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EXPLICIT RIGIDITY OF ALMOST-UMBILICAL

HYPERSURFACES

JULIEN ROTH AND JULIAN SCHEUER

Abstract. We give an explicit estimate of the distance of a closed, connected,
orientable and immersed hypersurface of a space form to a geodesic sphere

and show that the spherical closeness can be controlled by a power of an

integral norm of the traceless second fundamental form, whenever the latter
is sufficiently small. Furthermore we use the inverse mean curvature flow in

the hyperbolic space to deduce the best possible order of decay in the class of

C∞-bounded hypersurfaces of the Euclidean space.
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1. Introduction

In this paper we prove two stability theorems of almost-umbilicity type, which give
an answer to a question raised in [?], generalise the result in [?] to spaceforms and
thereby partially improve [?, Thm. 1.3, Thm. 1.4]. Furthermore we use a recent
counterexample for the inverse mean curvature flow in the hyperbolic space, cf. [?],
to provide a new counterexample for spherical closeness estimates.

Let us shortly introduce the relevant notation. For an oriented hypersurface of a
Riemannian manifold, Mn ↪→ Nn+1, |M | denotes its surface area, g its induced

metric, A its second fundamental form, Å the traceless part of A,

(1.1) Å = A−Hg,

xM the center of mass of M and dH the Hausdorff distance of sets.
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For a tensor (T j1...jli1...ik
) on M, we define its Lp-norm to be

(1.2) ‖T‖p =

(ˆ
M

|T j1...jli1...ik
T i1...ikj1...jl

|
p
2

) 1
p

,

where indices are raised or lowered with the help of g. Let us formulate our first
main result.

1.1. Theorem. Let M ↪→ Rn+1 be a closed, connected, oriented and isometrically
immersed C2-hypersurface with |M | = 1. Let p > n ≥ 2. Then there exists a
constant ε0 > 0 depending on n, p and ‖A‖p, as well as a constant α = α(n, p) ≤ 1,
such that whenever there holds

(1.3) ‖Å‖p ≤ ‖H‖pε0,
then

(1.4) dH(M,SR(xM )) ≤ cα

‖H‖αp
‖Å‖αp ≡ εα

and M is εα-quasi-isometric to a sphere SR with a certain radius R.

By εα-quasi-isometric, we mean that the diffeomorphism from M into SR(p) satis-
fies

(1.5)
∣∣|dFx(u)|2 − 1

∣∣ 6 εα
for any x ∈M , u ∈ TxM and |u| = 1.

The assumption |M | = 1 is only for simplification. By scaling it is easy to obtain
a scale-invariant version of (1.4) for arbitrary M.

In section 3 we generalize this theorem to conformally flat ambient spaces.

The history of the problem to control the closeness to a sphere by curvature quan-
tities is quite long, starting from the well known Nabelpunktsatz. We refer to the
bibliography in [?] for a quite detailed overview. Let us only mention several results
which have appeared recently. For surfaces, n = 2, a quite straightforward calcu-
lation due to Andrews yields an explicit C0-estimate for convex hypersurfaces, cf.
[?, Prop. 4, Lemma 5],

(1.6)

∣∣∣∣〈x− q, ν〉 − 1

8π

ˆ
M

H

∣∣∣∣ ≤ C|M ||κ1 − κ2|,

where x is the embedding vector and q is the Steiner point. In section 4 we use
the inverse mean curvature flow (IMCF) in the hyperbolic space to prove that the
power on the right-hand side of (1.6) can not be improved to α > 1, which is in
turn then not possible either in Theorem 1.1. The latter proof relies on a recent
example due to Hung and Wang, [?, Thm. 1, Prop. 5], that the convergence after
rescaling in the IMCF can not be too fast in the hyperbolic space.

For strictly convex hypersurfaces of Rn+1 there is the following estimate of circum-
radius R minus inradius r due to Leichtweiß, cf. [?, Thm. 1.4, eq. (38)]:

(1.7) R− r ≤ cn max
x∈M

(Rn(x)−R1(x)),

where R1 ≤ · · · ≤ Rn are the ordered radii of curvature. However, Theorem 1.1
deals with estimates in dependence of integral pinching. For the case n = 2, an
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estimate similar to (1.1) with a better constant was obtained by De Lellis and
Müller, cf. [?]

In [?, Cor. 1.2] Perez derived a qualitative solution and obtained under certain
assumptions, for given ε > 0, a δ > 0, such that

(1.8) ‖Å‖p < δ

implies

(1.9) dH(M,Sr0(x)) < ε.

In [?, p. xvi] the author posed the derivation of an explicit δ as a question of
interest.

The second author of the present paper derived a quantitative δ within the class
of strictly convex hypersurfaces in [?, Thm. 1.1]. There it is shown that a δ which
has the order ε2+α, α > 0 provides (1.9). However, the proof in [?] relies on the
convexity of the hypersurface. Unfortunately, also in the paper at hand we did not
achieve a constant independent on the size of the curvature itself. The constant is
only uniform in the class of hypersurfaces with a fixed bound on the curvature of
the scaled hypersurface.

The following theorem, due to Grosjean and the first author, [?, Thm. 1.4], already
provides this conclusion, however only with the additional assumption of smallness
of the oscillation of the mean curvature itself:

1.2. Theorem. [?, Thm. 1.4]
Let (Mn, g) be a compact, connected and oriented n-dimensional Riemannian mani-
fold without boundary isometrically immersed by φ in Rn+1. Let p be the center of
mass of M. Let ε < 1, r, q > n, s ≥ r and c > 0. Let us assume that |M | 1n ‖H‖q ≤ c.
Then there exist positive constants C = C(n, q, c), α = α(q, n), such that if εα ≤ 1

C ,

(1.10) ‖Å‖r ≤ ‖H‖rε

and

(1.11) ‖H2 − ‖H‖2s‖ r2 ≤ ‖H‖
2
rε,

then M is εα-Hausdorff close to S 1
‖H‖2

(p). Moreover if |M | 1n ‖A‖q ≤ c, then M is

diffeomorphic and εα-quasi-isometric to S 1
‖H‖2

(p).

Note that in this theorem, Lp-norms are defined slightly different, namely such
that the Lp-norms of scale-invariant functions are scale-invariant. Our notation
corresponds to the one in [?]. This ambiguity does not cause any problems, since
we prove Theorem 1.1 for |M | = 1. Also note the typo in [?, Thm. 1.4], where the
α is missing in the conclusion.

In [?, Thm. 3.1], which also covers other ambient spaces, (1.11) was replaced by an
assumption on the gradient of H. However, with the help of the following theorem
due to Perez it is possible to get rid of (1.11) completely.

1.3. Theorem. [?, Thm. 1.1]
Let p > n ≥ 2 and c0 > 0 be given. Then there is a constant C > 0, depending only
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on n, p and c0, such that:
If Σ ⊂ Rn+1 is a smooth, closed and connected n-dimensional hypersurface with

(1.12) |Σ| = 1

and

(1.13) ‖A‖p ≤ c0,

then

(1.14) min
λ∈R
‖A− λg‖p ≤ C‖Å‖p.

The proof of Theorem 1.1 is a combination of Theorem 1.2 and Theorem 1.3.

2. Proof of Theorem 1.1

Without loss of generality we may suppose that M is of class C∞, since both sides
of the inequality are continuous with respect to the C2-norm and hence the general
result can then be achieved by approximation.

Using [?, Thm. 1.1], we obtain a λ0 ∈ R, such that

(2.1) ‖A− λ0g‖p ≤ C ′‖Å‖p,

where C ′ = C ′(n, p, ‖A‖p). Let us calculate

(2.2)

‖H2 − ‖H‖2p‖ p2 ≤ ‖H
2 − λ2

0‖ p2 + ‖λ2
0 − ‖H‖2p‖ p2

=

(ˆ
M

|H − λ0|
p
2 |H + λ0|

p
2

) 2
p

+ |λ2
0 − ‖H‖2p|

≤ 2(‖H‖p + |λ0|)‖H − λ0‖p

≤ 2√
n

(‖H‖p + |λ0|)‖A− λ0g‖p

≤ c′‖H‖p‖Å‖p,

where c′ = c′(n, p, ‖A‖p). The last inequality is due to the fact that

(2.3) |λ0 − ‖H‖p| ≤ c′′‖Å‖p.

Defining

(2.4) c = max(1, c′),

(2.5) ε =
c‖Å‖p
‖H‖p

,

and

(2.6)
ε0 :=

min
(

1, C−
1
α

)
2c

then by (1.3),

(2.7) ε ≤ cε0 =
1

2
min

(
1, C−

1
α

)
,
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where α and C are the constants from [?, Thm. 1.4]. Furthermore we have

(2.8) ‖Å‖p ≤ ‖H‖pε
and

(2.9) ‖H2 − ‖H‖2p‖ p2 ≤ ‖H‖
2
pε.

Thus we may apply [?, Thm. 1.4] to conclude that M is εα-close to a sphere.

3. Generalization to conformally flat manifolds

Using that the property of a submanifold to be totally umbilic is conformally in-
variant, we easily obtain the following generalization to conformally flat manifolds,
which in particular include the space forms and improves the εα-proximity state-
ment in [?, Thm. 1.3] in the sense that it removes assumption (2).

3.1. Theorem. Let Ω ⊂ Rn+1 be open and let Nn+1 = (Ω, ḡ) be a conformally flat
Riemannian manifold, i.e.

(3.1) ḡ = e2ψ g̃,

where g̃ is the Euclidean metric and ψ ∈ C∞(Ω). Let Mn ↪→ Nn+1 be a closed,
connected, oriented and isometrically immersed C2-hypersurface. Let p > n ≥ 2.
Then there exist constants c and ε0, depending on n, p, |M |, ‖A‖p and ‖ψ‖∞,M , as
well as a constant α = α(n, p), such that whenever there holds

(3.2) ‖Å‖p ≤ ε0,
there also holds

(3.3) dH(M, S̃R) ≤ c‖Å‖αp ,

where S̃R is the image of a Euclidean sphere considered as a hypersurface in Nn+1

and the Hausdorff distance is also measured with respect to the metric ḡ.

3.2. Remark. Since in conformally flat spaces the scaling behaviour of the second
fundamental form with respect to homotheties heavily depends on the nature of
the ambient space, in this case there seems to be no way to give a general scale
invariant estimate. This is the reason why this closeness estimate is only uniformly
valid in the class of C2-bounded hypersurfaces.

Furthermore note that for example in all space forms the hypersurface S̃R is actually
a geodesic sphere. This follows from the fact that in those spaces totally umbilical
hypersurfaces are spheres and total umbilicity is conformally invariant, as will be
appearant from the following proof of Theorem 3.1.

Thus Theorem 3.1 gives an explicit spherical closeness estimate of almost-umbilical
hypersurfaces in the hyperbolic space as well as in the half-sphere of constant
positive sectional curvature.

Proof. Under a conformal relation of the metrics as in (3.1) the corresponding
induced geometric quantities of the the embedded hypersurface M are related as
follows.

(3.4) gij = e2ψ g̃ij
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and

(3.5) hije
−ψ = h̃ij + ψβ ν̃

β g̃ij .

Those formulae can be found in [?, Prop. 1.1.11]. Hence

(3.6) hij −Hgij = eψ(h̃ij − H̃g̃ij)

and hence

(3.7) c‖ ˚̃A‖p ≤ ‖Å‖p ≤ C‖ ˚̃A‖p,

where the constants depend on ‖ψ‖∞,M . Since the Euclidean and the conformal
Hausdorff distances are equivalent whenever |ψ| is bounded, we obtain the result
after applying Theorem 1.1. �

Due to a well known interpolation theorem for convex hypersurfaces of Riemannian
manifolds we obtain the following gradient stability estimate in space forms.

3.3. Corollary. Let Nn+1 be a space form and M as in Theorem 3.1 be additionally
strictly convex, where we also assume that ḡ is given in geodesic polar coordinates

(3.8) ḡ = dr2 + ϑ2(r)σijdx
idxj ≡ dr2 + ḡijdx

idxj

with suitable ϑ depending on the space form. Let p > n. Then there exist constants
c and ε0 depending on n, p, |M |, ‖A‖p and ‖ψ‖∞, as well as a constant α = α(p, n),
such that

(3.9) ‖Å‖p ≤ ε0
implies

(3.10) v =
√

1 + ḡijuiuj ≤ ec‖Å‖
α
p ,

where

(3.11) M = {(x0, xi) : x0 = u(xi), (xi) ∈ S0}

is a suitable graph representation over a geodesic sphere S0 ↪→ Nn+1 and (ḡij) is
the inverse of (ḡij).

Proof. It is well known that a strictly convex hypersurface of Sn+1 is contained
in an open hemisphere, cf. [?] for the smooth case and also [?, Cor. 1.2] for the
C2-case. Thus in any space form a strictly convex M is covered by a conformally
flat coordinate system as in Theorem 3.1, which is thus applicable. Let S0 be the
corresponding sphere with center p, then we can write M as a graph over S0 due
to the strict convexity. Thus we may apply the well-known interpolation estimate

(3.12) v ≤ eκ̄ oscu,

cf. [?, Thm. 2.7.10], where κ̄ is a lower bound for the principal curvatures of the
coordinate slices {r = const}. The latter, however, only depends on ‖ψ‖∞ as well.

�

3.4. Remark. Note that in the Euclidean case the assumption of the strict convexity
is redundant, if (3.9) is satisfied with p = ∞, since then it is possible to deduce
strict convexity from (3.9), cf. [?, Lemma 2.2].
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4. An optimality result

We prove the optimality of the the statement in Theorem 1.1 in the sense that there
is no hope to derive a uniform estimate of the form

(4.1) dH(M,SR(x0)) ≤ c‖Å‖α∞, α > 1,

in the class of uniformly C∞-bounded hypersurfaces M. To be precise, for α > 1 we
get the following negation of (1.6) in the class of uniformly convex hypersurfaces
and for all n ≥ 2.

4.1. Theorem. Let n ≥ 2 and C = 2 max(|S2(0)|, ‖ĀS2
‖∞). For all α > 1 and for

all k ∈ N there exists a uniformly convex smooth hypersurface Mk ↪→ Rn+1 with

(4.2) max(‖Ak‖∞, |Mk|) ≤ C,

such that

(4.3) ‖Åk‖∞ <
1

k

and for all spheres S ⊂ Rn+1 there holds

(4.4) dH(Mk, S) > k‖Åk‖α∞.

Here ĀS2 denotes the second fundamental form of the sphere with radius 2.

In a recent paper, Drach gave a counterexample to an improved spherical close-
ness estimate in the class of C1,1 hypersurfaces, namely a special spindle shaped
hypersurface, cf. [?, Thm. 1]. However since, we consider (1.4) in the space of
at least C2-hypersurfaces, we need to find a different contradiction to (4.1). This
contradiction is deduced along the inverse mean curvature flow in the hyperbolic
space.

Before we prove Theorem 4.1, let us for convenience recall the relevant facts about
the inverse mean curvature flow in the hyperbolic space Hn+1. There one considers
a time parameter family of embeddings of closed, starshaped and mean-convex
hypersurfaces

(4.5) x : [0, T ∗)×M ↪→ Hn+1,

which solves

(4.6) ẋ =
1

H
ν,

where H = gijhij and ν is the outward unit normal to Mt = x(t,M). Note that
we have switched the notation of H in this context due to a better comparability
with the literature. It is known, cf. [?, Lemma 3.2], that for an initial starshaped
and mean-convex hypersurface M0 the flow exists for all times and all the flow
hypersurfaces can be written as a graph over a fixed geodesic spere S0,

(4.7) Mt = {(x0, xi) : x0(t, ξ) = u(t, xi(t, ξ))},

where u describes the radial distance to the center of S0. In [?, Thm. 1.2] Gerhardt
claimed to have shown convergence of the rescaled hypersurfaces

(4.8) M̂t = graph û ≡ graph

(
u− t

n

)
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to a geodesic sphere. However, as was pointed out in [?, Thm. 1] with the help of
a concrete counterexample, the limit function of û is not constant in general. In
particular the authors proved that there is a starshaped and mean-convex initial
hypersurface M0, such that the limit hypersurface is not of constant curvature, in
particular not a geodesic sphere. However, there is a smooth limit function to which
the M̂t converge smoothly, compare the proof of [?, Thm. 6.11] and also compare
[?, Thm. 1.2].

In order to relate the convergence results of the IMCF in the hyperbolic space with
the rigidity estimate (1.4) in the Euclidean space, we have to look at the hyperbolic
flow in the conformally flat model. In [?] the Poincaré ball model in the ball of
radius two was considered. Let r denote the geodesic distance to the center of S0

in Hn+1, then the by the coordinate change

(4.9) ρ = 2− 4

er + 1

the representation of the hyperbolic metric transforms like

(4.10) ḡ = dr2 + sinh2(r)σijdx
idxj =

1(
1− 1

4ρ
2
)2 (dρ2 + ρ2σijdx

idxj) ≡ e2ψ g̃,

where σij is the standard round metric of the sphere S0. Then the convergence

(4.11) u− t

n
→ û∞

in the original coordinates is equivalent to the convergence of

(4.12) (2− w)e
t
n → ŵ∞,

where

(4.13) w = 2− 4

eu + 1

and where ŵ∞ is a strictly positive function, due to [?, Lemma 3.1].

The proof of Theorem 4.1 is very similar to the proof of a corresponding positive
result in this direction by the second author. In [?] he proved that due to a strong
decay of the traceless second fundamental form along the IMCF in Rn+1 we indeed
obtain spherical roundness in this case without rescaling. The idea how to obtain
a negative result in the hyperbolic space is that if we could improve the spherical
closeness, then we could mimic the proof in [?] to deduce a roundness result in
Hn+1, which is not possible in view of Hung’s and Wang’s paper.

The idea of the proof of Theorem 4.1 goes as follows: The estimate in (4.12)
provides closeness of the flow hypersurfaces to the sphere of radius 2 in the ball
model. The order of the closeness is e−

t
n . The traceless second fundamental form

decays correspondingly, as we will point in more detail later in the proof. But if we
had this additional exponent α in the spherical closeness estimate, we could even
deduce better spherical closeness (to a sphere different from S2) than we have in
(4.12) and then we would be able to translate this to a spherical closeness in the
hyperbolic space. This would in turn yield a contradiction to Hung’s and Wang’s
result. Now let us prove Theorem 4.1 in detail. First we need some helpful notation
and an auxillary result.
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4.2. Definition. (i) Let N be either the Euclidean space, the hyperbolic space or
an open hemisphere. For a starshaped hypersurface M ↪→ N, let M∗ be the set of
points in N, with respect to which M is starshaped.

(ii) For a starshaped hypersurface M ↪→ N let p ∈ M∗. Then for the graph repre-
sentation

(4.14) M = {(r, xi) : r = u(xi), (xi) ∈ Sp},

by

(4.15) oscp u = max
x∈Sp

u(x)− min
x∈Sp

u(x)

we denote the oscillation of the geodesic distance of the point (u, xi) to the point
p. Here Sp denotes a geodesic sphere around p.

By a simple argument we obtain the following alternative for a general expanding
sequence of hypersurfaces with controlled oscillation.

4.3. Lemma. Let N be as in Definition 4.2 and Mt ↪→ N, 0 ≤ t ∈ R, be a family
of starshaped hypersurfaces such that

(4.16) M∗t ⊂M∗s ∀s ≥ t

and such that for all t0 ∈ N and p ∈ M∗t0 there exists a constant c independent of
t0, such that

(4.17) oscp ut ≤ c oscp ut0 ∀t ≥ t0.

Then for fixed p, oscp ut does not have zero as a limit value for t→∞ unless

(4.18) oscp ut → 0, t→∞.

Proof. For given ε > 0, if zero is a limit point, we may choose t0, such that

(4.19) oscp ut0 ≤
ε

c
,

then

(4.20) oscp ut ≤ c oscp ut0 ≤ ε ∀t ≥ t0.

�

Now we can prove Theorem 4.1.

Proof. Assume the contrary, i.e. that there exist α > 1 and k ∈ N, such that for
all uniformly convex hypersurfaces M̃ ↪→ Rn+1 with

(4.21) max(|M̃ |, ‖Ã‖∞) ≤ C

we have that

(4.22) ‖ ˚̃A‖∞ <
1

k

implies

(4.23) d̃H(M̃, S̃) ≤ k‖ ˚̃A‖α∞
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for some suitable sphere S̃ ⊂ Rn+1. According to [?, Thm. 1] for n = 2 and [?, Sec. 4]
for n ≥ 3 there exists a starshaped and mean-convex hypersurface M0 ↪→ Hn+1,
such that for no graph representation

(4.24) Mt = graph u

the rescaled IMCF flow hypersurfaces

(4.25) M̂t = graph

(
u− t

n

)
≡ graph û

converge to a geodesic sphere. However, for each graph representation, we obtain
smooth convergence of

(4.26) û→ û∞.

In [?, Thm. 1.2 (2)] it is deduced that

(4.27) ‖Å‖∞ ≤ ce−
2t
n ,

where c = c(n,M0). Now fix a graph representation around p ∈ M∗0 . From (3.4)
and (3.5) we obtain that the corresponding Euclidean traceless part decays like

(4.28) ‖ ˚̃A‖∞ = ‖eψÅ‖∞ ≤ eψmaxe
− 2t
n ,

where

(4.29) eψmax =
1(

1− 1
4w

2
max

)
with w as in (4.13) and

(4.30) wmax = max
x∈Sp

w(x).

Due to (4.12) we obtain

(4.31) ‖ ˚̃A‖∞ ≤ ce−
t
n

and due to the C∞-convergence of w → 2, we are in the situation to apply our
assumption (4.23), whenever t is large enough. We obtain a sequence of spheres

S̃R̃t ⊂ Rn+1, such that

(4.32) d̃H(M̃t, S̃R̃t) ≤ ce
−αn t,

where the Hausdorff distance is measured with respect to the Euclidean metric.
Due to (4.12) we even have

(4.33) S̃R̃t ⊂ B2(0),

for large times t.

Now let us switch back to the hyperbolic space. The spheres S̃R̃t are geodesic

spheres in Hn+1 as well since total umbilicity is preserved under a conformal trans-
formation and in the Euclidean space as well as in the hyperbolic space for closed
and embedded hypersurfaces total umbilicity is tantamount to being a geodesic
sphere. We denote these spheres in Hn+1 by SRt . For the corresponding hyperbolic
Hausdorff distance we deduce

(4.34) dH(Mt, SRt) ≤ eψmaxd̃H(M̃t, S̃R̃t) ≤ ce
1−α
n t,

which converges to 0 as t→∞.
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Since the inradius of the Mt converges to infinity and for large t the Mt are strictly
convex, for each δ > 0 we find t0 > 0, such that

(4.35) B̄δ(p) ⊂M∗t0 ⊂M
∗
t ∀t ≥ t0,

where the latter inclusion is due to the fact that starshapedness around a given
point is preserved. According to [?, Prop. 3.2, Lemma 3.5], there holds for the
oscillation of u that for all t0 and all q ∈M∗t0 we have

(4.36) oscq u(t, ·) ≤ c oscq u(t0, ·) ∀t ≥ t0.

So in particular, if we choose

(4.37) δ = c oscp u(0, ·),

we find that the oscillation of each Mt is minimized within the set B̄δ(p) :

(4.38) argmin
q∈M∗t

oscq u(t, ·) ∈ B̄δ(p) ∀t ≥ t0,

because outside B̄δ(p) the oscillation is already larger than it is with respect to p.

Due to (4.34) we obtain

(4.39) oscqt u(t, ·) = min
q∈B̄δ(p)

oscq u(t, ·) ≤ ce
1−α
n t ∀t ≥ t0.

Let tk be a sequence of times with tk → ∞. Due to the compactness of B̄δ(p) a
subsequence of center points converges,

(4.40) qk → q ∈ B̄δ(p),

where we did not rename the index of the sequence. Since

(4.41) | oscqk u(tk, ·)− oscq u(tk, ·)| ≤ 2 dist(qk, q) ∀k ∈ N,

we obtain

(4.42) oscq u(tk, ·)→ 0, k →∞.

In view of (4.36) and the preservation of starshapedness along IMCF the assump-
tions of Lemma 4.3 are fulfilled. Applying Lemma 4.3, we obtain that

(4.43) oscq(t, ·)→ 0,

in contradiction to the choice of the initial hypersurface. �

4.4. Remark. Note that in turn of the proof we even have shown that for given
α > 1 and k ∈ N as in Theorem 4.1, such a counterexample Mk satisfying (4.3) and
(4.4) must actually occur along the inverse mean curvature flow in the conformally
flat version of the IMCF in Hn+1. We only used our contrary assumption within
this class of flow hypersurfaces.
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5. Concluding remark

We would like to point out that the techniques in section 4 might be useful in other
situations. Whenever one would like to estimate the closeness to a sphere in compar-
ison with another geometric quantity, e.g. in comparison with eigenvalue pinching
of the Laplacian or also in almost-Schur/almost-CMC type estimates, one could de-
termine how this particular geometric quantity behaves along the IMCF and then
determine the best possible roundness estimate using the IMCF in Hn+1. It should
often be quite straightforward to derive the best possible decay estimate.
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