving” that this Hausdorff dimension can be equal to 1.

2 Direct proofs concerning Theorem 1

We will give here the proofs of the statements of Theorem 1 which do not
use geometric arguments, excepted 1c when 0 < α <∞.

Proof of 3a. Let A ⊂ {an, n ∈ N}. Then we associate to every n ∈ N∗
an everywhere dense open subset Ωn of Cr by defining Ωn as the set of
all f ∈ Cr such that there exists a finite subset B of Disc f , containing
{a0, . . . , an}, such that f(b) − f(a) −

∑
t∈B disct(f) < 1/n and such that

∀t ∈ B, f(t−) < f(t) < f(t+). Now most f ∈ Cr belong to ∩n≥1Ωn, and
thus satisfy 3a.

Proof of 1a, 1b and “ 1c when α = ∞” . 1a and 1b result of 1 of the
following proposition, taking for instance h(t) = −1/ ln t when t > 0 is small
enough, while 1c with α =∞ results of 2, choosing A of Hausdorff dimension
1.

PROPOSITION 1 Let h be a dimension function and A ⊂ [0, 1]. Then
for most f ∈ Ccr:

1. mesf is carried by some Hh-null subset B of [0, 1] containing the set
[f ′l,i > 0] ∪ [f ′r,i > 0].
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2. If A is included in an Fσ H1-null subset of [0, 1], then f ′l,s = ∞ on
]0, 1] ∩ A and f ′r,s =∞ on [0, 1[∩A .

3. If A is meager in [0, 1], then f ′l,i = f ′r,i = 0 on A,

Moreover 1 and 2 are also true or for most f ∈ Cr.

We observe that [f ′l,i > 0] ∪ [f ′r,i > 0] = [0, 1] \ [f ′l,i = f ′r,i = 0]. Moreover, the
third part of Theorem 1 shows that 3 does not hold for most f ∈ Cr.

Proof of Proposition 1. We only give the proofs concerning most f ∈
Ccr, because these about most f ∈ Cr are almost identical.
1. For n ∈ N∗, we define an everywhere dense open subset of Ccr by Ωn =
{f ∈ Ccr | ∃0 = t0 < t1 < · · · < tN+1 = 1 and r > 0 such that Nh(4r) ≤

2−n, mesf

(
[0, 1] \

⋃
1≤k≤N

[tk − r, tk + r]

)
< r/n and for every 0 ≤ k ≤ N :

4r < tk+1 − tk < 1/n}.
Let f ∈

⋂
n≥1

Ωn, we chose thus for each n ∈ N∗ a sequence (tk,n)0≤k≤1+Nn

and an rn > 0 corresponding to f ∈ Ωn. We set then

An =
⋃

1≤k≤Nn

[tk,n − 2rn, tk,n + 2rn], Bn =
⋃
m≥n

Am and B = {0, 1} ∪
⋂
n≥1

Bn.

For all n ≥ 1 we have Hh
1/n(An) ≤ 2−n and thus Hh

1/n(B) ≤ Hh
1/n(Bn) ≤

2−n+1, so Hh(B) = 0.
For all n ≥ m ≥ 1 we have mesf ([0, 1]\Bm) ≤ mesf ([0, 1]\An) ≤ rn/n ≤

1/n, thus mesf ([0, 1] \ Bm) = 0, thus mesf ([0, 1] \ B) = lim
m→∞

mesf ([0, 1] \
Bm) = 0.

Let be t ∈ [0, 1] \ B and m ∈ N∗, we can choose n ≥ m such that
t ∈ [0, 1] \ An. We have then t + rn < 1 ⇒ f(t + rn) − f(t) < rn/n and
t − rn > 0 ⇒ f(t) − f(t − rn) < rn/n, moreover rn < 1/4n < 1/m, thus
f ′l,i(t) = f ′r,i(t) = 0.
2. We can suppose that A is compact. We define now an everywhere dense
open subset of Ccr by Ωn = {f ∈ Ccr | ∃0 = t0 < t1 < · · · < tN+1 = 1 and,
for each 0 ≤ k ≤ N , 0 < rk < 1/n such that k < N ⇒ tk + 2rk < 1 and
f(tk + 2rk)− f(tk + rk) > nrk, k > 0⇒ tk − 2rk > 0 and f(tk − rk)− f(tk −

2rk) > nrk, and also such that A ⊂
N⋃
k=0

]tk − r,tk + rk[}.
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But f ∈
⋂
n≥1

Ωn ⇒ f ′l,i = f ′r,i =∞ on A.

3. It is the same proof as for 2), using now Ωn as the set of all f ∈ Ccr
for which there exists an open neighborhood ω of A with a finite number of
connected components, all of them with lengths less then 1/n, and such that
mesf (ω) < dist(A, [0, 1] \ ω)/n.
Second proof of 1 of Proposition 1 for most f ∈ Ccr. it results of 3,
indeed one can choose an Hh-null Gδ-subset G of [0, 1] containing Q ∩ [0, 1]
and apply 3 to A = [0, 1]\B. We conclude because for every f ∈ Cr we have
mesf ([f

′
l,i = f ′r,i = 0]) = 0.

Remarks.

1. In 2 of Proposition 1, A is a meager and H1-null subset of [0, 1].

However there exists a nowhere dense Hh-null subset A′ of [0, 1] which
cannot be included in the union of a countable family of H1-null com-
pact subsets (choose a Cantor subspace K of [0, 1] such that every
nonempty open subset of K has a positive H1-measure, and then a
Hh-null dense Gδ subset A′ of K).

One get thus a“first category Lebesgue null set (and even of null Haus-
dorff dimension) A′ that is not σ-Jordan null” See [8] for more details
and a historical account of the subject. Jordan-null means of H1-null
adherence, or equivalently, for every ε > 0, included in the union of a
finite family of intervals with the sum of lengths < ε.

2. I don’t know if for every H1-null subset A of [0, 1], most f ∈ Ccr (or
most f ∈ Cr ) satisfy f ′s = +∞ on A. I don’t know if for every H1-null
subset A of [0, 1], most f ∈ Ccr satisfy f ′i = 0 on A.

However, Gyorgy Petruska [5] has announced that an analytic subset
of [0, 1] is included in an H1-Null Fσ subset if and only if for most
f ∈ Cr, f is differentiable at no point of A. G. Petruska mentions
there, as an essential feature from [4], that when an analytic1 subset
of [0, 1] is not included in an H1-Null Fσ subset, then it is residual in a
compact subset K such every nonempty open subset of K have positive

1J. Mycieski and R. Laver have communicated to G. Petruska the existence of an H1-
null subset A of [0, 1], not included in any H1-Null Fσ subset, and not residual in any
perfect set.
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H1-measure. This fact is also used in a previous similar result of D.
Preiss and J. Tǐser [6] about typical Lipschitz functions.

The following result, analogous to 2 and 3 of Prop. 1, is also proved in
[6] (in the proof of the theorem, p.224-225): Let A be any H1-Null Fσ
subset of [0, 1], then most 1-Lipschitz maps f on [0, 1] satisfy f ′s = 1
and f ′i = −1 on A.

3. For any λ ∈ [0,+∞] and f ∈ Ccr, [f ′s ≥ λ], [f ′i ≤ λ] and [f ′l,i = f ′r,i =
0] ∩ [f ′l,s = f ′r,s = ∞] are Gδ subsets of [0, 1] \ Disc f , hence of [0, 1].
Moreover, by 1 and 2 for a suitable A, they are also everywhere dense
if f is typical in Ccr or in Cr, and more precisely for every nonempty
open subset ω of [0, 1], each of them contains a subset of ω of Hausdorff
dimension 1.

4. Let us observe the following paradox: For most f ∈ Cr, f ′(t) = 0 at
H1-almost all t ∈ [0, 1]; however for every t ∈ [0, 1], most f ∈ Cr satisfy
f ′s(t) = +∞ (taking A = {t}). Idem for most f ∈ Ccr.

LEMMA 3 Let R > 0, a < b and f : [a, b] → R continuous and such that
E = {t ∈ [a, b[| f ′r,i > R} is countable. Then f(b)− f(a) ≤ R(b− a).

Proof of Lemma 3. We choose g : [a, b] → R nondecreasing and discon-
tinuous at each t ∈ E. We have to check for every ε > 0 that b ∈ Eε = {t ∈
[a, b] | f(t)− f(a) ≤ (R+ ε)(t− a) + ε(g(t)− g(a))}. But if it was not true,
we should get a contradiction at T = supEε.

LEMMA 4 Let f ∈ Ccr such that mesf is carried by an H1-null set A ⊂
[0, 1]. Then for mesf -almost every t ∈ A we have f ′(t) = +∞.

(It is also true for mesf -almost every t ∈ [0, 1]!)

Proof of Lemma 4. It will be enough to prove that for mesf -almost every
t ∈ A we have f ′r(t) = +∞. If that last statement were not true, we could
choose R ∈ R and K a compact subset of [0, 1] such that mesf (K) > 0 and
f ′r,i ≤ R on K. Let g : [0, 1] → R be defined by g(t) = mesf (K ∩ [0, t]). If
K ⊂ L and if L is the union of a finite family of closed intervals, by Lemma 3
applied to g we have mesf (K) = mesg(K) ≤ RH1(L), thus mesf (K) ≤
RH1(K) = 0, which is absurd and ends the proof.
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Proof of 2a. Now for most f ∈ Ccr, we know from Proposition 1 that
mesf is carried by an H1-null set and that f is strictly increasing. Thus 2a
results from Lemma 4.

3 Geometric proofs concerning Theorem 1

In the following definitions, to any nondecreasing function f , we will asso-
ciate a primitive, thus a convex function, and then a convex subset of R2.
From this, properties of typical f will be, roughly speaking, compared with
properties of typical convex sets.

DEFINITION 4 Let be f ∈ Cr and I ⊂ R, we define:

• f̃ the primitive of f vanishing at zero.

• Γf,I = {(t, f̃(t)) | t ∈ I} and Γf = Γf,[0,1].

Now suppose that B is a Euclidean disk in R2 whose boundary circle ∂B
meets Γf in exactly the point p = (t, f̃(t)) for some t ∈]0, 1[. If B ⊃ Γf
and is minimal for that, it should be reasonable to think that the radius
of B is a kind of radius of lower curvature of Γf at p, and thus related to
f ′i(t). Because of this we will be concerned with the cut locus relative to the
farthest projection to Γf .

In a previous version of this work, a similar link between a radius of uper
curvature of Γf and f ′s were used to investigate dimH [0 < f ′s < ∞], using
more closely the main proofs of [9], concerned with the cut locus relative
to the nearest projection to Γf . Let us mention that those links between
this work and [9] were the reason why we were interested in the derivatives
of typical nondecreasing functions (first in view of solving the geometric
problem, secondly in view of applying the geometric results).

3.1 Cut locus relative to the farthest projection

From now, d is an integer ≥ 2, but in this work we are only concerned with
the case d = 2. Rd is endowed with its usual Euclidean norm ||.||.

DEFINITION 5 (farthest projection)
Let ∅ 6= F ⊂ Rd, a ∈ Rd, r > 0, and A ⊂ Rd. We define
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adist(a, F ) = sup{||a− p|| | p ∈ F} ∈ [0,+∞],

AprojF (a) = {p ∈ F | ||a− p|| = adist(a, F )},

AprojF (A) =
⋃
b∈A

AprojF (b).

When there is only one farthest projection of a to F , we denote it by aprojF (a),
we have then AprojF (a) = {aprojF (a)}.

Proof of 3b. Let K be a compact subset of R2, we define an everywhere
dense open subset ΩK of Cr by ΩK = {f ∈ Cr | {0, 1} ⊂ Disc f and ∃ε > 0 |
∀a ∈ K and b ∈ R2 with ||b − a|| < ε,AprojΓf (b) ⊂ AprojΓf (a) ⊂ Γf,Disc f}.
Thus for most f ∈ Cr we have {0, 1} ⊂ Disc f and AprojΓf (R

2) ⊂ Γf,Disc f .
But this implies that f ′i = 0 on [0, 1] \ Disc f , 3b follows because f ′i = +∞
on Disc f by 3a.

DEFINITION 6 (cut locus)
When a, b ∈ Rd we write [a, b] = {(1− λ)a+ λb | 0 ≤ λ ≤ 1}.

Let F be a nonempty compact subset of Rd. We define

aM or aMF = {a ∈ Rd | card AprojF (a) ≥ 2},

aN or aNF = {a ∈ Rd | ∀b ∈ Rd \ {a} and p ∈ AprojF (b), b /∈ [a, p]}, the
cut locus relative to the farthest projection to F .

We will need the following easy properties of these sets:

LEMMA 5 Let F be a nonempty compact subset of Rd. Then

1. aMF ⊂ aNF ,

2. aMF is an Fσ-subset of Rd,

3. aNF is a Gδ-subset of Rd,

4. aNF is of empty interior in Rd.

Proof of Lemma 5. Because the Euclidean norm is strictly convex, for
all a ∈ Rd, b ∈ Rd \ {a} and p ∈ AprojF (b) we have b ∈ [a, p] ⇒ p =
aprojF (a), thus a 6∈ aN ⇒ a 6∈ aM, this proves 1; thus also b 6∈ intRd aN ,
this proves 4. Property 2 results from the fact that for every ε > 0, the set
{a ∈ Rd | diam AprojF (a) ≥ ε} is closed. Finally, property 3 results from the
fact that for every ε > 0, the set {a ∈ Rd | ∃b ∈ Rd such that ||b − a|| ≥ ε,
p ∈ AprojF (b) and b ∈ [a, p]} is closed.

13



Proof of 2b. It follows from the lemme:

LEMMA 6 Let f ∈ Ccr strictly increasing and such that the set {t ∈ [0, 1] |
f ′i(t) = 0} is everywhere dense in [0, 1]. Then [0 < f ′i <∞] contains a Cantor
set in any nonempty open subset of [0, 1]

Proof of Lemma 6. Let 0 < α < β < 1 and F = Γf . Then Ω = {a ∈ R2 |
AprojF (a) ⊂ Γf,]α,β[} is a nonempty open subset of R2.

We claim that Ω ∩ aM is everywhere dense in Ω. Else we could choose
t ∈]α, β[, p = (t, f̃(t)), a ∈ Ω such that p = aprojF (a) and r > 0 such that

B(a, r) ⊂ Ω \ aM. If x is a unit vector of R2 orthogonal to p − a, then
t 7→ aprojF (a + tx) defines a continuous map ϕ :] − ε, ε[→ F which is not
constant, and then the subset ϕ(]−ε, ε[) of AprojF (Ω) is of nonempty interior

in F . But this is impossible because AprojF (R2) contains no point (s, f̃(s))
such that f ′i(s) = 0, and because these points are everywhere dense in F .

Now by Lemma 5 and Baire’s theorem, Ω∩aN \aM is a Gδ-dense subset
of Ω, and contains thus a Cantor set K. Then, if we set pr1(x1, x2) = x1, the
image set pr1(aprojF (K)) is a Cantor set included in [0 < f ′i < ∞]∩]α, β[
(observe that aprojF is continuous on R2 \MF and thus on K), that ends
the proof.

4 Proof of 1c when 0 < α <∞
The only statement not already proved in Theorem 1 is 1c when 0 < α <
∞, which results from the following proposition, taking for instance h(t) =
t| ln t|, for t > 0 small enough. Moreover we get thus that [0 < f ′s <∞] has
no countable covering (An) by sets of Hausdorff dimensions < 1.

PROPOSITION 2 Let h be some concave2 dimension function such that
t/h(t) → 0 in zero. Then for most f ∈ Cr, and also for most f ∈ Ccr, we
have for all α ∈]0,+∞[:

0 < Hh[α = f ′l,s = f ′r,s].

Hence we also have
1 = dimH[α = f ′l,s = f ′r,s].

2Actually the concavity is not needed because one can substitute h with the smallest
concave function h2 which is ≥ h1(t) = t inf ]0,t] h(t)/t.
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We already know that, for α = 0 and α =∞, with more precise result.
Obviously we cannot use the same paradoxal method of proof as for α =

∞. We will have to build a large Cantor set Kf,α depending on the typical
function f and on α, which will be “almost included” in the wanted set, but
in a last step we will have to eliminate a small part of it using the following
rather easy but crucial Lemma:

LEMMA 7 (Lemma 7 of [1])
Let f ∈ Cr, 0 < α <∞, 0 ≤ a < b ≤ 1 and E be the union of all [s, t] ⊂ [a, b]

such that s 6= t and f(t)−f(s)
t−s ≥ α. Then we have

H1(E) ≤ 2

α
(f(b)− f(a)) . (1)

Remark. We will prove more precisely that the lemma remains true when
we substitute f(t)−f(s)

t−s with f(t+)−f(s−)
t−s .

Proof of Lemma 7. For the case f ∈ Ccr Buczolich and Nagi, give a short
and elegant proof, related to the link between the variation of some f ∈ Ccr
and the Lebesgue integration of f ′. But their proof is easily adaptable to
the case f ∈ Cr. So we just sketch below a more direct proof, longer but
perhaps more instructive to get a picture of why this is true:

It is enough to prove for any ε > 0 that H1(Eε) ≤ 2
α

(f(b)− f(a)) where
Eε = Ef,[a,b],α,ε denotes the union of all [s, t] ⊂ [a, b] such that t− s ≥ ε and
f(t+)−f(s−)

t−s ≥ α.
When Eε 6= ∅, it admits a smallest element. Now, by a proof similar to

the proof of the compactness of [a, b], one checks that each Eε is included in a
(minimal) finite union of such intervals [s, t]. Such a covering can be decom-
posed in two parvise disjoint subfamilies and one get the wanted inequality
by considering the subfamily with union having the greatest length.

The building of Kf,α will use the following rather standard Lemma (other
standard simillary lemma could be used, we do not proceed here as Buczolich
and Nagi for instance).

LEMMA 8 Let h = tsθ(t) be some dimension function such that θ(t) is
decreasing on ]0,+∞[ (thus h is doubling). Let K be the intersection of a
decreasing sequence of compact sets (Kn), each Kn being the finite union
of pairwise disjoint intervals of side rn. K0 = [0, 1]. If C is one of the
intervals of Kn−1, we suppose that C is divided in Nn intervals Ci with sides
ρn = rn−1/Nn and C ∩Kn will be the union of the intervals C ′i where C ′i is
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the intervall of length rn and with same center as Ci. rn, and thus Kn is
defined by Nn and by the condition of Hh-mass repartition:

h(rn−1) = Nd
nh(rn). (2)

Then K is an h-set, i. e. 0 < Hh(K) <∞.

Thus to define such a K, there only remains to explain how are choosed the
integers Nn ≥ 2 at the step n.

Observe also that the sets K ∩ C, where C are intervals of Kn, are pair-
wise isometric and thus of same Hh-measure, so that, up to a multiplicative
constant, Hh restricted to K is the same as the canonical probability on K
associated with the description of K.

If we suppose h(rn−1) ≤ Nd
nh(rn) instead of (2) we then get 0 < Hh(K)

by (part of) the same proof. We will not formally use it in the proof of Prop 2
(but think of it!).
Proof of Lemma 8 This lemma is just the first statement of Lemma 4 of
[10], when d = 1.
Proof of Proposition 2
1) First we give an idea of the scheme of the proof. We will use some
countable dense subset D of ]0,+∞[ (which actually needs only to be choosed
at the beginning of the part 6 of this proof). The needed Gδ will be defined

by G =
⋂
m≥1

Ω∗m with Ω∗m =
⋂
α∈D

Ω∗m,α, Ω∗m,α =
⋃
n≥m

Ωn,α where for any α > 0,

the set Ωn,α will be open in Cr, Ω∗m,α dense in Cr and Ccr∩Ω∗m,α dense in
Ccr. Then each f ∈ G will satisfy the statement of Proposition 2.

Actually f ∈ Gα :=
⋂
n≥1 Ω∗n,α will be enough to check the statement of

Prop. 2 relative to that α, but f ∈ G will permit to consider all α > 0, and
not only those belonging to D.

Given some f ∈ G and α > 0 , we will build some standard Hh-large
Cantor set Kf,α. We will then use Lemma 7 to find a Hh-non negligeable
subset K ′f,α ⊂ [α = f ′l,s = f ′r,s], by eliminating some intervals at each step
of the building of Kf,α. Lemma 8 will actually only be used to check that
Hh0(K ′f,α) > 0 for some dimension function h0 ≤ h, and thus to check that

Hh(K ′f,α) > 0. Indeed, because Ff,α will be an h0-set, it will be possible to
give sense, to the “proportion” of K ′f,α in Kf,α, and to use it.
2) It will be convenient to use triadic numbers to have an exact compatibility
between the various scales of our setting, and also because we will choose
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at each step central intervals (thus any odd basis would suit instead of 3).
We will first define an increasing sequence (Pn) of integers, related with h.
Then we will define for each 0 < α < ∞ a sequence (ϕn,α) of continuous
nondecreasing functions with 3−Pn-periodic derivative, and finally the open
sets Ωn,α.
3) Because h is concave, we observe that the function θ0(t) = h(t)/t is non
increasing on ]0,+∞[, and has infinite limit in zero.

We define P0 = 0. We suppose now n ≥ 1. We choose Pn > 2n + Pn−1

large enough so that 3Pn−n+1−Pn−1h(3−n−Pn) ≥ h(3−n+1−Pn−1), which just
means that θ(3−n−Pn) ≥ 3nθ(3−n+1−Pn−1).
4) We now explain how behaves the derivative ϕ′n,α on the interval Jn,k =
3−Pn [k − 1, k]. It is null except on two intervals of length n3−n−Pn and wich
are just one before and one after the interval J ′n,k which as same center as
Jn,k and which has lengtht 3−n−Pn . In those two intervals ϕ′n,α = α.

Thus ϕn,α has some difference quotients closed to α and involving points
of the centered interval J ′n,k: First indeed, all difference quotient of ϕn,k are
≤ α. Secondly, for any s ∈ J ′n,k, one can find two t ∈ Jn,k, one greater than

s, with 3−n−Pn ≤ |t− s] ≤ 3−1−Pn and for which ϕn,α(t)−ϕn,α(s)

t−s ≥ nα/(n+ 1).
5) Now, for a ρn small enough3, Ωn,α will be the set of those f ∈ Cr such
that for some set Af,n,α ⊂ {1, . . . , 3Nn}

k ∈ Af,n,α ⇒ ‖f − f(k3−Pn)− ϕn,α‖Jn,k < ρn (3)

with exceptional set Bf,n,α = {1, . . . , 3Nn} \ Af,n,α satisfying

n ≥ 2⇒ cardBf,n,α < 2−3−n3Pn−Pn−1−n+1 (4)

We ask that:
4nρn < 2−3−n3−n−1−Pn (5)

Moreover, we also ask ρn to be small enough so that for any f ∈ Ωα,n and
k ∈ Af,n,α, the function f must satisfy the following slightly relaxed difference
quotient condition: For all s ∈ J ′n,k and t ∈ Jn,k with 3−n−Pn ≤ |t − s|, we

must have f(t)−f(s)
t−s ≤ (n + 1)α/n, moreover for each such s, one can choose

two such numbers t, one greater than s, one lesser than s, and for which
f(t)−f(s)

t−s ≥ nα/(n+ 2).

3it happens that the choice of ρn does not really depend on α, but the contrary would
not have been a problem
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6) We have already given all the conditions useful for defining G. Ωn,α is
obviously open. The density of Ω∗m,α follows from the fact that ‖ϕn,α‖[0,1] → 0
and from the fact that the right member of the majoration (4) of the cardinal
of exceptional set tends to infinity. Indeed this allows to dispose almost
arbitrary the growth of the functions f ∈ Ω∗m,α, which are constrained to
make most of their growth in the “exceptional intervals” In,k for k ∈ Bn,f

(we recall that step functions are dense in Cr).
7) Let f ∈ G and 0 < α < ∞. We choose a sequence (αn) in D converging
to α. We then choose a strictly increasing sequence (Qn) of integers such
that Q0 = 0 and n ≥ 1⇒ f ∈ ΩQn,αn .

Following Lemma7, we then define an h0-set K = Kf,α, taking

Nn = 3PQn−Qn−1−PQn−1

and asking the intervals of the step n in the building of K to have length
rn = 3−Qn−PQn . The involved dimension function h0 must then satisfy
h0(rn−1) = Nnh0(rn) which defines the values h0(rn) if we add that h0(1) =
h(1). We complete the definition of h0 by asking h0 to be affine on each
interval [rn, rn−1], for n ≥ 1, and that h0 = h(1) on [1,+∞[.

The sequence (h0(rn)) is decreasing of null limit and thus h is a dimension
function. We also have h0(rn) ≤ h(rn), hence h ≤ h0 because h is concave.
We must also check that θ0(t) = h0(t)/t is nondecreasing, but this follows
from θ0(rn) = 3Qnθ0(rn−1). Thus Lemma 8 can be applied to (K,h0) instead
of (K,h).
8) We then define a closed subset K ′ = K ′f,α = K \

⋃
n≥1

⋃
J∈Jn J , where Jn

denotes the set of intervals J of one of the two following kinds:

J = J ′Qn,k where k ∈ Bf,Qn,αn

J = J ′Qn,k ⊂ J ′Qn−1,l
where n ≥ 2, k ∈ Af,Qn , l ∈ Af,Qn−1,αn−1 such that

there exists s ∈ J and t ∈ J ′Qn−1,l
satisfying |s − t| ≥ 3−1−PQn and

f(t)− f(s)

t− s
≥ 1/Qn−1.

With in mind the observation following Lemma 8, we can claim that K ′ is
also an h0-set because we have Hh0(K ′) ≤ (1

4
+ 1

4
)Hh0(K) as a consequence

of the inequalities (4) (with Qn instead of n) and (5) (with Qn−1 instead of
n and applying Lemma 7 to f in J ′n−1,k with α = 1/Qn−1).

K ′ ⊂ [α ≤ f ′l,s] ∩ [α ≤ f ′r,s] follows from the second condition (in step 5
of this proof) when choosing the number ρn small enough. So if s ∈ K ′, it
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remains to explain why we also have f ′s(s) ≤ α. But this follows from the
same condition we just mentioned, and also from the second kind of intervals
occurring in the definition of K ′. Indeed, if t ∈ [0, 1] we have

f(t)− f(s)

t− s
≤ (Qn + 1)αn/Qn when 3−Qn−PQn ≤ |t − s| ≤ 3−1−PQn with

n ≥ 1

f(t)− f(s)

t− s
≤ 1/Qn−1 when 3−1−PQn ≤ |t− s| ≤ 3−Qn−1−PQn−1 with n ≥ 2.

5 Typical functions with bounded variation

Here we adapt the main result above to the case where the topology of
bounded variation is involved. The proof of the results obtained will be an
easy adaptation of the proof above.

Let Vb denote the space of all functions f : [0, 1]→ R endowed with the
norm ‖f‖v = |f(0)| + var[0,1] f ≥ ‖f‖[0,1]. It contains Cr and Ccr, and we
also consider the subsets Cvb, Avb, Avb+ of f ∈ Vb which are respectively
continuous, with [f 6= 0] countable, ≥ 0 with [f 6= 0] countable (here the
letter A stands for f atomic and not for mes f atomic).

Vb, Cvb, Avb and Avb+ are always endowed with ‖.‖v while we precise
(Cr, ‖.‖v) and (Ccr, ‖.‖v) when we will consider Cr and Ccr as topological
subspaces of Vb.

Let us recall that (Vb, ‖.‖v) and (Cvb, ‖.‖v) are Banach spaces, but not
separables. (Cr, ‖.‖v) and (Ccr, ‖.‖v) are also complete and not separables.

To check the non separability of (Ccr, ‖.‖v), and hence of (Cvb, ‖.‖v), one
may associate to each Cantor subset K of [0, 1] some fK ∈ Ccr such that
Supp mesfK = K, fK(0) = 0 and fK(1) = 1. Using the fact that such a K is
homeomorphic to {0, 1}N, thus to {0, 1}Z, thus to K2, one can choose some
set K of Cantor subsets of [0, 1] with cardK = cardR and such that for all
distincts elements A, B of K we have A ∩B = ∅ and thus ‖fA − fB‖v = 2.

The crucial lemma 7 can be adapted to functions of bounded variations:

LEMMA 9 Let f ∈ Vb, 0 < α <∞, 0 ≤ a < b ≤ 1 and E be the union of

all [s, t] ⊂ [a, b] such that s 6= t and
∣∣∣f(t)−f(s)

t−s

∣∣∣ ≥ α. Then we have

H1(E) ≤ 2

α
var[a,b] f. (6)
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Proof of Lemma 9 Results from Lemma 7 because of the Jordan decom-
position f = g−h with some (unique up to additive constant) g, h ∈ Cr also
satisfying var f = var g + varh, and because we have then Ef ⊂ Eg ∪ Eh.

THEOREM 2 Let h be some concave dimension function such that t/h(t)→
0 in zero. Then for most f in resp Vb, Cvb, Avb, and for all α > 0 , we
have

0 < Hh[α = f ′l,s = f ′r,s] and 0 < Hh[−α = f ′l,i = f ′r,i].

Hence we also have

1 = dimH[α = f ′l,s = f ′r,s] = dimH[−α = f ′l,i = f ′r,i].

0 < Hh[α = f ′l,s = f ′r,s] is also true for most f in resp (Cr, ‖.‖vb), (Ccr, ‖.‖vb).

Finaly, 0 < Hh[α = −f ′l,il = f ′r,s] is also true for most f Avb+.

Proof of Th 2. For the cases Vb, Cvb, (Cr, ‖.‖vb), (Ccr, ‖.‖vb), it is almost
the same as that of Theorem 2, using Lemma 9, in stead of Lemma 7. For
example, ‖.‖vb restricted to J ′n,k must be used instead of the uniform norm
when defining Ωn,α.

For the cases Avb and Avb+, one must also change the definition of ϕn,α
which will be now periodic and atomic. More precisely ϕn,α will be now null
except in exactly two points of each interval I ′n,k:

ϕn,α((k − 1/2)3−Pn + (n+ 1
2
)3−n−Pn) = n3−n−Pnα

ϕn,α((k − 1/2)3−Pn − (n + 1
2
)3−n−Pn) = −n3−n−Pnα for the case Avb and

= n3−n−Pnα for the case Avb+.
Remark. Actually the last statement of Th 2 is also true for most f of
respectively Avb, Vb, Cvb (with an easy change of ϕn in the proof). For
given α, β ≥ 0, one could also adapt the proof of the main resul to get that
most f in Cr or in Ccr satisfy

1 = dimH[f ′l,s = α and f ′r,s = β]

and similar improvement of Th 2.
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