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Introduction

Nonlinear dispersive evolution equations such as the wave and Schrödinger equations have been investigated for decades. For defocusing power-type energy subcritical or critical nonlinearities the theory is developed, while the energy supercritical powers are wide open. For semilinear focusing equations the picture is less complete for long-term dynamics. These equations exhibit finite-time blowup, small data global existence and scattering, as well as time-independent solutions (solitons). For the energy critical wave equation lu " u 5 , pt, xq P R 1`3 , pup0q, B t up0qq P 9

H 1 pR 3 q ˆL2 pR 3 q , in the radial setting, Duyckaerts, Kenig, and Merle [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energy-critical wave equation[END_REF] achieved a breakthrough by showing that all global trajectories can be described as a superposition of a finite number of rescalings of the ground state Wprq " p1 `r2 {3q ´1 2 plus a radiation term which is asymptotic to a free wave. This work introduces the novel exterior energy estimates. The subcritical case appears to require different techniques, however. Nakanishi and the third author [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian Evolution Equations[END_REF] described the asymptotics of solutions provided the energy is only slightly larger than the ground state energy. The trichotomy in forward time of (i) blowup in finite time (ii) global existence and scattering to zero (iii) global existence and scattering to the ground state, can be naturally formulated in terms of the center-stable manifold associated with the ground state.

In this paper, we develop a robust approach to the problem of long-term asymptotics of the general energy subcritical Klein-Gordon equations with (arbitrarily small) dissipation. The focusing damped subcritical Klein-Gordon equation in R d , 1 ď d ď 6 (for the case d ě 7, see [START_REF] Burq | Long time dynamics for damped Klein-Gordon equations II[END_REF]), is

B 2
t u `2αB t u ´∆u `u ´|u| θ´1 u " 0, pup0q, B t up0qq " pϕ 0 , ϕ 1 q P H , (1.1) where H " H 1 pR d q ˆL2 pR d q, α ě 0 and (1.2) 1 ă θ ă θ ˚, with θ ˚" d `2 d ´2 .

We will limit our study to the case of radial functions H rad " H 1 rad pR d q ˆL2 rad pR d q . The energy functional E θ below, also called Lyapunov functional in the dissipative case α ą 0, plays an important role in the analysis of the behaviour of the solutions of (1.1). This energy functional is given by

(1.3) E θ pϕ 0 , ϕ 1 q " ż R d ˆ1 2 |∇ϕ 0 | 2 `1 2 ϕ 2 0 `1 2 ϕ 2 1 ´1 θ `1 |ϕ 0 | θ`1
˙dx For the Klein-Gordon equation (1.1), it is known (see [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF], [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF], [START_REF] Coffman | Uniqueness of the ground state solution for ∆u ´u `u3 " 0 and a variational characterization of other solutions[END_REF], [START_REF] Mcleod | Uniqueness of Positive Radial Solutions of ∆u `f puq " 0 in R n , II[END_REF] and [START_REF] Chen | Uniqueness of the ground state solutions of ∆u `f puq " 0 in R n , n ě 3[END_REF] for example) that (1.1) admits a unique positive radial stationary solution pQ g , 0q (the ground state solution), which minimizes the energy E θ p., 0q in the class of all nonzero stationary solutions pQ, 0q in H, that is, 0 ă E θ pQ g , 0q " mintEpQ, 0q

| Q P H 1 pR d q, Q ‰ 0, ´∆Q `Q ´|Q| θ´1 Q " 0u
The behaviour of solutions of (1.1) with initial data pϕ 0 , ϕ 1 q P H with energy E θ pϕ 0 , ϕ 1 q ă E θ pQ g , 0q is rather well understood in the case α ě 0 since these solutions remain in the so-called Payne-Sattinger sets (see [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF]) for all positive times (and also negative times for α " 0). In these Payne-Sattinger domains, the solutions either blow-up in finite time or globally exist and scatter to 0 when α " 0 or converge to 0 for α ą 0, respectively. For a description of this phenomenon in the case α " 0, we refer for example to the book [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian Evolution Equations[END_REF].

It is also well-known that this equation has an infinite number of radial equilibrium points pe , 0q with a prescribed number ě 1 of zeros (these are called nodal solutions, see for example [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF]). Unfortunately, one knows almost nothing about the uniqueness and the hyperbolicity of those nodal solutions. ( [START_REF] Cortázar | On the uniqueness of sign changing bound state solutions of a semilinear equation[END_REF] obtains uniqueness results for nodal solutions but for sub-linear nonlinearities). In the Hamiltonian case (α " 0), this in part prevents the description of the behaviour of the solutions uptq of (1.1) whose initial data pϕ 0 , ϕ 1 q have an energy E θ pϕ 0 , ϕ 1 q much larger than the one of the ground state pQ, 0q.

In 1985 Cazenave [START_REF] Cazenave | Uniform Estimates for solutions of non-linear Klein-Gordon equations[END_REF] established the following dichotomy for the Hamiltonian case α " 0: solutions of (1.1) either blow up in finite time or are global and bounded in H, provided 1 ă θ ă `8, if d " 1, 2 with θ ď 5 if d " 2 and 1 ă θ ď d d´2 if d ě 3 (the result of Cazenave should extend to the case α ą 0). In 1998 Feireisl [START_REF] Feireisl | Finite energy travelling waves for nonlinear damped wave equations[END_REF], for the dissipative case α ą 0, gave an independent proof of the boundeness of the global solutions of (1.1), when d ě 3 and 1 ă θ ă 1 `minp d d´2 , 4 d q (for the case d " 1, see his earlier paper [START_REF] Feireisl | Convergence to an equilibrium for semilinear wave equations on unbounded intervals[END_REF]). Unfortunately, the proofs of Cazenave [START_REF] Cazenave | Uniform Estimates for solutions of non-linear Klein-Gordon equations[END_REF] and of Feireisl [START_REF] Feireisl | Finite energy travelling waves for nonlinear damped wave equations[END_REF] do not seem to extend to nonlinearities satisfying d d´2 ă θ ă d`2 d´2 , when d ě 3, where one needs to use Strichartz estimates in the various a priori estimates rather than Galiardo-Nirenberg-Sobolev inequalities. In this paper, we restrict our study to the dissipative radial case (α ą 0) and show the following dichotomy.

Theorem 1.1. Let α ą 0 and d ď 6. Then, (1) either the solutions of (1.1) in H rad blow up in finite positive time, [START_REF] Bates | Invariant manifolds for semilinear partial differential equations[END_REF] or they are global in positive time and converge to an equilibrium point.

In particular, all global in positive times solutions are bounded for positive times.

We notice that this theorem is a particular case of Theorem 1.2 below. In [START_REF] Burq | Long time dynamics for damped Klein-Gordon equations II[END_REF], we will partly generalise this dichotomy to non-radial solutions.

Actually the above dichotomy holds for some more general nonlinearities and, in this paper, we consider the damped Klein-Gordon equation in R d , d ď 6 (for the case d ě 7, see [START_REF] Burq | Long time dynamics for damped Klein-Gordon equations II[END_REF]),

B 2
t u `2αB t u ´∆u `u ´f puq " 0 , pup0q, B t up0qq " pϕ 0 , ϕ 1 q P H rad , pKGq α where f : y P R Þ Ñ f pyq P R is an odd C 1 -function, f 1 p0q " 0, which satisfies the following Ambrosetti-Rabinowitz type condition: there exists a constant γ ą 0 such that ż R d `2p1 `γqFpϕq ´ϕpxq f pϕpxqq ˘dx ď 0 , @ϕ P H 1 pR d q , pH.1q f where Fpyq " ş y 0 f psqds. We also need to impose a growth condition on f , when d ě 2. We assume that, | f 1 pyq| ď C max `|y| β , |y| θ´1 ˘, @y P R , | f 1 py 1 q ´f 1 py 2 q| ď C `|y 1 ´y2 | β `|y 1 ´y2 | θ´1 ˘, @y 1 , y 2 P R , pH.2q f where 1 ă θ ă θ ˚, 0 ă β ă θ ´1, θ ˚" 2 ˚´1 and where 2 ˚" 8 if d " 1, 2 and 2 ˚" 2d d´2 if d ě 3. We notice that, when d ě 3, θ ˚" d`2 d´2 . In other words, the growth of f is energy subcritical for large y " 0, and we also assume that f 1 is β-Hölder continuous. For sake of simplicity in the proofs below, we may assume, without loss of generality, that 0 ă β ă minpθ ´1, 2 d´2 q. We remark that our argument does not depend on the existence or uniqueness of a ground state solution. Note that Hypothesis pH.1q f alone does not imply the existence and uniqueness of a ground state solution. We further note that Hypothesis pH.1q f may actually be replaced by the following weaker one: ż R d `2p1 `γqFpϕq ´ϕpxq f pϕpxqq ˘dx ď 0 , for }ϕ} H 1 large enough. pH.1bisq f But, for sake of simplicity, we assume pH.1q f throughout. A classical example of a function f satisfying hypotheses pH.1q f and pH.2q f is as follows:

f puq " m 1 ÿ i"1 a i |u| p i ´1u ´m2 ÿ j"1
b j |u| q j ´1u , with 1 ă q j ă p i ď d `2 d ´2 , @i, j and a i , b j ě 0, a m 1 ą 0 .

(1. [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF] In Section 2, we shall prove that the equation pKGq α generates a local dynamical system on H as well as on H rad , for α ě 0. We denote S α ptq, α ě 0, this local dynamical system. As in the particular case of the Klein-Gordon equation (1.1), we introduce the energy functional (also called Lyapunov functional in the case of positive damping α ą 0) on H:

(1.5) Epϕ 0 , ϕ 1 q " ż R d ˆ1 2 |∇ϕ 0 | 2 `1 2 ϕ 2 0 `1 2 ϕ 2 1 ´Fpϕ 0 q ˙dx .
The natural first step in the study of the dynamics of the equation pKGq α consists in studying the boundedness or unboundedness of its global (in positive times) solutions. As already mentioned above, under restrictions on the growth rate of the nonlinearity, Cazenave [START_REF] Cazenave | Uniform Estimates for solutions of non-linear Klein-Gordon equations[END_REF] and Feireisl [START_REF] Feireisl | Finite energy travelling waves for nonlinear damped wave equations[END_REF] established this boundedness. In this paper, taking advantage of the fact that all the functions are radial, we will show the boundedness of the global solutions of pKGq α , for α ą 0, by using "dynamical systems" arguments. Indeed, we will show that each global solution uptq converges to an equilibrium point as t goes to `8.

If the equation pKGq α admits a ground state solution and is Hamiltonian, the functional K 0 : ϕ P H 1 pR d q Þ Ñ K 0 pϕq P R defined as

(1.6) K 0 pϕq " ż R d `|∇ϕ| 2 `ϕ2 ´ϕ f pϕq ˘dx ,
has played a decisive role in the description of the dynamics of the solutions with initial energy smaller or slightly larger than the one of the ground state (see [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF], [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian Evolution Equations[END_REF] for example). It will also be important in our situation. First we shall prove in Lemma 2.7, that if uptq " S α ptqpϕ 0 , ϕ 1 qptq " puptq, B t uptqq satisfies K 0 puptqq ď ´δ (where δ ą 0), on the maximal interval of existence, the solution blows up in finite time. On the other hand, we will see that, if K 0 puptqq ě η for some finite η on the maximal interval of existence, the solution exists and is bounded for all positive times.

In order to prove that each global solution uptq " S α ptqpϕ 0 , ϕ 1 qptq converges to an equilibrium point as t goes to `8, we argue by contradiction. If this trajectory uptq is unbounded in positive time, then there exists a sequence of times t n , t n Ñ nÑ`8 `8, such that K 0 pupt n qq Ñ nÑ`8 0 Then, using this sequence of times t n , we show in Theorem 3.5, that the ω-limit set ωpϕ 0 , ϕ 1 q of pϕ 0 , ϕ 1 q is non-empty and contains at least one equilibrium point pQ ˚, 0q of the equation pKGq α . We recall that the ω-limit set ωpϕ 0 , ϕ 1 q of pϕ 0 , ϕ 1 q is defined as follows: ωpϕ 0 , ϕ 1 q " t w P H rad | D a sequence τ n ě 0, so that τ n Ñ nÑ`8 `8 , and S α pτ n qpϕ 0 , ϕ 1 q Ñ nÑ`8 wu . (1.7) Then, in Section 3.2, taking advantage of the fact that the linearized Klein-Gordon equation around pQ ˚, 0q in the space H rad has a kernel which is at most one-dimensional, we show, by using classical convergence arguments based on invariant manifold theory, that the trajectory converges to this equilibrium in positive infinite time, and is therefore bounded. Theorem 1.2. Let α ą 0. Assume that 1 ď d ď 6 and that f satisfies the conditions pH.1q f and pH.2q f . Let pϕ 0 , ϕ 1 q P H rad , then

(1) either S α ptqpϕ 0 , ϕ 1 q blows up in finite time, (2) or S α ptqpϕ 0 , ϕ 1 q exists globally and converges to an equilibrium point pQ ˚, 0q of pKGq α , as t Ñ `8.

For the case d ě 7, we refer the reader to [START_REF] Burq | Long time dynamics for damped Klein-Gordon equations II[END_REF].

To place this result into context, we now briefly recall various related convergence theorems. Since we are considering the equation pKGq α in the radial setting, the linearized Klein-Gordon operator around the equilibrium pQ ˚, 0q has a kernel of dimension less than or equal to 1, that is, either 0 does not belong to the spectrum of the elliptic selfadjoint operator L " ´∆ `I ´f 1 pQ ˚q or 0 is a simple eigenvalue of L (see Section 2, Lemma 2.10). If 0 is a simple eigenvalue of L, then the dynamical system S α ptq admits a C 1 local center manifold W c ppQ ˚, 0qq of dimension 1 at pQ ˚, 0q. Since the ω-limit set of any element pϕ 0 , ϕ 1 q P H rad belongs to the set of equilibria, if the trajectory of S α ptqpϕ 0 , ϕ 1 q " uptq were precompact in H rad , we could directly conclude by using the convergence results contained in [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF] or in [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF] for example that the whole trajectory S α ptqpϕ 0 , ϕ 1 q converges to pQ ˚, 0q, when t goes to infinity. Unfortunately, we do not know that the trajectory S α ptqpϕ 0 , ϕ 1 q is bounded and thus we do not even know that the ω-limit set of pϕ 0 , ϕ 1 q is bounded and connected. However, adapting the proof of [5, Lemma 1] and using the asymptotic phase property of the local center unstable and local center manifolds around pQ ˚, 0q (see Appendix A for these concepts), we easily obtain that the entire trajectory S α ptqpϕ 0 , ϕ 1 q converges to pQ ˚, 0q as t goes to infinity. An alternative way for proving the convergence of the trajectory S α ptqpϕ 0 , ϕ 1 q towards pQ ˚, 0q would be to use (instead of dynamical systems arguments) a Łojasiewicz-Simon inequality (see Sections 3.2 and 3.3 in the monograph of L. Simon [START_REF] Simon | Theorems on regularity and singularity of energy minimizing maps[END_REF] and also [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]Theorem 2.1]) together with functional arguments as in Jendoubi and Haraux (see [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF] or [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]). The proof of the Łojasiewicz-Simon inequality in [START_REF] Simon | Theorems on regularity and singularity of energy minimizing maps[END_REF] uses a Lyapunov-Schmidt decomposition. In the special case where the kernel of L is one-dimensional, this proof also shows that the set of equilibria of pKGq α passing through pQ ˚, 0q is a C 1 -curve. Using this Łojasiewicz-Simon inequality and introducing an appropriate functional like in [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF], we could show that the ω-limit set of every precompact trajectory converges to an equilibrium point. Unfortunately, the trajectory S α ptqpϕ 0 , ϕ 1 q is not a priori bounded and it seems difficult to adapt the functional part of the proof of [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]Theorem 3.1]. Moreover, there is an additional difficulty in the construction of such an appropriate functional coming from the fact that we need to use Strichartz estimates. So we have not been able to follow this route.

The plan of this paper is as follows. Section 2 is devoted to basic properties of the Klein-Gordon equation pKGq α . In particular, we recall the local existence and uniqueness of mild solutions of the equation pKGq α . In Section 2.2, we introduce the functional K 0 , which not only plays an important role in the proof of Theorem 1.2 but also defines the well-known Nehari manifold N as the locus of the radial zeros of the functional K 0 . In Lemma 2.7, we give a sufficient condition on K 0 for blow-up in finite time of the solutions of pKGq α . We end this section by describing the spectral properties of the linearized Klein-Gordon equation around a (radial) equilibrium point. Section 3 is the core of this paper. In Section 3.1 (see Theorem 3.5) we show that if a solution uptq does not blow up in finite positive time, then the ω-limit set ωp up0qq contains at least one equilibrium point. In Section 3.2 we show that the whole trajectory uptq converges to this equilibrium point and is therefore bounded. In Section 4, we apply the classical invariant manifold theory, recalled in Appendix A, in order to construct the local unstable, center unstable and center manifolds about equilibrium points of the Klein-Gordon equation pKGq α and the unstable, center unstable and center manifolds about equilibrium points of the localized Klein-Gordon equation (4.7). In Appendix A, we recall the existence theorems for local center-stable, local center-unstable and local center manifolds together with their foliations and exponential attraction properties with asymptotic phase in the formulation of Chen, Hale and Tan (see [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF]). Finally, in Appendix B, we recall the classical convergence theorem (see [START_REF] Aulbach | Continuous and Discrete Time Dynamics Near Manifolds of Equilibria[END_REF], [START_REF] Hale | Asymptotic behavior of gradient-like systems, Dynamical Systems II[END_REF] or [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF]) in the generalised form given by Brunovský and Poláčik in [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF].

Such a convergence theorem is needed in case the dynamics near the equilibrium exhibits a nontrivial center manifold. As a result of dissipation and the radial condition, this center manifold can be at most one-dimensional. For the nonlinearities (1.4), it is known that the kernel of the linearized operator about the ground state is trivial, see [START_REF] Chen | Uniqueness of the ground state solutions of ∆u `f puq " 0 in R n , n ě 3[END_REF]. But, due to the lack of precise description of the bound states, we cannot guarantee that the local center manifold is absent about a bound state. The local strongly unstable manifold is finite-dimensional. The local strongly stable manifold is infinite-dimensional in stark contrast to the Hamiltonian scenario for which the local center manifold is the largest piece. The convergence theorem in [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF] then guarantees that, if the ω-limit set is not a single equilibrium point pQ ˚, 0q, and if pQ ˚, 0q is stable for the restriction of S α ptq to the local center manifold of pQ ˚, 0q (for this definition of stability, see (3.41) and Appendix B), then this ω-limit set must contain a point on the unstable manifold of pQ ˚, 0q, distinct from pQ ˚, 0q. But this contradicts the fact that, due to the properties of the Lyapunov functional (1.5), the ω-limit set is contained in the set of equilibrium points. " pu 0 , u 1 q P H 1 pR d q ˆL2 pR d q. (2.1) Since vptq " e αt uptq satisfies v tt ´∆v `p1 ´α2 qv " e αt G, pv, v t q ˇˇt "0

" pu 0 , u 1 `αu 0 q. (2.2)
We deduce that the solution of (2.1) is given by

uptq " e ´αt " cospt a ´∆ `1 ´α2 q `α sinpt a ´∆ `1 ´α2 q a ´∆ `1 ´α2 ı u 0 `e´αt sinpt a ´∆ `1 ´α2 q a ´∆ `1 ´α2 u 1 `ż t 0 sinppt ´sq a ´∆ `1 ´α2 q a ´∆ `1 ´α2
e ´pt´sqα Gpsq ds

" S 1,α ptqu 0 `S2,α ptqu 1 `ż t 0 S 2,α pt ´sqGpsq ds . (2.3)
Clearly, the regimes 0 ď α ă 1, α " 1, and α ą 1 exhibit quite different behaviours. The dispersion relation for α ă 1 is that of Klein-Gordon (the characteristic variety is a hyperboloid), whereas for α " 1 it is that of the wave equation (the characteristic variety is a cone).

If X is a Banach space, then we let L p,β t pXq be the space with norm

} f } L p,β t pXq " }e βt } f ptq} X } L p t , β P R
In this section, the β in these weighted estimates has nothing to do with the regularity in (pH.2q f ).

Lemma 2.1. Let 0 ď α ă 1 and assume d ě 3 for simplicity. Set p " 2d d´2 and σ " 1 2 ´1 d , σ 1 " 1 ´σ. The solution u of (2.1) satisfies the following Strichartz-type estimates for any

0 ď β ď α, }u} L 2,β t B σ p,2 XL 8,β t H 1 x ď Cpαq " }pu 0 , u 1 q} H 1 ˆL2 `}G} L 2,β t B σ 1 p 1 ,2 `L1,β t L 2 x ı (2.4)
where Cpαq is uniform on compact intervals of r0, 1q.

Proof. This follows from (2.2) and the Keel-Tao endpoint for the Klein-Gordon equation, see for example Lemma 2.46 in [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian Evolution Equations[END_REF]. Lemma 2.1 does not hold for α ě 1. Indeed, for α " 1 we would need to replace the Strichartz estimates for Klein-Gordon in (2.4) We now turn to the nonlinear equation pKGq α . We write u " pu, B t uq. Theorem 2.3. Let d ď 6. Let f : R Ñ R be a C 1 odd function, satisfying the assumption pH.2q f . Then for every data u 0 in H " H 1 pR d q ˆL2 pR d q ( resp. in H rad ) the equation pKGq α has a unique strong solution u P X " X T :" Cpr0, Ts, H 1 pR d qq X C 1 pr0, Ts, L 2 pR d qq ( resp. in Cpr0, Ts, H 1 rad pR d qq X C 1 pr0, Ts, L 2 rad pR d qq ), where T only depends on } u 0 } H . Moreover, if 3 ď d ď 6, the solution belongs to L θ ˚pp0, Tq, L 2θ ˚pR d qq where θ ˚" d`2 d´2 and the estimate (2.23) below holds. Furthermore, the following properties hold.

(1) The solution pt, u 0 q P r0, Ts ˆH Þ Ñ uptq " puptq, Buptqq P H is continuous.

(2) For any 0 ď τ ď T, the map u 0 P H Þ Ñ S α pτq u 0 " upτq P H is Lipschitz continuous on the bounded sets of H (see where the implicit constant is of the form Cpαq as above. For T small we discard the exponential weight whence

(2.25)). (3) The map u 0 P H Þ Ñ uptq P X X L θ ˚pp0, Tq, L 2θ ˚pR d qq is a C 1 -map. ( 4 
} uptq} H À } up0q} H `T max 0ďsďT `} upsq} 2 H `} upsq} θ H
This immediately shows that we can set up a contraction in the space X and that T only depends on } up0q} H . Moreover, global existence for small data follows from (2.9) by the method of continuity. This also implies the exponential decay.

We shall establish the persistence of H 2 ˆH1 regularity later in this proof. Taking it for granted for now, and using the density of H 2 pR d q ˆH1 pR d q in H 1 pR d q ˆL2 pR d q, one shows that (2.10)

Ep uptqq P C 1 pp´T, Tqq, and

d dt Ep uptqq " ´2α}B t uptq} 2 L 2 .
Integrating this implies the above identities for the energy. We now continue with the dimensions d ě 3. If θ ď 2 2 " d d´2 , then the same energy bounds suffice. As usual, larger θ requires the Strichartz bounds.

The local wellposedness for small times does not require the exponential weights in the Strichartz estiimates and are identical to standard proofs for the wave equation.

We first recall the main lines of the proof of the local existence and uniqueness of the solution. The local existence is proved by using the classical strict contraction fixed point theorem with parameters. In the fixed point argument below, we will use the Strichartz inequality (2.6) given in Lemma 2.2. Let θ ˚" 2 ˚´1 " d`2 d´2 , p p1 , q1 q " p2, 1q and pp, qq " p2θ ˚, θ ˚q. We remark that these pairs satisfy the conditions of Lemma 2.2 and in particular q ě 2 if d ď 6.

Let K 0 ą 0 be a fixed constant. In what follows, we denote B H p0, K 0 q the ball of center 0 and radius K 0 in H. Using the notation of the previous lemma, we set (2.11) M 0 " M 0 pαq " 4pCpαq `Cpα, 0qqK 0 " 4C 1 pαqK 0 and T ą 0 will be a positive constant, to be determined later. We introduce the following space Y " Y T " t u P L 8 pp0, τ 0 q, Hq with u P L θ ˚pp0, τ 0 q, L 2θ ˚pR d qq | }u} L 8 pH 1 qXW 1,8 pL 2 qXL θ ˚pL 2θ ˚q ď M 0 u . (2.12)

We consider the mapping

F : p u 0 , uq P B H p0, K 0 q ˆY Þ Ñ F p u 0 , uq " pF 1 , F 2 qp u 0 , uq P Y , defined by (2.13) pF 1 p u 0 , uqqptq " S 1,α ptqu 0 `S2,α ptqu 1 `ż t 0 S 2,α pt ´sq f pupsqq ds ,
and F 2 p u 0 , uq " B t F 1 p u 0 , uq, where u 0 " pu 0 , u 1 q and u " pu, B t uq . Fix some u 0 P H with } u 0 } H ă K 0 . Consider the map F p u 0 , .q : u P Y Þ Ñ F p u 0 , uq P Y and simply write F p u 0 , uq " F u.

An application of Lemma 2.2 implies

(2.14) }F pu 0 , 0q} Y ď C 1 pαqK 0 ď M 0 4 .
Applying again Lemma 2.2 and using the hypothesis pH.2q f , we get

}F u ´F v} Y ď C 1 pαq ż T 0 } f pupsqq ´f pvpsqq} L 2 ds ď C 1 pαq ż T 0 } ż 1 0 f 1 pvpsq `λpupsq ´vpsqqqpupsq ´vpsqq dλ} L 2 ds ď C 1 pαqC ż T 0 }p1 `|upsq| θ´1 `|vpsq| θ´1 q|upsq ´vpsq| } L 2 ds ď C 1 pαqC " T}u ´v} L 8 pL 2 q `ż T 0 }|upsq| θ´1 |upsq ´vpsq| } L 2 ds `ż T 0 }|vpsq| θ´1 |upsq ´vpsq| } L 2 ds ‰ (2.15)
where C " Cp f q. We next estimate the term

B " ż T 0 }|upsq| θ´1 |upsq ´vpsq| } L 2 ds .
Applying the Hölder inequality, we obtain

(2.16) B ď ż T 0 }upsq} θ´1 L 2θ }upsq ´vpsq} L 2θ ds .
We next write 2θ as 2θ " 2η `2p1 ´ηqθ ˚which is equivalent to (2.17) η " d `2 ´θpd ´2q 4 The condition 1 ă θ ă θ ˚implies 0 ă η ă 1. Using the above decomposition of θ in (2.16) together with a Hölder inequality, we get ˚ds ¯pθ´1qp1´ηq θ .

(2.19)

The estimates (2.18) and (2.19) together with the Young inequality give

B ď CT η M θ´1 θ pθ ˚p1´ηq`ηq 0 " }u ´v} L 8 pL 2 q `}u ´v} L θ ˚pL 2θ ˚q‰ . (2.20)
We next choose T 0 ą 0 so that (2.21)

C 1 pαqC " T 0 `2T η 0 M θ´1 θ pθ ˚p1´ηq`ηq 0 ‰ " 1 4 .
The estimates (2.15) to (2.20) imply that, for 0 ă T ď T 0 ,

}F u ´F v} Y ď C 1 pαqC " T `2T η M θ´1 θ pθ ˚p1´ηq`ηq 0 ‰ } u ´ v} Y ď 1 4 } u ´ v} Y . (2.22)
From the estimates (2.14) and (2.22), we deduce that F is a strict contraction and thus has a unique fixed point u " up u 0 q in Y satisfying

(2.23) } up u 0 q} Y ď C 1 pαq} u 0 } H
The fact that uptq " puptq, B t uptqq also belongs to Cpr0, Ts, Hq is standard and left to the reader. Likewise, we leave it to the reader to verify that the map pt, u 0 q P r0, Ts ˆH Þ Ñ uptq P H is jointly continuous. We now turn to property (2). To show that u 0 P H Ñ upτq " S α pτq u 0 P H is Lipschitz continuous on the bounded sets of H, we choose u 0 and v 0 in the ball B H p0, K 0 q. Let T 0 ą 0 be given by (2.21) and M 0 be defined in (2.11). Arguing as above (see the inequality (2.22)), we obtain the following inequality for 0 ď T ď T 0 ,

(2.24) }F p u 0 , uq ´F p v 0 , vq} Y T ď C 1 pαq} u 0 ´ v 0 } H `1 4 } u ´ v} Y T ,
and thus, the fixed points up u 0 q and vp v 0 q satisfy:

(2.25)

} up u 0 q ´ vp v 0 q} Y T ď 4 3 C 1 pαq} u 0 ´ v 0 } H .
If the solutions up u 0 q and vp v 0 q exist on a time interval r0, T ˚q, where T ˚ą T 0 , we repeat the above proof by considering now the ball in H of center up u 0 qpT 0 q and radius K 1 ą 0 large enough so that vp v 0 qpT 0 q also belongs to this new ball and replacing the non-linearity f p.q by f p. `up u 0 qpT 0 qq ´f pup u 0 qpT 0 qq. Repeating this process a finite number of times shows that the map is Lipschitz continuous up to any time T ă T ˚and therefore on all of r0, T ˚q. The above inequality also implies the uniqueness of the solution of pKGq α .

We next want to show the property (3), namely that the map

u 0 P H Þ Ñ up u 0 q P X X L θ ˚pp0, Tq, L 2θ ˚pR d qq is a C 1 -map.
To this end, we will first go back to the mapping

F : p u 0 , uq P B H p0, K 0 q ˆY Þ Ñ F p u 0 , uq P Y
which has been defined by (2.13). And then, for t ě T 0 , proceed like in the proof of the property (2). Clearly the map F p u 0 , uq is differentiable with respect to the variable u 0 since it is a linear map in u 0 . The differentiability with respect to the variable u P Y is proved as follows (we only indicate the main arguments and leave the details to the reader). Let h " ph, kq P Y be small. Applying Lemma 2.2, one sees that the proof of the differentiability reduces to proving that (2.26) } f pu `hq ´f puq ´f 1 puqh} L 1 pp0,Tq,L 2 q " op} h} Y q .

As above, using the hypothesis pH.2q f , using the fact that 0 ă β ď 2 d´2 and the classical Sobolev embeddings, we may write

} f pu `hq ´f puq ´f 1 puqh} L 1 pp0,Tq,L 2 q " › › › ż 1 0 p f 1 pupsq `λhpsqq ´f 1 pupsqqqhpsq dλ › › › L 1 pp0,Tq,L 2 q ď C ż T 0 }p|hpsq| β `|hpsq| θ´1 q|hpsq| } L 2 ds ď C " T}h} 1`β L 8 pH 1 q `ż T 0 }|hpsq| θ´1 |hpsq| } L 2 ds ‰ .
(2.27)

We remark that the last term in the right-hand side of the inequality (2.27) can be estimated as in the inequalities (2.18) and (2.19). We thus deduce from the inequalities (2.18), (2. [START_REF] Esquivel-Avila | The dynamics of a nonlinear wave equation[END_REF]) and (2.27) that (2.28) } f pu `hq ´f puq ´f 1 puqh} L 1 pp0,Tq,L 2 q " Op} h} 1`δ Y q , where δ " minpβ, ηq and η ą 0 is defined in (2.17). We thus have proved the property (2.26), which implies that F p u 0 , uq is differentiable with respect to the variable u P Y. The derivative of F p u 0 , uq with respect to p u 0 , uq is given by DF p u 0 , uq " pDF 1 , DF 2 qp u 0 , uq, where DF 2 p u 0 , uq " B t DF 1 p u 0 , uq and (2.29)

pDF 1 p u 0 , uqp v 0 , vqqptq " S 1,α ptqv 0 `S2,α ptqv 1 `ż t 0 S 2,α pt ´sq f 1 pupsqqvpsq ds .
We let to the reader to check that this derivative is continuous with respect to p u 0 , uq.

Finally, we remark that, with the choice of the time T 0 made in (2.21), the mapping F p u 0 , .q : u P Y T Þ Ñ F p u 0 , uq P Y T is a uniform contraction on B H p0, K 0 q. We may thus apply the uniform contraction principle as stated for example in [12, Theorem 2.2 on Page 25], which implies that

u 0 P B H p0, K 0 q Þ Ñ up u 0 q P Y T is of class C 1 .
We now return to the H 2 ˆH1 -regularity question, that is, prove the regularity property [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF]. Assuming this regularity for now, taking a derivative of pKGq α yields

B 2 t v `2αB t v ´∆v `v ´f 1 puqv " 0 (2.30)
where v stands for any of the derivatives B x j u, 1 ď j ď d. The data for (2.30) belong to H by assumption. We now perform the same estimates as in (2.15)-(2.20) to conclude that

} v} Y ď C}pu 0 , u 1 q} H 2 ˆH1 `1 2 } v} Y ,
see especially (2.20), (2.22). As above, these estimates require T to be sufficiently small. To be precise, the smallness here is determined by u alone through the constant M 0 , see (2.20). It follows that } v} Y ď 2C}pu 0 , u 1 q} H 2 ˆH1 which is the desired regularity estimate. In order to pass from an a priori bound to a regularity statement we follow a standard procedure involving difference quotients: letting e j be the coordinate vectors in R d we define with h ą 0 v phq j pxq :" h ´1pupx `h e j q ´upxqq . By the argument leading to the a priori estimate we obtain

› › v phq j › › Y ď 2C}pu 0 , u 1 q} H 2 ˆH1
uniformly in h ą 0. Passing to suitable weak limits, we obtain the H 1 ˆL2 regularity of the derivatives of u, as desired.

Finally, we turn to the case of small data. We will only provide a sketch of the main argument. In the hypothesis pH.2q f , we can choose β ą 0 arbitrarily small. In particular, we choose 0 ă β ă 1. We recall that, for any y P R,

(2.31) | f pyq| ď Cp|y| β `|y| θ´1 q|y| ď Cp|y| 1`β `|y| θ ˚q .
Proceeding as before, applying Lemma 2.2, using the inequality (2.31), one gets, for t ě 0,

}u} L θ ˚,β pp0,tq,L 2θ ˚q `}e βs u} L 8 pp0,tq,Hq ď Cr}pu 0 , u 1 q} H 1 ˆL2 `}u 1`β } L 1,β pp0,tq,L 2 q `}|u| θ ˚}L 1,β pp0,tq,L 2 q s .
Applying the Hölder inequality, one deduces from the above inequality that, for t ě 0,

}u} L θ ˚,β pp0,tq,L 2θ ˚q `}e βs u} L 8 pp0,tq,Hq ď Cr}pu 0 , u 1 q} H 1 ˆL2 `}e βs u} 1`β L 8 pp0,tq,Hq `}u} θ L θ ˚,β pp0,tq,L 2θ ˚qs , (2.32) 
where we used that β ą 0. For small data the method of continuity implies global existence and smallness of the norms on the left-hand side. In particular, we have exponential convergence to zero in the energy (see also [START_REF] Keller | Large-time asymptotic behavior of solutions of nonlinear wave equations perturbed from a stationary ground state[END_REF]).

In Section 3, we will linearize the equation pKGq α around an equilibrium point. More generally, we can linearize the Klein-Gordon equation pKGq α along any solution of the equation pKGq α . This leads us to consider the following affine equation (2.33) w tt `2αw t ´∆w `w ´f 1 pu ˚pt, xqqw " G , pw, w t qp0q " wp0q " w 0 P H , where u ˚pt, xq P X τ 0 X L θ ˚pp0, τ 0 q, L 2θ ˚pR d qq, τ 0 ą 0, and G P L 1 pp0, τ 0 q, L 2 pR d qq. The existence (and uniqueness) of a solution w " pw, B t wq P Cpr0, τ 0 q, Hq is classical if the dimension d is equal to 1, 2. So we will state this existence result and the corresponding Strichartz estimates only in the case where d ě 3.

Proposition 2.4. Let d ě 3 and α ě 0. Assume that u ˚pt, xq P X τ 0 X L θ ˚pp0, τ 0 q, L 2θ ˚pR d qq and that G P L 1 pp0, τ 0 q, L 2 pR d qq. Then the equation (2.33) admits a unique solution w " pw, B t wq P Cpr0, τ 0 q, Hq. Moreover, the solution w of (2.33) satisfies the following bound, for 0 ď τ ă τ 0 ,

} w} L 8 pp0,τq,Hq `}w} L q pp0,τq,L p x q ď Cpα, τq

" } w 0 } H `}G} L 1 pp0,τq,L 2 x q ‰ , where 1 q `d p " d 2 
´1, 2 ď p ă 8, q ě 2, and 1 q `d´1 2p ď d´1 4 . The constant Cpα, τq " Cpα, τ, u ˚q ě 1 depends only on α, τ and the norm of u ˚in the space X τ X L θ ˚pp0, τq, L 2θ ˚pR d qq.

If u ˚, G and the initial data are radial functions, then w is a radial solution.

Proof. This proposition can be proved in the same way as Theorem 2.3, by considering the term f 1 pu ˚pt, xqqw `G as a non-linearity. The changes are minor in the fixed point argument used in the proof of Theorem 2.3. Here Y and F " pF 1 , F 2 q " pF 1 , B t F 1 q simply become:

Y " Y T " t w P L 8 pp0, τ 0 q, Hq with w P L θ ˚pp0, τ 0 q, L 2θ ˚pR d qqu . and

pF 1 p w 0 , wqqptq " S 1,α ptqw 0 `S2,α ptqw 1 `ż t 0 S 2,α pt ´sqp f 1 pu ˚psqqwpsq `Gpsqq ds .
We obtain estimates similar to (2.22), where now M 0 is replaced by the norm of u ˚in X τ X L θ ˚pp0, τq, L 2θ ˚pR d qq. If the time T 0 defined in (2.21) is larger than τ 0 , then we have proved the existence (and uniqueness) of the solution wp w 0 q P Y T and the estimates (2.34) follow from Lemma 2.2. If T 0 ă τ 0 , we repeat the above proof by taking as initial data p wp w 0 qqpT 0 q and by replacing

f 1 pu ˚pt, xqqwpt, xq `Gpt, xq by f 1 pu ˚pt `T0 , xqqwpt `T0 , xq `Gpt `T0 , xq
We repeat this argument a finite number of times till we reach the time τ 0 .

2.2. Definition of the functional K 0 and the Nehari manifold. We introduce the functional K 0 : ϕ P H 1 pR d q Þ Ñ K 0 pϕq P R, defined by

K 0 pϕq " ż R d p|∇ϕ| 2 `ϕ2 ´ϕ f pϕqq dx ,
and introduce the Nehari manifold (2.35) N " tϕ P H 1 rad pR d q | K 0 pϕq " 0u . The Nehari manifold arises naturally in the study of elliptic equations. The "Ambrosetti-Rabinowitz" hypothesis pH.1q f allows to prove the following lemmas, which will be used along this paper. The first one is trivial. Lemma 2.5. Assume that Hypothesis pH.1q f holds. Then, for any pϕ, ψq P H 1 pR d q ˆL2 pR d q, we have where the second line holds by the decrease of the energy. Since finite time blowup means that } uptq} H goes to infinity in finite time along some subsequence, we obtain the result.

(2.36) γp}ϕ} 2 H 1 `}ψ} 2 L 2 q ď 2p1 `γqEppϕ,
The proof of the next lemma uses a convexity argument and follows the lines of the proof of [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF] and [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian Evolution Equations[END_REF]Corollary 2.13]. We denote the nonlinear evolution by S α ptq. Lemma 2.7. Assume that the hypotheses pH.1q f and pH.2q f hold. Assume that puptq, B t uptqq is a solution of pKGq α defined on r0, T ˚q where T ˚P p0, 8s is maximal. If K 0 puptqq ď ´δ (where δ ą 0), for t 0 ď t ă T ˚, then T ˚ă 8, i.e., the solution blows up in finite time.

From Lemmas 2.5 and 2.7 we immediately deduce the following result.

Corollary 2.8. Assume that the initial energy Ep u 0 q is negative. Then the solution blows-up in finite time T ˚ă `8.

Proof of Lemma 2.7. We assume without loss of generality that t 0 " 0. We also assume towards a contradiction that T ˚" 8. In order to show that S α ptqpu 0 , u 1 q blows up in finite time, we use a convexity argument as in [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF]. Assume that S α ptqpu 0 , u 1 q exists for all t ě 0 and let yptq " This implies that d 2 dt 2 py ´δptqq ă 0 where δ " γ{2. Since y ´δptq Ñ 0 as t Ñ 8 we must have d dt py ´δqptq ă 0 for some t " t 1 ą 0 whence also d dt py ´δqptq ď d dt py ´δqpt 1 q ă 0 for all t ě t 1 . But then y ´δpt 2 q " 0 for some t 2 ą t 1 which is a contradiction.

1 2 }uptq} 2 L 2 `α ż t 0 }upsq} 2 L 2 ds
For α ą 0, we claim that there exists c ą 1 so that for large times

: yptqyptq ´c 9 yptq 2 ą 0 (2.44) If so, then d 2 dt 2
`y´pc´1q ˘ptq " ´pc ´1qy ´c´1 ptqp: yptqyptq ´c 9 y 2 ptqq ă 0 which leads to a contradiction as before.

It remains to verify (2.44). Using the Cauchy-Schwarz inequality we obtain yptq: yptq ´c 9

y 2 ptq ě ´1 2 }u} 2 L 2 `α ż t 0 }upsq} 2 L 2 ds (2.45) ¨´p2 `γq} 9 uptq} 2 L 2 `γ}uptq} 2 H 1 ´2p1 `γqEp0q `4αp1 `γq ż t 0 } 9 upsq} 2 L 2 ds c" }u} L 2 } 9 u} L 2 `2α ´ż t 0 }upsq} 2 L 2 ds ¯1 2 ´ż t 0 } 9 upsq} 2 L 2 ds ¯1 2 `α}up0q} 2 L 2 ı 2 .
But, for any ε ą 0, we estimate the term in brackets as follows:

c " }u} L 2 } 9 u} L 2 `2α ´ż t 0 }upsq} 2 L 2 ds ¯1 2 ´ż t 0 } 9 upsq} 2 L 2 ds ¯1 2 `α}up0q} 2 L 2 ı 2 ď cp1 `εq ´}u} L 2 } 9 u} L 2 `2α ´ż t 0 }upsq} 2 L 2 ds ¯1 2 ´ż t 0 } 9 upsq} 2 L 2 ds ¯1 2 ¯2 `c´1 `1 ε ¯α2 }up0q} 4 L 2 ď cp1 `εq ´1 2 }u} 2 L 2 `α ż t 0 }upsq} 2 L 2 ds ¯´2} 9 u} 2 L 2 `4α ż t 0 } 9 upsq} 2 L 2 ds c´1 `1 ε ¯α2 }up0q} 4 L 2 .
Setting b " cp1 `εq, C " cα 2 p1 `1 ε q}up0q} 4 L 2 , we may replace the right-hand side of this inequality by

ď yptq ´2b} 9 u} 2 L 2 `4bα ż t 0 } 9 upsq} 2 L 2 ds ¯`C
From the last inequality and from (2.45), we deduce that y: yptq ´c 9 y 2 ptq ě yptq

! p2 `γ ´2bq} 9 uptq} 2 L 2 `4αp1 `γ ´bq ż t 0 } 9 upsq} 2 L 2 ds `γ}uptq} 2 H 1 ´2p1 `γqEp0q ) ´C " yptqΨptq ´C (2.46)
where Ψptq is defined by the term in braces.

We now adjust the constants c ą 1 and ε ą 0 so that 2 `γ ´2b ą 0, 1 `γ ´b ą 0. We now pick η ą 0 so small that 2 `γ ´2b ą η, γ ´η 2 ´αη ą 0 This allows us to bound Ψptq from below:

Ψptq " " ´2 `γ ´2b ´η 2 ¯} 9 uptq} 2 L 2 `4αp1 `γ ´bq ż t 0 } 9 uptq} 2 L 2 ds `γ}∇uptq} 2 L 2 `´γ ´η 2 ´αη ¯}uptq} 2 L 2 `η 9 yptq ´2p1 `γqEp0q ı ě η 9 yptq ´2p1 `γqEp0q `qptq
where qptq ě 0. From (2.46), we infer that, for t ě 0, yptq: yptq ´c 9 y 2 ptq ě yptqrη 9 yptq ´2p1 `γqEp0q `qptqs ´C. (2.47) Since yptq, 9 yptq Ñ 8 as t Ñ 8, we are done.

2.3. Spectral properties. Suppose we have a stationary solution ϕ 0 P H 1 pR d q to pKGq α , namely, ´∆ϕ 0 `ϕ0 ´f pϕ 0 q " 0 By elliptic theory, see for example [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF][START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF], these solutions are exponentially decaying, and lie in C 3,β for some β ą 0. Solving pKGq α for u " ϕ 0 `v yields v tt `2αv t ´∆v `v ´f 1 pϕ 0 qv " Npϕ 0 , vq (2.48) where Npϕ 0 , vq " f pϕ 0 `vq ´f pϕ 0 q ´f 1 pϕ 0 qv. Set L " ´∆ `I ´f 1 pϕ 0 q. Rewrite (2.48) in the form

B t ˆv v t ˙" ˆ0 1 ´L ´2α ˙ˆv v t ˙`ˆ0 Npϕ 0 , vq (2.49) 
Denoting the matrix operator on the right-hand side by A α , and setting v :" `v v t ˘, we may write (2.49) in the form B t v " A α v ` N The spectral properties of L stated in the following lemma are standard, see for example [START_REF] Ionescu | Agmon-Kato-Kuroda theorems for a large class of perturbations[END_REF] and the references cited here.

Lemma 2.9. The operator L is self-adjoint with domain H 2 pR d q. The spectrum σpLq consists of an essential part r1, 8q, which is absolutely continuous, and finitely many eigenvalues of finite multiplicity all of which fall into p´8, 1s. The eigenfunctions are C 2,β with β ą 0 and the ones associated with eigenvalues below 1 are exponentially decaying. Over the radial functions, all eigenvalues are simple.

Proof. The essential spectrum equals r1, 8q by the Weyl criterion. The Agmon-Kuroda theory on asymptotic completeness guarantees that there are no imbedded eigenvalues and no singular continuous spectrum. Thus, the spectral measure restricted to r1, 8q is purely absolutely continuous. The Birman-Schwinger criterion shows (due to the rapid decay of the potential f 1 pϕ 0 q) that there are only finitely many eigenvalues of L which are ď 1, counted with multiplicity. The C 2,β property of the eigenfunctions is standard elliptic regularity (Schauder estimates) since ϕ 0 is smooth, and so f 1 pϕ 0 q is Hölder regular.

For the sake of completeness we remark that the threshold 1 may be an eigenvalue or a resonance. To illustrate what this means, consider R 3 . Then this distinction refers to the to fact that solutions to Lψ " ψ either decay like |x| ´2 (which means ψ P L 2 is an eigenfunction) or like |x| ´1, the latter implying that ψ R L 2 pR 3 q (this is the resonant case). We remark that over the radial functions only the resonant case can occur. However, none of this finer analysis at energy 1 is relevant for our purposes.

The exponential decay of the eigenfunctions with eigenvalues below 1 is known as Agmon's estimate. The simplicity of the radial eigenfunctions is immediate from the reduction to an ODE on p0, 8q with a Dirichlet condition at r " 0. Let us elaborate on the kernel of L, since it is important in our construction. We set Lv " 0, v ‰ 0 radial and in H 1 . Then ´∆v `v ´f 1 pϕ 0 qv " 0

We already notes that v P C 2,β pR d q, and that vprq decays exponentially. Set uprq " r d´1 2 vprq. Then up0q " 0, uprq Ñ 0 as r Ñ 8 (exponentially in fact), and it satisfies the equation

´u2 prq `uprq ´p d ´1 2 qp d ´3 2 q uprq r 2 ´f 1 pϕ 0 quprq " 0 , r ą 0 (2.50)
This ODE has a fundamental system consisting of a solution growing like e r and one decaying like e ´r as r Ñ 8. Only the latter can lie in the kernel and it does so if and only if it satisfies the boundary condition up0q " 0. In this case the kernel has dimension 1 otherwise it consists only of t0u.

We now analyze the spectral properties of the matrix operator A α .

Lemma 2.10.

' The operator A α has discrete spectrum if and only if L does. The essential spectrum of A α lies strictly to the left of the imaginary axis, i.e., in pzq ă ´δpαq for some δpαq ą 0. The spectrum of A α on the imaginary axis is either empty or t0u. In the latter case, 0 is an eigenvalue of A α and this occurs if and only if 0 is an eigenvalue of L. Then dimpKerpLqq " 1, in which case 0 is a simple eigenvalue. The eigenvalues of A α are precisely ´α ˘bα 2 ´µ where µ P σpLq is an eigenvalue.

-If α ě 1, then the discrete spectrum of A α lies only on the real axis.

-If 0 ă α ă 1, in addition to real eigenvalues, there may also be eigenvalues on the line pzq " ´α resulting from eigenvalues of L in the gap p0, 1s. ' The essential spectrum of L gives rise to essential spectrum σ ess pA α q of A α as follows:

-If 0 ă α ď 1, σ ess pA α q is contained in the line pzq " ´α and consists of ´α ˘iβ, β ě a 1 ´α2 . -If α ą 1, σ ess pA α q consists of the entire line pzq " ´α and of the interval r´α ´aα 2 ´1, ´α `aα 2 ´1s

Proof. We need to address the solvability of the system This relation establishes all the claims concerning the point spectrum of A α . Let now τ belong to the resolvent set ρpA α q of A α . Then, for any p0, v 2 q P H rad , the system (2.52)

A α ˆu1 u 2 ˙" z ˆu1 u 2 ȯver the domain H 2 rad pR d q ˆH1 rad pR d q of A α .
pA α ´τIdq ˆu1 u 2 ˙" ˆ0 v 2 ḣas
a unique solution pu 1 , u 2 q in H rad , which implies that

´Lu 1 ´pτ 2 `2ατqu 1 " v 2
has a unique solution u 1 and thus τ 2 `2ατ " ´λ does not belong to the spectrum of ´L, that is, τ ‰ ´α ˘aα 2 ´λ, λ P σpLq and we are done.

The discrete spectrum of A α (and therefore of L) is important to our analysis. In fact, the strongly unstable manifold of the linear evolution e tA α as t Ñ 8 corresponds exactly to spectrum of A α in the right-half plane which occurs if and only if L exhibits negative eigenvalues. In the generality we assume here we cannot determine whether this is the case or not, and so our arguments need to be flexible enough to account for both possibilities.

However, consider the following additional condition, where γ is as in pH.1q f : for any

φ P H 1 , ż R d " φ 2 pxq f 1 pφpxqq ´p1 `2γqφpxq f pφpxqq ‰ dx ě 0 (2.53)
Let ϕ 0 ‰ 0 be a stationary solution as before. Then it follows from (2.53) that

xLϕ 0 , ϕ 0 y " ż R d p|∇ϕ 0 | 2 `ϕ2 0 ´f 1 pϕ 0 qϕ 2 0 q dx " ´2γ ż R d f pϕ 0 qϕ 0 dx `żR d rp1 `2γq f pϕ 0 qϕ 0 ´f 1 pϕ 0 qϕ 2 0 s dx ď ´2γ}ϕ 0 } 2 H 1 ă 0 (2.54)
where we used that K 0 pϕ 0 q " 0. Therefore, L has negative eigenvalues. We leave it to the reader to check that the class of nonlinearities f given by a sum and difference of pure powers as in (1.4) satisfy (2.53). Hence, for such nonlinearities all nonzero stationary solutions are linearly unstable. In other words, under the additional condition (2.53) all nonzero equilibria give rise to a strongly unstable manifold of e tA α . In this section, we are going to prove Theorem 1.2. To this end, given pϕ 0 , ϕ 1 q P H rad , we will first show that, if S α ptqpϕ 0 , ϕ 1 q does not blow up in finite time, then there exists a sequence of times t n going to `8 such that S α pt n qpϕ 0 , ϕ 1 q converges to an equilibrium point pQ ˚, 0q.

3.1. Convergence to an equilibrium pQ ˚, 0q along a subsequence. Denote the evolution operator of pKGq α by S α ptq and for pϕ 0 , ϕ 1 q P H rad , let uptq :" S α ptqpϕ 0 , ϕ 1 q. We have the following trichotomy for the forward evolution of pKGq α :

(FTB) uptq blows up in finite positive time. (GEB) uptq exists globally and the trajectory t uptq, t ě 0u is bounded in H rad , (GEU) uptq exists globally and the trajectory t uptq, t ě 0u is unbounded in H rad . Remark 3.1. Several remarks have to be made at this stage.

(i): From Corollary 2.8, we know that if Epϕ 0 , ϕ 1 q ă 0, then S α ptqpϕ 0 , ϕ 1 q blows up in finite time. Thus, in the study of the cases (GEB) and (GEU), we only need to consider solutions uptq " S α ptqpϕ 0 , ϕ 1 q such that, for any t ě 0, (3.1) Epuptq, B t uptqq ě 0 .

(ii): Assume now that a solution uptq " S α ptqpϕ 0 , ϕ 1 q of pKGq α satisfies the properties pH.1q f , pH.2q f and (3.1). Assume moreover, that the exponent θ in pH.2q f satisfies the bound

(3.2) θ ă 1 `4 d .
Then, arguing exactly as in [START_REF] Feireisl | Finite energy travelling waves for nonlinear damped wave equations[END_REF]Lemma 4.2], one can prove that every global solution S α ptqpϕ 0 , ϕ 1 q is bounded in H. In this proof, the upper bound (3.2) of θ plays a crucial role. (iii): Now, let us turn to the case where 1 `4 d ď θ ď d d´2 . We consider a global solution puptq, B t uptqq " S α ptqpϕ 0 , ϕ 1 q. In this case, arguing as in [23, Page 59] by introducing the auxiliary equation satisfied by B t uptq :" pB t uptq, B 2 t uptqq, one shows that B t uptq converges to p0, 0q in L 2 pR d qˆH ´1pR d q. From this convergence property, we deduce that K 0 puptqq converges to 0 as t goes to infinity.

We first make a simple observation concerning the case (GEU). Later in Section 3.2, we shall show that (GEU) cannot occur. Lemma 3.2. Assume that the hypothesis pH.1q f and pH.2q f hold. In the case (GEU), we may assume that there exist a sequence of times t n and a sequence of numbers δ n , δ n ď 0, such that t n Ñ `8 as n Ñ `8 and that

(3.3) K 0 pupt n qq " δ n , with lim nÑ`8
δ n " 0 .

Proof. If K 0 puptqq ě 0 for all times T 0 ă t, then the trajectory is bounded by Lemma 2.5. So there exists a sequence τ n Ñ 8 with K 0 pupτ n qq ă 0. If K 0 puptqq ă ´δ for all times T 0 ă t ă 8, where δ ą 0 is fixed, then by Lemma 2.7 finite time blowup occurs. This contradicts (GEU).

For the case (GEB) we shall now also construct such a sequence, albeit with δ n " K 0 puqpt n q possibly being positive. Proposition 3.3. In the case (GEB) there exists a sequence t n Ñ 8 with K 0 pupt n qq Ñ 0 and }B t upt n q} L 2 Ñ 0 as n Ñ 8.

Proof. Taking the inner product in L 2 of the equation pKGq α with u and integrating by parts yields ż `|∇u| 2 `u2 ´f puqu ˘dx `2α

ż uB t u dx " ż pB t uq 2 dx ´d dt ż B t uu dx. (3.4)
Notice that for smooth (or, more precisely, H 2 ˆH1 ) initial data, this integration by parts is justified. Moreover, for H 1 ˆL2 initial data, we conclude that the map

pϕ 0 , ϕ 1 q P H 1 ˆL2 Þ Ñ ż B t uu dx P R
is C 1 with derivative given by (3.4). In the sequel, we shall take (3.4) as a definition for

d dt ż B t uu dx.
We wish to choose a sequence t n Ñ `8 so that each term on the right-hand side of (3.4), when evaluated at t n , tends to 0 as n Ñ `8. 

)

Case 2: There exists a sequence of times τ m Ñ `8 such that Apτ m q :" 2}B t upτ m q} 2 L 2 ´d dt xB t upτ m q, upτ m qy " 0.

To conclude, we need Lemma 3.4. There exists a subsequence τ m j and η 0 ą 0 such that the function Aptq is uniformly continuous on I " ď τ m j rτ m j ´η0 , τ m j `η0 s.

Proof. We write

Aptq " 2Ep uptqq `żR d " 2Fpupt, xqq ´f puqupt, xq ‰ dx `2αµptq (3.7)
where µptq " xuptq, B t uptqy. Since Ep uptqq is continuous and has a limit as t Ñ `8, Ep uptqq is uniformly continuous on r0, `8q. Since τ m Ñ `8, there exist a subsequence (that we still denote τ m for ease of notation) and e P H 1 rad pR d q such that upτ m q converges weakly to e in H 1 pR d q as m goes to infinity. Thus, using the fact that the injection H 1 rad pR d q Ñ L p pR d q, 2 ă p ă 2 ˚, is compact, we deduce that upτ m q converges strongly to epxq in L p pR d q as τ m goes to infinity. Furthermore Since uptq " S α ptqpϕ 0 , ϕ 1 q, t ě 0, is bounded in H, we deduce that µptq is uniformly continuous on r0, `8q. Now, the construction of a sequence t n Ñ `8 such that (3.6) holds follows by a standard inductive procedure. Indeed, assume that we have constructed a sequence tt 1 ă ¨¨¨ă t N u such that @1 ď n ď N, }B t upt n q} L 2 ď 2 ´n, |Apt n q| ď 2 ´n. Let " 2 ´pN`1q . Since Apτ m j q " 0, according to Lemma 3.4 there exists η ą 0 such that for any t P rτ m j ´η, τ m j `ηs one has |Aptq| ď 2 ´pN`1q .

Then, since lim jÑ`8 ż τ m j `η τ m j ´η }B t u} 2 L 2 psq ds " 0, we obtain that for j large enough, there exists s j P rτ m j ´η, τ m j `ηs such that }B t ups j q} L 2 ď 2 ´pN`1q .

Choosing t N`1 " s j for j large enough ensures that t N `1 ă t N`1 and

}B t upt N`1 q} L 2 ď 2 ´pN`1q , |Apt N`1 q| ď 2 ´pN`1q .
From the Claim above, and (3.5), we deduce that

lim nÑ`8 ż R d
`|∇u| 2 `u2 ´f puqu ˘pt n , xq dx " 0 i.e., lim nÑ`8 K 0 pupt n qq " 0 as desired.

Next, by means of these vanishing results for K 0 , we deduce the convergence to an equilibrium along a subsequence. Theorem 3.5. Let α ą 0 and u 0 :" pϕ 0 , ϕ 1 q P H rad so that the solution uptq exists for all times t ą 0. Let t n be a sequence of times such that K 0 pupt n qq " δ n converges to 0, then there exists an equilibrium point u ˚" pQ ˚, 0q P H rad such that (after possibly extracting a subsequence), upt n q converges to pQ ˚, 0q in H.

Proof. From Lemma 2.5 we conclude that sup ně0 }pupt n q, B t upt n qq} H ă 8

We recall that without loss of generality, we may assume that Epuptq, B t uptqq ě 0, @t ě 0.

Since the left-hand side is non-increasing, there exists ě 0 such that

(3.8) lim tÑ`8
Epuptq, B t uptqq " ě 0.

In fact, from the equality valid for any t 1 ď t 2 , Epupt 1 q, B t upt 1 qq ´Epupt 2 q, B t upt 2 qq " 2α

ż t 2 t 1 }B t upsq} 2 L 2 ds ,
we deduce that ş t 2 t 1 }B t upsq} 2 L 2 ds tends to 0, as t 1 , t 2 Ñ 8. We consider the equations # B tt u n `2αB t u n ´∆u n `un ´f pu n q " 0 pu n p0q, B t u n p0qq " pupt n q, B t upt n qq pKGq n α By Theorem 2.3, there exists T ą 0 and C ą 0 such that, for any n, the solution pu n ptq, B t u n ptqq is in C 0 pr´T, Ts, Hq and, for ´T ď t ď T,

}pu n ptq, B t u n ptqq} H ď C . (3.9)
In the case d " 1 or d " 2, the inequality (3.9) implies that }u n } L 8 pp´T,Tq,L p q ď C, for any 2 ď p ă `8. In the case 3 ď d ď 6, the estimate (2.23) with a uniform constant in n. Fix 2 ă p 0 ă p 1 ă 2 ˚and set X :" L p 0 pR d q X L p 1 pR d q. The choice of p 0 , p 1 depends on the nonlinearity f puq through the parameters β, θ in pH.2q f . We consider the family of functions pu n ptqq n in C 0 pr´T, Ts; Xq. By the property (3.9), ď nPN, tPr´T,Ts u n ptq Ă bounded set of H 1 rad pR d q.

Due to the compact embedding of H 1 rad pR d q into X, we deduce that ď nPN, tPr´T,Ts u n ptq Ă compact set of X Moreover, by (3.12), the family pu n ptqq n is equicontinuous in C 0 pr´T, Ts; Xq. Thus, by the theorem of Ascoli, (after possibly extracting a subsequence) the sequence u n ptq converges in C 0 pr´T, Ts; Xq to a function u ˚ptq P C 0 pr´T, Ts; Xq.

Moreover, by (3.11) and (3.12), u ˚ptq is constant on the time interval r´T, Ts. We shall simply write u ˚ptq " u ˚. Remark that we deduce from K 0 pu n p0qq Ñ 0 and the convergence of u n ptq towards u ˚in C 0 pr´T, Ts; Xq that lim nÑ`8

}u n p0q} 2 H 1 " ż R d f pu ˚qu ˚dx. (3.13)
For this implication we need to choose p 0 , p 1 close to 2, 2 ˚, respectively, depending on pH.2q f .

To summarize, we know that ' u n ptq Ñ u ˚as n Ñ `8 in C 0 pr´T, Ts; Xq and u ˚:" u ˚ptq ' B t u n ptq Ñ 0 as n Ñ `8 in L 2 pp´T, Tq; L 2 pR d qq ' pu n ptq, B t u n ptqq n is uniformly bounded in n in L 8 pp´T, Tq; Hq and, in particular in L 2 pp´T, Tq; Hq.

Taking these properties into account, one shows that pu n , B t u n q converges in the sense of distributions (i.e., D 1 pp´T, Tq ˆRd q) towards pu ˚, 0q as n Ñ `8 and that pu ˚, 0q is an equilibrium point of pKGq α . Since pu n p0q, B t u n p0qq is uniformly bounded in H, with respect to n, there exists a subsequence (that we still label by n) such that u n p0q á u ˚as n Ñ `8 weakly in H 1 pR d q.

Since u ˚is an equilibrium point of pKGq α , the following equality holds:

ż R d f pu ˚qu ˚dx " ż R d p|∇u ˚|2 `pu ˚q2 q dx. (3.14)
The equalities (3.13) and (3.14) imply that lim nÑ`8

}u n p0q} 2 H 1 " }u ˚}2 H 1 (3.15)
and thus, since u n p0q á u ˚as n Ñ `8 weakly in H 1 pR d q, the convergence of u n p0q towards u ˚takes place in the strong sense in H 1 pR d q. Moreover, the strong convergence of u n p0q towards u ˚in L 2 pR d q and the property (3.11) imply the strong convergence of u n psq towards u ˚in L 2 pR d q, uniformly in s P r´T, Ts. In summary,

u n p.q Ñ u ˚in C 0 pp´T, Tq, L 2 pR d qq.
To finish the proof of Theorem 3.5 it remains to prove

(3.16) B t u n p0q Ñ 0 in L 2 pR d q.
As a first step towards the proof of property (3.16), we consider the equation satisfied by ũn :" u n ´u˚, namely

$ ' & ' %
B tt ũn ´∆ ũn `ũ n " f pu n q ´f pu ˚q ´2αB t ũn ũn p0q " u n p0q ´u˚Ñ 0 as n Ñ `8 in H 1 pR d q B t ũn p0q " B t u n p0q

(3.17)

We write u n ´u˚" w n `vn where w n and v n are solutions of the following equations:

$ ' & ' %
B tt w n ´∆w n `wn " f pu n q ´f pu ˚q ´2αB t u n w n p0q " u n p0q ´uB Here 0 ă β ă θ ´1 can be taken arbitrarily small, which only affects the constant C. Actually, we can choose 0 ă β ă θ ´1 so that 2 ď 2βp 0 {pp 0 ´2q ď p 1 . Applying the Hölder inequality, we obtain, as n Ñ 8.

ż T ´T }pu n psq ´u˚q p|u n | β `|u ˚|β q} L 2 ds ď CT}u n ´u˚} L 8 pI,L p 0 q p}u n } β L 8 pI,L p 2 q `}u ˚}β L 8 pI,L p 2 q q ď CT}u n ´u˚} L 8 pI,L p 0 q p}u n } β L 8 pI,H 1 q `}u ˚}β L 8 pI,H 1 q q . ( 3 
In the final step of the proof we shall turn this L 2 t averaged vanishing of }B t v n ptq} L 2 x as n Ñ 8 into vanishing in the uniform sense in t. The main tool for this is the following "observation inequality" for equation (3.19). Lemma 3.6. For any T 0 ą 0, there exists a positive constant cpT 0 q ą 0, independent of n, such that

}B t v n p0q} 2 L 2 pR d q ď cpT 0 q ż T 0 ´T0 ż R d |B t v n | 2 dxds. (3.27)
Proof. For sake of simplicity, we set:

B t v n p0q " B t u n p0q " v n1 .
If vn denotes the Fourier transform of v n , we have vn pt, ξq "

sin ´t a |ξ| 2 `1ā |ξ| 2 `1
vn1 pξq and therefore

}B t vn pt, ¨q} 2 L 2 " ż R d ˇˇˇs in ˆt b |ξ| 2 `1˙ˇˇˇˇ2 | vn1 pξq| 2 dξ
as well as

ż T 0 ´T0 }B t vn pt, ¨q} 2 L 2 dt " ż T 0 ´T0 ż R d ˇˇˇs in ˆt b |ξ| 2 `1˙ˇˇˇˇ2 | vn1 pξq| 2 dξdt " ż R d ˜ż T 0 ´T0 ˇˇˇs in ˆt b |ξ| 2 `1˙ˇˇˇˇ2 dt ¸| vn1 pξq| 2 dξ ě cpT 0 q| ż R d vn1 pξq| 2 dξ , (3.28) 
where cpT 0 q ą 0, since T 0 ą 0. Indeed

ż T 0 ´T0 ˇˇˇs in ˆt b |ξ| 2 `1˙ˇˇˇˇ2 dt " ż T 0 ´T0 ¨1 ´cos ´2t a |ξ| 2 `12 ‹ ' dt " T 0 ´sin ´2T 0 a |ξ| 2 `12 a |ξ| 2 `1
.

One easily sees that, for any T 0 ą 0, there exists cpT 0 q ą 0 such that, for any |ξ|,

(3.29) T 0 ´sin ´2T 0 a |ξ| 2 `12 a |ξ| 2 `1 ě cpT 0 q .
The estimate (3.27) is then a direct consequence of (3.28), (3.29) and Plancherel's theorem.

From the property (3.27) and the estimate (3.26), one deduces that

}B t u n p0q} L 2 ď cpTq " }B t u n } L 2 pp´T,Tq;L 2 q `?2T}B t w n } C 0 pr´T,Ts;L 2 pR d qq ı Ñ 0 (3.30) as n Ñ `8
and the theorem is proved.

3.2. Convergence property. Let u 0 " pϕ 0 , ϕ 1 q P H rad be so that the solution uptq " S α ptq u 0 " puptq, B t uptqq exists globally and may be unbounded. Theorem 3.5 asserts that there exists a sequence of times t n Ñ `8 such that upt n q Ñ pQ ˚, 0q strongly in H rad , where Q ˚is an equilibrium of pKGq α . We shall now show by contradiction that then necessarily uptq Ñ pQ ˚, 0q strongly in H rad as t Ñ 8 and hence the trajectory is bounded. In other words, Theorem 3.5 implies that the ω-limit set ωp u 0 q is not empty and contains an equilibrium point pQ ˚, 0q P H rad . We recall that the ω-limit set of u 0 is defined as ωp u 0 q " t w P H rad | D a sequence s n ě 0, so that s n Ñ nÑ`8 `8 , and S α ps n q u 0 Ñ nÑ`8 wu .

Below we will show that the ω-limit set ωp u 0 q reduces to the singleton pQ ˚, 0q, and that the entire trajectory converges to this point in the strong sense. And this concludes the proof of Theorem 1.2.

Before proving that the entire trajectory uptq " S α ptq u 0 converges to pQ ˚, 0q, we will emphasize that the ω-limit set ωp u 0 q is contained in the set E rad of radial equilibrium points of pKGq α . Lemma 3.7. The ω-limit set ωp u 0 q satisfies the property (3.31) ωp u 0 q Ă E rad .

Proof. Let v 0 " pv 0 , v 1 q P ωp u 0 q. Then, there exists a sequence s n Ñ nÑ`8 `8 such that S α ps n q u 0 " ups n q Ñ nÑ`8 v 0 .

On the one hand, we know by (3.8) that the energy satisfies Ep ups n qq Ñ " EppQ ˚, 0qq

as n Ñ `8, and Ep ups n qq Ñ Ep v 0 q. If v 0 is not an equilibrium point, then for some time σ ą 0, EpS α pσq v 0 q ď Ep v 0 q ´δ " ´δ (3.32) where δ ą 0. Since Ep ups n `σqq Ñ and Ep ups n `σqq Ñ EpS α pσq v 0 q , we arrive at a contradiction and (3.31) holds. Remark 3.8. Let us fix a positive time τ ą 0 and introduce the ω-limit set ω τ p u 0 q of the discrete dynamical system defined by the iterates S α pτq m , m P N, that is, ω τ p u 0 q " t w P H rad | D a sequence k n ě 0, so that k n Ñ nÑ`8 `8 , and S α pτq k n u 0 Ñ nÑ`8 wu .

Obviously, ω τ p u 0 q Ă ωp u 0 q. Using the fact that ωp u 0 q is contained in E rad and that the Lipschitz property of S α ptq : v 0 P H Ñ S α ptq v 0 P H, which is uniform with respect to t P r0, τs (see the arguments in Step 1 of Section 4 and especially the estimates (4.11), (4.12), and (4.13)), one can show that (3.33) ω τ p u 0 q " ωp u 0 q .

To prove that the ω-limit ωp u 0 q is a singleton and that the entire trajectory converges to this point, we will apply a generalization of the classical convergence theorem of Aulbach [START_REF] Aulbach | Continuous and Discrete Time Dynamics Near Manifolds of Equilibria[END_REF], Hale-Massat [START_REF] Hale | Asymptotic behavior of gradient-like systems, Dynamical Systems II[END_REF] and Hale-Raugel [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF], due to Brunovský and P. Poláčik [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], which uses local invariant manifold theory. For more details on these convergence theorems, we refer the reader to Appendix B and especially to Lemma B.3 that we shall apply below. The behaviour of S α ptq u 0 " uptq heavily depends on the spectral properties of the linearized operator L about Q ˚and the linearized operator Σα ptq " e A α t about pQ ˚, 0q (see the definitions (2.48), (2.49) or (4.3) with ϕ " Q ˚). Lemma 2.10 describes the spectrum of the operator A α . Before proving this convergence result, we need to recall some notation given in Section 4. There we introduce the modified (localized) Klein-Gordon equation (4.7) and show that this localized equation defines a globally defined flow Sα ptq on H rad , such that, (3.34) uptq " S α ptqppQ ˚, 0q ` v 0 q " pQ ˚, 0q `S α ptq v 0 , as long as uptq P B r 1 , where B r 1 " BppQ ˚, 0q, r 1 q is the open ball of center pQ ˚, 0q and radius r 1 ą 0, with r 1 ď p8Cpα, τ 0 qq ´1r 0 (see Remark 4.2). In other terms, if we set

S αptq u 0 " pQ ˚, 0q `S α ptqp u 0 ´pQ ˚, 0qq ,
then S α ptq u 0 and S αptq u 0 coincide as long as S α ptq u 0 P B r 1 .

In Section 4, we define the (global) stable, unstable, center stable, center unstable, and center manifolds W i˚p pQ ˚, 0qq of S αptq about pQ ˚, 0q, where i " s, u, cs, cu, c respectively. Since S α ptq u 0 and S αptq u 0 coincide as long as S α ptq u 0 P B r 1 , we may define the local stable, unstable, center stable, center unstable, and center manifolds W i loc ppQ ˚, 0qq of S α ptq about ppQ ˚, 0qq as follows:

(3.35) W i loc ppQ ˚, 0qq " W i˚p pQ ˚, 0qq X B r 1 , i " s, u, cs, cu, c .
We begin our proof with the particular case where pQ ˚, 0q is the (hyperbolic) trivial equilibrium p0, 0q of pKGq α . We remark that in that case L " ´∆ `I and the entire spectrum of A α lies in a half-plane of the form z ă ´δ ă 0. In the terminology of Section 4 and of Appendix A, this means that the local stable manifold W u loc pp0, 0qq is a whole neighborhood of p0, 0q and that then necessarily p0, 0q is an isolated equilibrium, and the perturbative equation (2.48) around p0, 0q exhibits exponential decay of solutions in H rad for small data. Actually, this exponential decay to zero had already been proved in Theorem 2.3. In particular, uptq Ñ p0, 0q in that case as t Ñ 8.

Let us come back to the general case. If Q ˚‰ 0, then Lemma 2.10 states that A α has either a trivial kernel, or a one-dimensional kernel. The former case means that the dynamics near pQ ˚, 0q is hyperbolic, whereas in the latter case it is not. In the hyperbolic scenario, we have no central part, which means that the invariant manifolds constructed in Section 4 and in Appendix A only involve stable and unstable manifolds W s loc ppQ ˚, 0qq and W u loc ppQ ˚, 0qq. In both cases, the (local) unstable manifold W u loc pQ ˚, 0q is finite-dimensional since L has only finitely many eigenvalues (and thus only finitely many eigenvalues with positive real part).

In the non-hyperbolic case, the kernel of A α is one-dimensional, the local center manifold W c loc ppQ ˚, 0qq is a C 1 -curve containing pQ ˚, 0q. We notice that we can also choose r 1 ą 0 small enough so that W c loc ppQ ˚, 0qq " W c˚p pQ ˚, 0qq X B r 1 is a connected curve. Moreover, as remarked above, the (local) unstable manifold W u loc pQ ˚, 0q is finite-dimensional. In order to prove the convergence to pQ ˚, 0q, we would like to directly apply the classical convergence theorem of [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF] or [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF], which is the case (1) of Theorem B.4. However, we do not know that the trajectory uptq is bounded and thus we also cannot ascertain that the ω-limit set ωp u 0 q is connected. So we will apply the more general convergence Theorem B.2 of Brunovský and Poláčik, and more precisely their local Lemma B.3, which are recalled in Appendix B. To this end, we need to show that pQ ˚, 0q is stable for S α ptq restricted to the local center manifold (see the definition (3.41) below). In order to prove this stability, we shall use the same arguments as Brunovský and Poláčik in the proof of Lemma B.3. Like them, we will make use of the attraction of the center unstable manifold with asymptotic phase of Section 4 (see also Appendix A). Notice that the hyperbolic case can be considered as a special case, where the local center unstable (respectively, center) manifold reduces to the local unstable manifold (respectively, to pQ ˚, 0q). In the non-hyperbolic case, the center manifold is present and the dynamics is more delicate to analyze.

We proceed by contradiction and assume that uptq Ñ pQ ˚, 0q. Since uptq does not converge to pQ ˚, 0q, there exists β 0 ą 0, β 0 ă r 1 2 with the following property: for any 0 ă β ď β 0 , if upt 0 q P B H ppQ ˚, 0q, βq, there exists a first time τ 0 ą 0 such that upt 0 `τq P B β , for 0 ď τ ă τ 0 , and upt 0 `τ0 q R B β . In other words, upt 0 `τ0 q belongs to the sphere SppQ ˚, 0q, βq.

We first fix β ą 0, β ď β 0 . By Theorem 3.5, there exists npβq such that, for n ě npβq, upt n q P B β . Moreover, there exists a first time τ n pβq ą 0 such that upt n `τq P B β for 0 ď τ ă τ n pβq upt n `τq R B β for τ " τ n pβq . (3.36) Since upt n q Ñ pQ ˚, 0q as n Ñ `8, we remark that τ n pβq Ñ `8 as n Ñ `8. We now invoke the asymptotic phase property of the center-unstable manifold, see (A.9) (or also (4.29) in Theorem 4.1). Thus, there exists ξ n :" ξp upt n qq P W cu loc pQ ˚, 0q such that, for t ě 0,

}S αptq upt n q ´Sα ptqξ n } H ď c 0 ρ t 0 } upt n q ´ξn } H , (3.37) 
where 0 ă ρ 0 ă 1. And, by continuity of the map ξp¨q, ξ n Ñ pQ ˚, 0q as n Ñ `8.

In particular, (3.37) implies that }S α pτ n pβqq upt n q ´Sα pτ n pβqqξ n } H Ñ 0 as n Ñ `8. (3.38) Since W cu˚p pQ ˚, 0qq is finite-dimensional and by (3.38), S αpτ n pβqqξ n is bounded, the sequence S αpτ n pβqqξ n , n P N, contains a convergent subsequence. We conclude that up to passing to a subsequence one has upt n `τn pβqq " S α pτ n pβqq upt n q Ñ p ũ0 , ũ1 q P Bβ as n Ñ `8.

By the invariance property of W cu˚p pQ ˚, 0qq and by (3.38), (3.39) p ũ0 , ũ1 q P W cu loc ppQ ˚, 0qq . We remark that, by (3.31) and (3.36), p ũ0 , ũ1 q is an equilibrium point p Q, 0q " p Qpβq, 0q and }p Qpβq, 0q ´pQ ˚, 0q} H " β.

(3.40)

If pQ ˚, 0q is an isolated equilibrium point, then (3.40) with β ď r 1 2 leads to a contradiction. We remark that, in the hyperbolic case, pQ ˚, 0q is necessarily an isolated equilibrium which ends the proof in this case.

Let us now focus on the case where pQ ˚, 0q is not isolated. Before completing the proof in this case, we recall a definition of Brunovský and Poláčik, see Appendix B. We say that pQ ˚, 0q is stable for S α ptq| W c loc ppQ ˚,0qq if, @ ą 0, Dθ ą 0 such that, for any

v 0 P W c loc ppQ ˚, 0qq, } v 0 ´pQ ˚, 0q} H ď θ implies that, for t ě 0, }S α ptq v 0 ´pQ ˚, 0q} H ď . (3.41)
We now complete our proof. By construction and (3.39), the element p Qpβq, 0q belongs to W cu loc ppQ ˚, 0qq. Since p Qpβq, 0q is an equilibrium point, it necessarily belongs to the local center manifold W c loc ppQ ˚, 0qq (see Section 4 and Appendix A for more explanations), which, as we saw earlier, is a C 1 one-dimensional embedded manifold passing through pQ ˚, 0q. Since (3.40) holds for any small β ą 0, we see that this curve segment contains equilibria in the omega-limit set ωp u 0 q which are arbitrarily close to, but distinct from, pQ ˚, 0q. In fact, we can say even more than that. First, we place an order on the curve Wc r 1 ppQ ˚, 0qq if r 1 ą 0 is small enough. We adopt the notation v ´ă pQ ˚, 0q ă v `if v ´(respectively v `) is to the "left" ( resp. "right") of pQ ˚, 0q on the curve segment Wc r 1 ppQ ˚, 0qq. By intersecting the tangent line to this curve at pQ ˚, 0q with the spheres of radius β for all small β, we see that there are two possibilities:

(1) Either there exist two families of equilibria pQ ḿ , 0q and pQ m , 0q with pQ ḿ , 0q ă pQ ˚, 0q ă pQ m , 0q such that pQ m , 0q Ñ pQ ˚, 0q as m Ñ `8. (3.42)

A simple dynamical argument based on (3.42) implies that S α ptq| W c loc ppQ ˚,0qq is in fact stable. We can now directly apply Lemma B.3 of Brunovský and Poláčik to the time 1 map S α p1q, which implies that the ω-limit set ω 1 p u 0 q and thus the ω-limit set ωp u 0 q contain an element of W u loc ppQ ˚, 0qqzpQ ˚, 0q. This contradicts the fact that ωp u 0 q P E . Instead of directly applying Lemma B.3 to the map S α p1q, we can also argue for the flow S α ptq as at the end of the proof of [5, Lemma 1] of Brunovský and Poláčik and directly show that p Qpβq, 0q P W u loc ppQ ˚, 0qqzpQ ˚, 0q, where Qpβq is as in (3.40). But this contradicts the fact that p Qpβq, 0q is an equilibrium and so we again obtain the desired convergence.

(2) Or there exists β 2 ą 0 such that there is no equilibrium point from the family p Qpβq, 0q on the "left" (say) of pQ ˚, 0q in W c loc ppQ ˚, 0qq X B 2β 2 . But then, the above arguments (and in particular the properties (3.40)) imply that, for every 0 ď β ď β 2 , there exists an equilibrium p Q`p βq, 0q in ωp u 0 q satisfying the properties (3.40). This implies that on the right of pQ ˚, 0q, W c loc ppQ ˚, 0qq consists only of equilibria and that the ω-limit set ωp u 0 q contains a curve C of equilibria with end point pQ ˚, 0q (as for an interval). We then choose an equilibrium p Q`p βq, 0q in the interior of C and close to pQ ˚, 0q. We repeat the above proof with pQ ˚, 0q replaced by p Q`p βq, 0q. And we again obtain the same contradiction as in Case (1). Remark 3.9. In the particular case of a wave type or reaction-diffusion equation, the proof of the Łojasiewicz-Simon inequality (see Sections 3.2 and 3.3 in the monograph of L. Simon [START_REF] Simon | Theorems on regularity and singularity of energy minimizing maps[END_REF] and also [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]Theorem 2.1]) shows that, when the kernel of L is one-dimensional, the set of equilibria of pKGq α passing through pQ ˚, 0q is a C 1 -curve. We could have used this property in the proof above to avoid the last arguments and apply Theorem B.2. However, in view of possible extensions, we chose not to use this property.

Invariant manifold theory for the Klein-Gordon equation

In Section 3.2, in order to prove the convergence of any global solution (in positive time) towards an equilibrium point pϕ 0 , 0q of pKGq α , we used the properties of the local unstable, local center unstable and local center manifolds W i loc ppϕ 0 , 0qq, i " u, cu, c about pϕ 0 , 0q for the flow S α ptq. There, we defined these local manifolds as the intersections of the global manifolds W i˚p pϕ 0 , 0qq, i " u, cu, c about pϕ 0 , 0q for the global flow S αptq, with the ball of center pϕ 0 , 0q and radius r 1 ą 0, where r 1 ą 0 is small enough. We recall that the global flow S αptq was defined by S αptq u 0 " pϕ 0 , 0q `S α ptqp u 0 ´pϕ 0 , 0qq , where Sα ptq is the global flow defined by the localized Klein-Gordon equation (4.7) below. In this section, we construct the global invariant manifolds W i pp0, 0qq, i " u, cu, c, for the global flow Sα ptq and obtain the attraction property of W cu pp0, 0qq by applying the general invariant manifold theory recalled in Appendix A.

Let pϕ 0 , 0q P H rad be an equilibrium point of pKGq α , that is, ϕ 0 is a radial solution of the elliptic equation (4.1) ´∆ϕ 0 `ϕ0 ´f pϕ 0 q " 0 .

Solving the equation pKGq α in the neighborhood of pϕ 0 , 0q leads one to solve the equation (4.2) v tt `2αv t `Lv ´g0 pvq " 0 , pv, v t qp0q " vp0q P H rad .

where L " ´∆ `I ´f 1 pϕ 0 q , g 0 pvq " f pϕ 0 `vq ´f pϕ 0 q ´f 1 pϕ 0 qv . (

The equation (4.2) can be written in matrix form as follows

B t ˆv v t ˙" ˆ0 1 ´L ´2α ˙ˆv v t ˙`ˆ0 g 0 pvq ˙" A α v `ˆ0 g 0 pvq (4.4)
We denote by Σα ptq " e A α t the linear group generated by A α and Sα ptq the local flow defined by the equation (4.2). We notice that (4.5) S α ptq u 0 " S α ptqppϕ 0 , 0q ` v 0 q " pϕ 0 , 0q `S α ptq v 0 , where v 0 " u 0 ´pϕ 0 , 0q .

When α ą 0, according to Lemma 2.10, the radius ρpσ ess p Σα pτqqq of the essential spectrum of Σα pτq satisfies: ρpσ ess p Σα pτqqq ď δpα, τq ă 1

The operator A α can have a finite number of negative eigenvalues µ j pαq ă 0 (resp. a finite number of positive eigenvalues µ j pαq ą 0), in which case, λ j pτ, αq " exppµ j pαqτq ă 1 (resp. λ j pτ, αq " exppµ j pαqτq ą 1).

In addition, if 1 is an eigenvalue of Σα pτ 0 q,τ 0 ą 0, it is a simple eigenvalue (and is a simple eigenvalue of Σα pτq for any τ ą 0). Since this case plays an important role in the proof of Section 3.2, we assume that 1 is an eigenvalue of Σα pτ 0 q,τ 0 ą 0. In this case, we will construct a local center unstable manifold W cu loc pp0, 0qq of the equilibrium p0, 0q of Sα ptq, a foliation of a neighborhood of p0, 0q in H rad over W cu loc pp0, 0qq as well as a local center manifold W c loc pp0, 0qq by applying Theorems A.2 and A.5 to Sα ptq. We choose τ 0 ą 0 small enough (τ 0 will be made more precise later). And we set L " Σα pτ 0 q .

The spectrum σpLq can be decomposed as in Hypothesis (HA.5.1) and one can define constants C 1 ě 1, C 2 ě 1, η ą 0 and ε ą 0 satisfying the estimates (A.20), (A.21), (A.22). Unfortunately, Sα ptq is only a local flow and thus Sα pτ 1 q will not satisfy the hypothesis (HA.3). Moreover, we need to show that the Lipschitz-constant LippRq can be chosen as small as needed, which is not true for Sα ptq. Therefore, we need to make a localization in the following way, for instance. Let r 0 ą 0 be a small constant, which will be made more precise later. We introduce a smooth cut-off function χ : R Ñ r0, 1s such that χpsq "

# 1 if |s| ď 1, 0 if |s| ě 2 . (4.6)
And, we consider the modified Klein-Gordon equation,

(4.7) v tt `2αv t `Lv ´g0 pvqχ `} v} 2 H r 2 ˘" 0 , vp0q " v 0 P H rad ,
where 0 ă r ď r 0 is fixed. To simplify the notation, we set

hp vq " g 0 pvqχ `} v} 2 H r 2 ˘.
We first show that, for any v 0 P H, the equation (4.7) admits a unique solution vptq " Sα ptq v 0 P C 0 pr0, `8q, Hq (we leave to the reader to show that Sα ptq v 0 also belongs to C 0 pp´8, 0s, Hq). To this end, it is sufficient to show that, for any v 0 P H, the solution vptq " Sα ptq v 0 of (4.7) exists on the time interval r0, τ 0 s and remains bounded there. We will do that in two steps. We will give the proof only in the case where d ě 3, the case d ď 2 being easier. We first recall that the solution vptq of (4.7) is given by the Duhamel formula,

(4.8) vptq " Σα ptq v 0 `ż t 0 Σα pt ´sqp0, g 0 pvpsqqχ `} vpsq} 2 H r 2 ˘qt ds ,
and also remark that, as long as vpsq R B H p0, ? 2rq, the term hp vpsqq vanishes.

Step 1: Let v 0 P H so that } v 0 } H ď mr with p8Cpα, τ 0 qq ´1 ď m ď 2 for example. We set: M 0 " M 0 pmrq " 4Cpα, τ 0 qmr, where Cpα, τ 0 q ě 1 is the constant given in Proposition 2.4. To show the local existence of the solution vptq on the time interval r0, τ 0 s, we argue as in the proof of Theorem 2.3 and introduce the space Y " t v P L 8 pp0, τ 0 q, Hq with v P L θ ˚pp0, τ 0 q, L 2θ ˚pR d qq | }v} L 8 pH 1 qXW 1,8 pL 2 qXL θ ˚pL 2θ ˚q ď M 0 pmrqu .

Like there we introduce the mapping F : Y Ñ Y defined by pF vqptq " Σα ptq v 0 `ż t 0 Σα pt ´sqp0, hp vpsqqq t ds .

The application of Proposition 2.4 implies (4.9) }F p0q} Y ď Cpα, τ 0 qmr ď M 0 pmrq 4 .

We next show that F is a strict contraction from Y into Y. Due to the hypothesis pH.2q f , we may write, for v 1 , v 2 in H 1 pR d q, |pg 0 pv 1 q ´g0 pv 2 qqpxq| " | f pϕ 0 pxq `v1 pxqq ´f pϕ 0 pxq `v2 pxqq ´f 1 pϕ 0 pxqqpv 1 pxq ´v2 pxqq|

" | ż 1 0 p f 1 pϕ 0 `v2 `σpv 1 ´v2 qq ´f 1 pϕ 0 qqpv 1 ´v2 qdσ| ď C|p|v 1 | β `|v 2 | β `|v 1 | θ´1 `|v 2 | θ´1 qpv 1 ´v2 q| , (4.10) 
where 0 ă β ă minpθ ´1, 2 d´2 q and C " Cp f, ϕ 0 q is a constant depending only on f and on ϕ 0 . For v i P Y, i " 1, 2, Proposition 2.4 and the inequality (4.10) imply,

}F v 1 ´F v 2 } Y ď Cpα, τ 0 q ż τ 0 0 }hp v 1 psqq ´hp v 2 psqq} L 2 ds ď Cpα, τ 0 q ż τ 0 0 }pg 0 pv 1 q ´g0 pv 2 qqχ `} v 2 } 2 H r 2 ˘`g 0 pv 1 q `χ`} v 1 } 2 H r 2 ˘´χ `} v 2 } 2 H r 2 ˘˘} L 2 ds ď Cpα, τ 0 qC " ż τ 0 0 }p|v 1 psq| β `|v 2 psq| β q|v 1 psq ´v2 psq| } L 2 ds `ż τ 0 0 }p|v 1 psq| θ´1 `|v 2 psq| θ´1 q|v 1 psq ´v2 psq| } L 2 ds `ż τ 0 0 }p|v 1 psq| β`1 `|v 1 psq| θ q} L 2 | `χ`} v 1 } 2 H r 2 ˘´χ `} v 2 } 2 H r 2 ˘˘|ds ‰ " B 1 `B2 `B3 . (4.11)
Arguing as in the proof of Theorem 2.3, by using the Sobolev embeddings, the Hölder inequality and the fact that 0 ă β ă 2 d´2 , we obtain the following inequality for B 1 :

B 1 ď Cpα, τ 0 qC ż τ 0 0 p}v 1 } β H 1 `}v 2 } β H 1 q}v 1 ´v2 } H 1 ds ď 2Cpα, τ 0 qτ 0 CM 0 prmq β }v 1 ´v2 } L 8 pH 1 q (4.
12)

The bound of the term B 2 is obtained as in the proof of Theorem 2.3 (see (2.20)):

(4.13) B 2 ď 2Cpα, τ 0 qC 2 τ η 0 M 0 prmq θ´1 θ pθ ˚p1´ηq`ηq " }v 1 ´v2 } L 8 pL 2 q `}v 1 ´v2 } L θ ˚pL 2θ ˚q‰ .
where η ą 0 is given in the formula (2.17 

| `χ`} v 1 } 2 H r 2 ˘´χ `} v 2 } 2 H r 2 ˘˘| ď ż 1 0 |χ 1 `} v 2 `σp v 1 ´ v 2 q} 2 H r 2 ˘` v 2 `σp v 1 ´ v 2 q r 2 , p v 1 ´ v 2 qq H |dσ ď ? 2 r } v 1 ´ v 2 } H . (4.14) 
The estimate (4.14), together with the estimates (4.12) and (4.13) with v 2 " 0, imply that (4.15)

B 3 ď 4 ? 2mC 2 Cpα, τ 0 q 2 rτ 0 M 0 prmq β `2Cpα, τ 0 qτ η 0 M 0 prmq θ´1 θ pθ ˚p1´ηq`ηq s} v 1 ´ v 2 } L 8 pHq .
Choosing r 0 ą 0 small enough so that Kpr 0 , τ 0 q "2Cpα, τ 0 qτ 0 CM 0 p2r 0 q β `4Cpα, τ 0 qC 2 τ η 0 M 0 p2r 0 q θ´1 θ pθ ˚p1´ηq`ηq `8 ? 2C 2 Cpα, τ 0 q 2 rτ 0 M 0 p2r 0 q β `2Cpα, τ 0 qτ

η 0 M 0 p2r 0 q θ´1 θ pθ ˚p1´ηq`ηq s ď 1 4 , (4.16) 
we deduce from the inequalities (4.11) to (4.16) that (4.17)

}F v 1 ´F v 2 } Y ď 1 4 } v 1 ´ v 2 } Y ,
which implies with (4.9), that, for any v 1 P Y,

(4.18) }F v 1 } Y ď M 0 pmrq 2 .
Therefore, F is a strict contraction and admits a unique fixed point vp v 0 q in Y. The uniqueness of the solution v of the equation (4.7) on the time interval r0, τ 0 s is proved as in the proof of Theorem 2.3. Let next v 0,i , i " 1, 2, be so that } v 0,i } H ď mr, and let v i , i " 1, 2, be the corresponding solutions of the equation (4.7) on the time interval r0, τ 0 s; by the above proof, they belong to Y. Applying Proposition 2.4 and repeating the above proof, we show that

(4.19) } v 1 ´ v 2 } Y ď 4 3 Cpα, τ 0 q} v 0,1 ´ v 0,2 } Y .
As in the proof of Theorem 2.3, one also shows that v

0 P B H p0, mrq Þ Ñ vp v 0 q P Y is a C 1 -function.
In the remaining part of the proof, we set m " 2.

Step 2 : We begin by showing that for every v 0 P H, vptq " Sα ptq v 0 exists on r0, `8q. Let first v 0 P H satisfying } v 0 } H ď 2r, then, by Step 1, vptq stays in the ball B H p0, M 0 p2rqq for 0 ď t ď τ 0 . Let next v 0 P H be such that } v 0 } H ě 2r and let vptq " Sα ptq v 0 be the mild local solution of (4.7). By continuity of this solution, there exists a time t 1 ą 0 so that vptq R B H p0, ? 2rq, for 0 ď t ď t 1 . We have, for 0 ď t ď t 1 , (4.20) vptq " Σα ptq v 0 , and, in particular, for 0 ď t ď infpt 1 , τ 0 q, (4.21) } vptq} H `}v} L θ ˚pp0,tq,L 2θ ˚q ď Cpα, τ 0 q} v 0 } H .

If at a time t 1 , vpt 1 q enters into the ball B H p0, 2rq, then, according to Step 1, for t 1 ď t ď t 1 `τ0 , vptq still exists, stays in the ball B H p0, M 0 p2rqq and satisfies the estimates given in Step 1. We thus have proved that, for every v 0 P H, vptq exists on the time interval r0, τ 0 s. Consequently, for every v 0 P H, Sα ptq v 0 exists on r0, `8q. Likewise, one shows that Sα ptq v 0 exists on p´8, 0sq. Arguing as in the proof of Theorem 2.3, one shows the continuity properties of Sα ptq v 0 with respect to pt, v 0 q and the fact that, for any t P R,

v 0 P H Þ Ñ Sα ptq v 0 P H is a C 1 -map.
We are now able to prove that Sα ptq satisfies the assumptions pHA.3q, pHA.5.2q, and pHA.5.3q. We first prove the last part of assumption pHA.3q. Sα ptq is Lipschitz continuous, with a Lipschitz constant which is uniform in 0 ď t ď τ 0 . The idea is that it is true if v 0,1 and v 0,2 belong to B H p0, 2rq by (4.19). If v 0,2 P B H p0, 2rq and v 0,1 R B H p0, 2rq, we estimate the difference up to the first time t 1 ď τ 0 when v 1 ptq enters the ball B H p0, 2rq, and then apply the estimate proved in the first case up to time τ 0 . Finally, if both initial data are outside B H p0, 2rq, we apply the linear estimates up to the first time when one solution enters B H p0, 2rq and then the estimate of the second case. As a consequence, to conclude, it remains to show that, if } v 0,1 } H ď 2r and } v 0,2 } H ě 2r so that } v 2 ptq} H ě 2r for any t ě 0, then v 1 ´ v 2 satisfies the estimate (4.19). Using Proposition 2.4, the inequalities (4.10), (4.11), and (4.15), we obtain, for 0 ď t ď τ 0 ,

} v 1 ´ v 2 } Y ď Cpα, τ 0 q " } v 0,1 ´ v 0,2 } H `ż τ 0 0 }hp v 1 psqqds ‰ ď Cpα, τ 0 q " } v 0,1 ´ v 0,2 } H `ż τ 0 0 }g 0 pv 1 q `χ`} v 1 } 2 H r 2 ˘´χ `} v 2 } 2 H r 2 ˘˘} L 2 ds ‰ ď Cpα, τ 0 q} v 0,1 ´ v 0,2 } H `B3 , (4.22) 
where B 3 had already been defined and used in (4.11). As before, the inequality (4.14) holds. Therefore, we deduce from the estimates (4.22), (4.15) and the condition (4.16) that, for 0 ď t ď τ 0 , Likewise, one shows that this estimate also holds for ´τ0 , ď t ď 0. Thus, Hypothesis pHA.3q is satisfied.

} v 1 ´ v 2 } Y ď Cpα, τ 0 q} v 0,1 ´ v 0,2 } H `1 4 } v 1 ´ v 2 } Y . ( 4 
We next show that the hypotheses pHA.5.2q and pHA.5.3q hold. To this end, we set Sα pτ 0 q " Σα pτ 0 q `Rpτ 0 q " Lpτ 0 q `Rpτ 0 q Sα p´τ 0 q " Σα p´τ 0 q `Rpτ 0 q " Lpτ 0 q ´1 `Rpτ 0 q . (4.25) Let v 0 P H and vptq " Sα ptq v 0 ; then, Rpτ 0 q writes (4.26)

Rpτ 0 q " ż τ 0 0 Σα pt ´sqp0, hpvpsqqq t ds .

To prove that the conditions (A.23), (A.24), and (A.29) hold, we will show that LippRpτ 0 qq and Lipp Rpτ 0 qq go to zero as r 0 goes to zero (we will only show it for Rpτ 0 q, since the proof is similar for Rpτ 0 q). To show this property, we are going back to the three cases considered above. If v 0,1 and v 0,2 belong to B H p0, 2rq, then the estimates (4.11) to (4.19) imply that (4.27)

}Rpτ 0 q v 0,1 ´Rpτ 0 q v 0,2 } Y ď 4 3 Kpr 0 , τ 0 qCpα, τ 0 q} v 0,1 ´ v 0,2 } H .
The estimate (4.22) shows that the same property (4.27) holds if v 0,1 belongs to B H p0, 2rq and v 0,2 is so that } v 2 ptq} H ě 2r for any 0 ď t ď τ 0 . Finally, we remark that if v i ptq R B H p0, 2rq, i " 1, 2, for 0 ď t ď τ 0 , then Rpτ 0 q v 0,1 ´Rpτ 0 q v 0,2 " 0. Combining all the above cases and using the estimate (4.24), we finally obtain that, in every case, (4.28)

}Rpτ 0 q v 0,1 ´Rpτ 0 q v 0,2 } Y ď 16 9 Kpr 0 , τ 0 qC 3 pα, τ 0 q} v 0,1 ´ v 0,2 } H .
Since Kpr 0 , τ 0 q goes to zero as r 0 goes to zero, LippRpτ 0 qq goes to zero as r 0 goes to zero and the condition (A.23) is satisfied provided r 0 is chosen small enough. Likewise the conditions (A.24) and (A.29) hold, provided r 0 is chosen small enough. From now on, we fix r 0 ą 0 small enough so that these conditions are satisfied and we choose r " r 0 in (4.7).

We have seen that, for r 0 ą 0 small enough, Sα ptq satisfies the hypotheses of Theorems A.2 and A.5. We can thus state the following result concerning the invariant manifolds of Sα ptq. For the notations and definitions of the different invariant manifolds, we refer the reader to Appendix A below. As in the assumption (HA.5.1), we denote by P i the spectral (continuous) projection associated to the spectral set σ i and let H rad,i be the image H rad,i " P i H rad , where i " cu, cs, u, s, c. Theorem 4.1. Let α ą 0 be fixed. 1) There exists a C 1 globally Lipschitz continuous map g cu : H rad,cu Ñ H rad,s so that the C 1 center unstable manifold W cu pp0, 0qq of Sα ptq at p0, 0q W cu pp0, 0qq " t v cu `gcu p v cu q | v cu P H rad,cu u satisfies all the properties given in Theorem A.1.

2) There exists a C 1 globally Lipschitz continuous map g u : H rad,u Ñ H rad,cs so that the C 1 (strongly) unstable manifold W u pp0, 0qq of Sα ptq at p0, 0q W u pp0, 0qq " t v u `gu p v u q | v u P H rad,u u satisfies all the properties described in the statement (2) of Theorem A.5.

3) Moreover, there exists a continuous mapping : H rad ˆHrad,s Ñ H rad,cu , such that, for any v P H rad , the manifold M v " t v ` p v, v s q | v s P H rad,s u satisfies all the properties in Theorem A.2. In particular, tM ξ | ξ P W cu pp0, 0qqu is a foliation of H rad over W cu pp0, 0qq.

4)

In particular, there exist c ą 1, 0 ă ρ 0 ă 1, and, for any v 0 P H rad , a unique element ξp v 0 q P W cu pp0, 0qq such that, for t ě 0, (4.29)

} Sα ptq v 0 ´S α ptq ξp v 0 q} H ď cρ t 0 } v 0 ´ ξp v 0 q} H . Moreover, the map v 0 P H rad Þ Ñ ξp v 0 q P W cu pp0, 0qq is continuous.

5) There exists a C 1 globally Lipschitz continuous map g c : H rad,c Ñ H rad,s ' H rad,u with g c p0q " 0, so that the center manifold W c p0q of Sα ptq at p0, 0q W c pp0, 0qq " tx c `gc px c q | x c P H rad,c u " W cu pp0, 0qq X W cs pp0, 0qq satisfies all the properties given in statement (4) of Theorem A.5.

Let us go back to the "actual" variable u " v `pϕ 0 , 0q t . We set S αptq u 0 " pϕ 0 , 0q t `S α ptqp u 0 ´pϕ 0 , 0qq .

Then the invariant manifolds of S αptq are defined by (4.30)

W i˚p pϕ 0 , 0qq " pϕ 0 , 0q t `Wi pp0, 0qq , i " cu, c, u, s .

Remark 4.2. We emphasize that the proof given in Step 1 above shows that if, for example, r " r 0 , m " p8Cpα, τ 0 qq ´1, and } u 0 } H ď mr 0 , then, for 0 ď t ď τ 0 , } Sα ptq u 0 } Y ď r 0 {2 , which implies that, for 0 ď t ď τ 0 , Sα ptq u 0 " S α ptq u 0 . In other terms, if u 0 belongs to the ball B H rad ppϕ 0 , 0q, r 1 q of center pϕ 0 , 0q and radius r 1 ď p8Cpα, τ 0 qq ´1r 0 , then S αptq u 0 " S α ptq u 0 . This allows one to define the local invariant manifolds W i loc ppϕ 0 , 0qq of S α ptq about pϕ 0 , 0q as (4.31)

W i loc ppϕ 0 , 0qq " W i˚p pϕ 0 , 0qq X B H rad ppϕ 0 , 0q, r 1 q , i " cu, c, u, s . Remark 4.3. 1) In the above theorem, M 0 coincides with the (strongly) stable manifold Ws pp0, 0qq.

2) If KerpLq " t0u, then the center unstable manifold W cu pp0, 0qq coincides with the unstable manifold W u pp0, 0qq of p0, 0q, while M 0 coincides with the stable manifold W s pp0, 0qq. Remark 4.4. In the case where α " 0, we can also apply Theorems A.1 and A.2 below in order to prove the existence of the strong unstable manifold and the existence of a center stable manifold around any equilibrium point of pKGq α as well as the existence of a foliation of H rad over the unstable manifold. This gives an alternative proof to the construction of a center stable manifold, by the Hadamard method in [START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian Evolution Equations[END_REF] (for more details, see [START_REF] Burq | Long time dynamics for damped Klein-Gordon equations II[END_REF]).

Theorem A.1. Assume that the hypotheses (HA.1), (HA.2) hold and that Rp0q " 0. Then there exists a globally Lipschitz map g : X 1 Ñ X 2 with gp0q " 0, and

(A.5)
Lippgq ď min γ 2 ďγďγ 1 C 1 C 2 LippRqγ β 1 pγ ´β2 qp1 ´λpγqLippRqq , so that the Lipschitz submanifold G " tx 1 `gpx 1 q | x 1 P X 1 u satisfies the following properties:

(i): (Invariance) The restriction to G of the semi-flow Sptq, t ě 0, can be extended to a Lipschitz continuous flow on G. In particular, SptqG " G, for any t ě 0, and for any ξ P G, there exists a unique negative semi-orbit uptq P G of Sp.q, t ď 0, so that up0q " ξ. (ii): (Lyapunov exponent) If a negative semi-orbit uptq, t ď 0, of Sp.q is contained in G, then, Conversely, if a negative semi-orbit uptq, t ď 0, of Sp.q is contained in X satisfies

(A.7) lim sup tÑ´8 1 |t| ln |uptq| ă ´1 τ ln γ 2 .
then, it is contained in G. (iii): (Smoothness) If the map Spτq : X Ñ X is of class C 1 , then g :

X 1 Ñ X 2 is of class C 1 ,
that is, G is a C 1 -submanifold of X.

The second theorem states the existence of a foliation of X over the invariant manifold G.

Theorem A.2. Assume that the hypotheses (HA.1), (HA.2) hold and that Rp0q " 0. Then, there exists an invariant foliation of X over G as follows.

(i): (Invariance) There exists a continuous mapping : X ˆX2 Ñ X 1 such that, for any ξ P G, pξ, P 2 ξq " P 1 ξ and the manifold M ξ " tx 2 ` pξ, x 2 q | x 2 P X 2 u passing through ξ satisfies:

(A.8) SptqM ξ Ă M Sptqξ , t ě 0 , and (A.9) M ξ " ty P X | lim sup Mutatis mutandis, repeating the arguments of the proofs of Theorems A.1 and A.2, one can also show the existence of a Lipschitz manifold G " tx 2 `gpx 2 q | x 2 P X 2 u where g : X 2 Ñ X 1 is a globally Lipschitz map with gp0q " 0, such that G is invariant and such that, if a semi-orbit uptq, t ě 0, of Sp.q is contained in G, then, If Sptq is a non-linear group, these properties can be proved by reversing the time in Theorems A.1 and A.2. In Section 3, the existence of a center manifold played an important role. We can derive this existence by defining the center manifold as the intersection of the center stable and center unstable manifolds. The center stable manifold is constructed like the Lipschitz manifold G " tx 2 `gpx 2 q | x 2 P X 2 u described above. Since throughout the paper we are only dealing with groups, we will quickly show the existence of G by reversing the time in Theorem A.1. The constants appearing in the proof below are maybe not optimal, but we are not looking here for optimality.

In addition to the hypothesis (HA.2), we assume now that (HA.3) : Sp.q. : pt, xq P p´8, `8q ˆX Þ Ñ Sptqx P X is continuous and there exists a constant τ 0 ą 0 such that, We remark that the linear map L ´1 satisfies the hypothesis (HA.2.1) with P 1 (resp. P 2 ) replaced by P 2 (resp. P 1 ), C 1 (resp. C 2 ) replaced by C 2 (resp. C 1 ), and β 1 (resp. On the other hand, Theorem A.2 in Appendix A on the invariant foliations implies that W cu loc p0q is exponentially attractive in X with asymptotic phase (see Appendix A for more details). Likewise, one can show that W c loc p0q is exponentially attractive in backward time in W cu loc p0q with asymptotic phase. These asymptotic phase properties are among the key arguments in the proof of the main convergence theorem B.2 below.

Remark B.1. Actually, the hypothesis (HB.1) can be replaced by the weaker hypothesis: (HB.1bis) There exists a neighborhood U of 0 in X so that the restriction Φ ˇˇU : U Ñ X is Lipschitz continuous and differentiable at every fixed point contained in U.

Before stating the main convergence result of [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], we introduce the concept of stability restricted to W c loc p0q. We say that 0 is stable for the map Φ ˇˇW c loc p0q , if, for any ε ą 0, there exists η ą 0 such that, for any y P W c loc p0q with }y} X ď η, we have (B.2)

}Φ n pyq} X ď ε , @ n " 0, 1, 2, . . . .

As pointed out in [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], this stability is independent of the choice of the local center manifold W c loc p0q. The independence of this stability on the choice of the local center manifold can be proved by using foliations as in the paper of [START_REF] Burchard | Smooth conjugacy of centre manifolds[END_REF], who actually showed that the flows on different local center manifolds are conjugated (under some more restrictive hypotheses, which can be easily removed). As also remarked in [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], the fact that the stability is independent of the choice of the local centre manifold, is not needed in the proof of Theorem B.2 below. Theorem B.2. Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold. Let x 0 P X be such that the fixed point 0 belongs to the ω-limit set ωpx 0 q of x 0 . Assume that either X cu is finite-dimensional or that the trajectory Φ n px 0 q, n " 1, 2, ¨¨¨, of x 0 is relatively compact. Assume, moreover, that 0 is stable for the map Φ ˇˇW c loc p0q , where W c loc p0q is a local center manifold of 0. Then either Φ n px 0 q converges to 0 as n Ñ 8, or ωpx 0 q contains a point of the local unstable manifold W u loc p0q of 0, distinct from 0. Theorem B.2 generalises the above mentioned convergence result of [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF] in two ways. Firstly, the hypotheses do not require that ωpx 0 q consists only of fixed points. Secondly, it does not require that the trajectory Φ n px 0 q, n " 1, 2, ¨¨¨, of x 0 be relatively compact. But, of course, it requires the additional stability property defined above.

In [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], Brunovský and Poláčik have proved the following lemma (see [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF]Lemma 1]) and have obtained Theorem B.2 as a direct consequence of it. We emphasize that Lemma B.3 is really a local result anf that Lemma B.3 will hold for any mapping Φ ˚: y P U Þ Ñ Φ ˚y P X coinciding with Φ in U. In particular, Φ ˚need not be well defined outside U, which is the case in our application in Section 3. Lemma B.3. Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold, that δ ą 0 is small enough so that B X p0, δq Ă U and that 0 is stable for the map Φ ˇˇW c loc p0q . Let x k P X and p k P N be sequences satisfying the following properties:

(1) x k Ñ 0 as k Ñ `8.
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tÑ8 1 t ln |Sptqy ´Sptqξ| ď 1 τ ln γ 2 min γ 2 ďγďγ 1 C 1

 211 u .Moreover, the map : X ˆX2 Ñ X 1 is uniformly Lipschitz continuous in the X 2 direction. (ii): (Completeness) Suppose in addition that "

1 ă β 1

 11 is made more precise below, and also the existence of a foliation Mξ (in reverse time) of X over G.

sup ´τ0 ďtďτ 0 LippSptqq " D ă ` 8 .(HA. 4 ):

 084 Sp´τq can be decomposed asSp´τq " L ´1 `R , where τ and L : X Ñ X have been introduced in the hypothesis (HA.2) and where R : X Ñ X is a global Lipschitz continuous map, satisfying the following property:(A.14) p a C 1 `?C 2 q 2 β 1 ´β2 β 1 β 2 Lipp Rq ă 1 .

  β 2 ) replaced by β ´1 2 (resp. β ´1 1 ). Indeed, we have}pL ´1q ´kP 2 } LpX,Xq ď C 2 pβ ´1 2 q ´k , }pL ´1q k P 1 } LpX,Xq ď C 1 pβ ´1 1 q k .

  with those for the wave equation. We set βpαq " α if 0 ď α ď 1 and βpαq " α ´aα 2 ´1

	with β " 0. On the other hand, by the same logic we can also derive Strichartz estimates
	for the transformed equation (2.2) which yields (2.6) with β " α for the piece P ąα u.
	Interpolating between these two cases we obtain Strichartz inequalities for all 0 ď β ď α
	for those frequencies. Smaller frequencies require smaller β. Indeed, for the remaining
	piece P Àα u we use the energy bound (2.5) and Bernstein's inequality. To be precise, the if α ą 1. Exploiting the exponential decay in (2.3) we can now state the following space-time averaged estimates. energy estimate
	Lemma 2.2. Let α ą 0. In all dimensions d ě 1 the solution u of (2.1) satisfies the following energy bounds with decay }P Àα uptq} 2 ď Cpαq " 0 e ´tβpαq }pu 0 , u 1 q} H 1 ˆL2 e ´pt´sqβpαq }P Àα Gpsq} 2 ds `ż t ı
	sup tě0 implies via Bernstein's inequality that e tβpαq }pu, B t uqptq} H 1 ˆL2 ď Cpαq (2.5) as well as the exponentially weighted Strichartz estimates, in dimensions d ě 2, and with 0 ď β ă " }pu 0 , u 1 q} H 1 ˆL2 `ż 8 0 ı e sβpαq }Gpsq} 2 ds e βt }P Àα uptq} q ď Cpαq " 0 e ´tpβpαq´βq }pu 0 , u 1 q} H 1 ˆL2 `ż t e ´pt´sqpβpαq´βq e βs }P Àα Gpsq} q1 ds ı
	βpαq, (2.6) Taking L p t norms on both sides, and applying Young's inequality to the Duhamel integral }u} L q,β t L p x ď Cpα, βq " }pu 0 , u 1 q} H 1 ˆL2 `}G} L q1 ,β t L p1 x ‰ yields (2.6) for all frequencies.
	where 1 q `d p " d 2 ´1 " 1 q1 `d p1 ´2, 2 ď p, p ă 8, 2 ď q, q, and 1 q	`d´1 2p ď d´1 4 , 1 q `d´1 2 p ď d´1 4 .
	The constant Cpα, βq is uniform on compact subsets of
	tpα, βq | α P p0, 8q, 0 ď β ă βpαqu
	Proof. Taking the Fourier transform of (2.3) yields
	ûpt, ξq " m α pt, ξq p u 0 pξq `m α pt, ξq p u 1 pξq	`ż t	mα pt ´s, ξqe ´pt´sqα	p Gps, ξq ds
						0
	The multipliers satisfy the estimates				
	|m α pt, ξq| `| mα pt, ξq| ď Cpαqe ´βpαqt
	which proves (2.5). For (2.6) we introduce the Littlewood-Paley decomposition
	1 " P Àα	`ÿ j	P j " P Àα `Pąα
	where the P j are associated to frequencies 2 j ą α and P Àα f " f for all Schwartz functions
	with support in t|ξ| ď 1 `2αu. Let K λ ptq be the propagator defined by, cf. (2.3),
	rK λ ptq f spxq " e ´αt	ż	e ˘it	?	ξ 2 `1´α 2 e ix¨ξ χpξ{λq f pξq dξ
		R d		
	where χ is the usual Littlewood-Paley bump function supported on an annulus, and
	λ ą α `1 (and ignoring multiplicative constants). Then the root is smooth, and we may
	apply stationary phase to conclude that		
	}K λ ptq} 8 ď e ´αt λ d xtλy ´d´1 2	À e ´αt t	´d´1 2 λ	d`1 2
	for all t ą 0. Proceeding as for the wave equation (see Keel-Tao), and ignoring the
	exponential decay for the frequencies Á α, yields the Strichartz estimates (2.6) for P ąα u

  ) Let T ˚be the maximal time of existence. If T ˚ă 8, then

	(6) The energy (1.5) decreases:		
	(2.7)	Ep upt 2 qq ´Ep upt 1 qq " ´2α	ż t 2 t 1	}B t upsq} 2 L 2 ds
	and, in particular,			
	(2.8)	Ep upt 2 qq `2α	ż t 2 0	}B t upsq} 2 L 2 ds ď Ep up0qq
	(7) If } up0q} ! 1, then the solution exists globally, and } uptq} H converges exponentially to 0
	as t Ñ 8.			
	Proof. We have | f puq| À |u| 2 `|u| θ . We begin with dimensions d " 1, 2. In that case the
	Sobolev embeddings and (2.5) imply, for any β,
	e βt } uptq} H À } up0q} H	`ż t 0	e ´βpt´sq `}upsq} 2 4 `}upsq} θ 2θ ˘ds
	À } up0q} H	`β´1 p1 ´e´βT q max 0ďsďT	e βs `} upsq} 2 H `} upsq} θ H	(2.9)
		lim sup	uptq} H "	`8
		tÑT ˚}
	(5) If u 0 P H 2 pR d q ˆH1 pR d q, then		
	u P Cpr0, Tq, H 2 pR d qq X C 1 pr0, Tq, H 1 pR d qq

  ψqq ´K0 pϕq . Then T ˚" 8, i.e., the solution is global.Proof. By Lemma 2.5, we have for some finite M and all 0 ď t ă T }

	Proof. We simply write	
	γp}ϕ} 2 H 1 `}ψ} 2 L 2 q "2p1 `γqEppϕ, ψqq ´K0 pϕq ´p1 `γq}ψ} 2 L 2
	`żR uptq} H ď 2p1 `γqEpuptq, B t uptqq	`M
	ď 2p1 `γqEpup0q, B t up0qq	`M

d `2p1 `γqFpϕq ´ϕpxq f pϕpxqq ˘dx ď2p1 `γqEppϕ, ψqq ´K0 pϕq ,

(2.37) 

where the integral is nonpositive by pH.1q f . Corollary 2.6. Suppose uptq " puptq, B t uptqq is a strong solution of pKGq α defined on the maximal interval 0 ď t ă T ˚. Assume inf 0ďtăT ˚K0 puptqq ą ´8 .

  .Using pH.1q f and the definition of yptq, we can also write, for t ě 0,

	(2.42)	: yptq ě p2 `γq} 9 uptq} 2 L 2 `γ}uptq} 2 H 1 ´2p1 `γqEp0q `4αp1 `γq	ż t 0	} 9 upsq} 2 L 2 ds.
	For the sake of illustration, assume first that α " 0. Since yptq Ñ 8, we infer from (2.42)
	that for large t				
	(2.43)				: yptq ě p2 `γq} 9 uptq} 2 L 2
	Then | 9 yptq| ď }uptq} L 2 } 9 uptq} L 2 whence	
	We have				: yptq ě	2	`γ 2	9 y 2 ptq yptq
		9 yptq " puptq, 9 uptqq `α}uptq} 2 L 2	
	(2.38)	" puptq, 9 uptqq `α}up0q} 2 L 2 `2α	ż t 0	pupsq, 9 upsqq ds
	and					
		: yptq " } 9 uptq} 2 L 2 `puptq, : uptq `2α 9 uptqq
	(2.39)	" } 9 uptq} 2 L 2 `puptq, p∆u ´u `f puqqptqq
		" } 9 uptq} 2 L 2 ´K0 puptqq .	
	Thus,					
	(2.40)		: yptq ě } 9 uptq} 2 L 2 `δ ě δ.
	We deduce from (2.40) that lim tÑ`8 9 yptq " `8, and therefore lim tÑ`8 yptq " `8.
	Next, we note that				
		: yptq " } 9 uptq} 2 L 2 ´K0 puptqq	
	(2.41)	" p2 `γq} 9 uptq} 2 L 2 `γ}uptq} 2 H 1 ´2p1 `γqEptq
		´żR d	`2p1 `γqFpuptqq ´uptq f puptqq ˘dx
	where we have set for simplicity Eptq " Eppuptq, 9 uptqqq. But, we have
				9 Eptq " ´2α} 9 uptq} 2 L 2
	and	Eptq " Ep0q	`ż t 0	9 Epsq ds " Ep0q ´2α	ż t 0	} 9 upsq} 2 L 2 ds.

  This means that u 2 " zu 1

	Taking λ P σpLq, this means that
	(2.51)	z " ´α ˘aα 2 ´λ, λ P σpLq .
		´Lu 1 ´2αu 2 " zu 2
	which is the same as	
		u 2 " zu 1
		pL `2αz `z2 qu 1 " 0
	There exists a solution in the domain of A α if and only if
		2αz `z2 P σp´Lq

  For s, t P r´T, Ts, and fixed p P p2, 2 ˚q, interpolation gives the existence of a P p0, 1q such that }u n ptq ´un psq} L p ď }u n ptq ´un psq} a L 2 ˚}u n ptq ´un psq} 1´a

	whence					
	(3.11)	}u n ptq ´un psq} 2 L 2 ď |t ´s|	ż t`t n s`t n	}B t upσq} 2 L 2 dσ
		ď 2T	`T ´T }B t upσq} 2 ż t n t n L 2 dσ ÝÑ 0 as n Ñ `8.
	(3.12)						L 2
			À |t ´s|	1´a 2	t n ˆż t n ´T }B t upσq} 2 L 2 dσ `T ˙1´a 2
							in Theorem 2.3 implies that
	(3.10)	}u ż R d |u n ptq ´un psq| 2 dx "	ż R d	ˇˇˇż	s t	B t u n pσq dσ ˇˇˇ2 dx
			ď |t ´s|	ż R d	s ż t	|B t u n pσq| 2 dσdx
			ď |t ´s|	ż t`t n s`t n	}B t upσq} 2 L 2 dσ

n } L θ ˚pp0,Tq,L 2θ ˚q ď C .

where θ ˚" d`2 d´2 . By uniqueness, u n ptq " upt n `tq. For any s, t P r´T, Ts,

  The classical energy estimates for the Klein-Gordon equation imply that, for ´T ď t ď T,}pw n , B t w n qptq} H ď C ´T }pu n psq ´u˚q p|u n | β `|u ˚|β `|u n | θ´1 `|u ˚|θ´1 q} L 2 ds

	(3.20)	" }u n p0q ´u˚}	H 1 `2α `ż T ? 2T ´T } f pu n qpsq ´f pu ˚q} L 2 ds ˙1 2 ˆż T ´T }B t u n psq} 2 L 2 ds ı
	Taking into account Hypothesis pH.2q f , one has
		ż T	
	(3.21)	´T } f pu n qpsq ´f pu ˚q} L 2 ds ż T	
		ď C	
	(3.18)		
		t w n p0q " 0	
	and		
		$	
		' & B tt v n ´∆v n `vn " 0	
	(3.19)	v n p0q " 0	
		' % B t v n p0q " B t u n p0q.	

  To bound the remaining term in (3.21), we argue as in the proof of Theorem 2.3. Indeed, from the estimates (2.15) to (2.19), we deduce that ż T ´T }pu n psq ´u˚p sqq|u n psq| θ´1 } L 2 ds ďp2Tq η C}u n } By construction, v n " pu n ´u˚q ´wn and, in particular, B t v n " B t u n ´Bt w n . From (3.25) and the properties of }B t u n } L 2 pI;L 2 pR d qq , we infer that }B t v n } L 2 pp´T,Tq;L 2 pR d qq ď }B t u n } L 2 pp´T,Tq;L 2 pR d qq `?2T}B t w n } C 0 pr´T,Ts;L 2 pR d qq Ñ 0 (3.26)

	uniformly in ´T ď t ď T.	
		ż T		
	(3.23)	´T }pu n	´u˚q |u ˚|θ´1 q} L 2 ds ď 2T}u n	´u˚} L 8 pL 2 q }u ˚}θ´1 L 8 pL 8 q
					ď C}u n	´u˚}	L 8 pL 2 q ,
	which tends to 0 as n Ñ 8. pθ´1qη	η
					θ L 8 pI,L 2 q }u n	θ L 8 pI,L 2 q ´u˚}
	(3.24)				ˆ"}u n } p1´ηqθ ˚pI,L 2θ Lθ ˚q `p2Tq 1´η }u ˚}p1´ηqθ L8 pI,L 2θ ˚q‰
					η
					ďCp1 `Tq}u n	´u˚} L 8 pI,L 2 q , θ
	where, by (2.17), η " n goes to infinity.	d`2´θpd´2q 4	. The right-hand side of the inequality (3.24) tends to 0 as
	Finally, in view of (3.20), (3.21), (3.22), (3.23) and (3.24), we conclude that
	(3.25)			}pw n ptq, B t w n ptq} H Ñ 0 as n Ñ `8,

.22) 

where 2 ď p 2 ď p 1 ă 2 ˚is fixed. Since u n Ñ u ˚in CpI, Xq, we conclude that the right-hand side of (3.22) vanishes in the limit n Ñ 8. We next estimate the term

  ). It remains to bound the term B 3 . We first remark that, since χ 1 `} w} 2

	H r 2 ˘vanishes if } w} H ě	?	2r, we may write

  .23) And thus the inequality (4.19) holds. From all the above results, one infers that Sα ptq is

	Lipschitz continuous and that			
	(4.24)	sup 0ďtďτ 0	Lip p Sα ptqq " D ď	16 9	C 3 pα, τ 0 q .

thank E. Hebey for having indicated them the paper of Cazenave [9]. The first author was partially funded by ANR through ANR-13-BS01-0010-03 (ANAÉ). The third author was partially supported by the NSF through DMS-1160817. 1

Appendix A. Global invariant manifolds and foliations by the Lyapunov-Perron method

In this appendix, we recall the basic properties of invariant manifold theory that we applied to the equation pKGq α in Section 4. We reproduce the theorems of Chen, Hale and Tan about global invariant manifolds and foliations as given in [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF]. For classical results on invariant manifolds, we also refer the reader to the books [8], [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF], [START_REF] Hirsch | Invariant manifolds[END_REF], and [START_REF] Palis | Geometric theory of dynamical systems. An introduction[END_REF] for example as well as to [START_REF] Bates | Invariant manifolds for semilinear partial differential equations[END_REF] and to [START_REF] Chow | Smooth invariant foliations in infinite dimensional spaces[END_REF].

Let X be a Banach space with norm } ¨}X and Sptq : X Ñ X be a non-linear semigroup, satisfying the following hypotheses:

(HA.1) : Sp.q. : pt, xq P r0, `8q ˆX Þ Ñ Sptqx P X is continuous and there exists a constant τ 0 ą 0 such that, sup 0ďtďτ 0

LippSptqq " D ă `8 .

(HA.2):

There exists τ, 0 ă τ ď τ 0 such that Spτq can be decomposed as

where L : X Ñ X is a bounded linear operator and R : X Ñ X is a global Lipschitz continuous map, satisfying the following properties. (HA.2.1): There are subspaces X i , i " 1, 2, of X and continuous projections P i : X Ñ X i such that P 1 `P2 " I, X " X 1 ' X 2 , L leaves X i , i " 1, 2, invariant and L commutes with P i , i " 1, 2. The restrictions L i of L to X i satisfy the following properties.

The map L 1 has a bounded inverse and there exist constants 0 ď β 2 ă β 1 , C i ě 1, i " 1, 2, such that, for k ě 0,

(A.1) (HA.2.2): The maps L and R satisfy the condition

Chen, Hale and Tan considered the following quantity, for γ P pβ 2 , β 1 q,

A short computation shows that, under the condition (A.2), there exist γ i , i " 1, 2, with β 2 ă γ 2 ă γ 1 ă β 1 such that, (A.4) λpγ 1 qLippRq " λpγ 2 qLippRq " 1 , and λpγqLippRq ă 1 , @γ P pγ 2 , γ 1 q .

In the trivial case, where LippRq " 0, one sets γ 1 " β 1 and γ 2 " β 2 .

We are now able to state the first theorem, concerning the existence of an invariant manifold, which is a graph over X 1 .

Then, for any x P X, M x X G consists of a single point. In particular,

In other terms, tM ξ | ξ P Gu is a foliation of X over G. Moreover, the mapping x

Comments on the proof of Theorems A.1 and A.2:

Theorems A.1 and A.2 are proved in [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF] by first showing the corresponding results for the map Spτq and at the end coming back to the continuous dynamical system. This means that Theorems A.1 and A.2 still hold for iterates of maps Spτq. It suffices to replace t P R by nτ, n P N. Theorems A.1 and A.2 are proved in [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF] by using the Lyapunov-Perron method.

The property that the mapping x P X Þ Ñ ξpxq " M x X G is a continuous map from X into G Ă X is not stated in the main Theorem 1.1 of [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF]. It is merely a consequence of the proof of [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF]Lemma 3.4]. Indeed, given x P X, the intersection points ξpxq of M x with G are the solutions of (A.12)

ξpxq " y 2 ` px, y 2 q " px, y 2 q `gp px, y 2 qq , where y 2 P X 2 . This leads to study the fixed points of the map F x py 2 q " Fpx, y 2 q " gp px, y 2 qq, depending on the parameter x P X. One can check that the condition (A.10) implies that F x : X 2 Ñ X 2 is a strict contraction and therefore has a unique fixed point y 2 pxq. The continuity property of y 2 pxq with respect to x P X is a direct consequence of the continuity of F with respect to the variable x P X and of the uniform contraction principle (see [12, Theorem 2.2 on Page 25]). It follows that ξpxq " y 2 pxq ` px, y 2 pxqq P G is also continuous with respect to x P X.

Remark A.3. If the equilibrium point 0 of Sp.q is hyperbolic, then we may choose β 2 ă 1 ă β 1 . In this case, G is the classical unstable manifold W u p0q and M ξ , ξ P G, defines an invariant foliation of X over W u p0q, with M 0 being the classical stable manifold W s p0q. And the solutions on M 0 decay exponentially to 0, as t goes to `8. If 0 is a non-hyperbolic equilibrium point and β 2 ă β 1 ă 1 with β 1 close to 1, then Theorems A.1 and A.2 allow for the construction of the center-unstable manifold G " W cu p0q of 0 and a foliation over it. If 0 is a non-hyperbolic equilibrium point and 1 ă β 2 ă β 1 with β 2 close to 1, then Theorems A.1 and A.2 give the strongly unstable manifold G " W su p0q of 0 and a foliation over it. If γ 2 ă 1, the existence of the foliation implies that each positive semi-orbit of Sptq converges exponentially to an orbit of G and is synchronized with this orbit in time. This property is often called "attraction" of G with asymptotic phase". We emphasize that the construction in Theorems A.1 and A.2 is also interesting in the case where S α p.q depends on a parameter α and β 2 pαq ă 1 ă β 1 pαq with β 2 pαq arbitrarily close to 1 as α converges say to α 0 " 0.

As above, a short computation shows that, under the condition (A.14), there exist γi , i " 1, 2, with β ´1 1 ă γ1 ă γ2 ă β ´1 2 such that, (A.17) λp γ1 qLipp Rq " λp γ2 qLipp Rq " 1 , and λp γ1 qLipp Rq ă 1 , @ γ P p γ1 , γ2 q .

We may now apply Theorem A.1 to the nonlinear semigroup Sptq " Sp´tq and we obtain the following result.

Theorem A.4. Assume that the hypotheses (HA.2), (HA.3), and (HA.4) hold and that Rp0q " Rp0q " 0. Then there exists a globally Lipschitz map g : X 2 Ñ X 1 with gp0q " 0 and

satisfies the following properties:

(i): (Invariance) G is invariant under Sptq, i.e., Sptq G " G, for any t ě 0.

(ii):

Conversely, if a positive semi-orbit uptq, t ě 0, of Sp.q in X, satisfies

We next consider the classical case where Sp.q is a non-linear group satisfying the assumption (HA.3) as well as (HA.5): The point 0 is an equilibrium point of Sp.q. And there exists τ, 0 ă τ ď τ 0 such that Spτq and Sp´τq can be decomposed as follows

where L : X Ñ X is a bounded linear operator, R : X Ñ X and R : X Ñ X are global Lipschitz continuous maps, satisfying the following properties. (HA.5.1): The spectrum σpLq of L can be written as There exists η ą 0 such that (A.20)

We set: σ cu " σ c Y σ u and σ cs " σ c Y σ s . Let P i be the spectral (continuous) projector associated to the spectral set σ i and let X i be the image X i " P i X, where i " cu, cs, u, s, c.

We have that P cu `Ps " I " P cs `Pu . The linear map L leaves X i invariant and commutes with P i , i " cu, cs, u, s, c. Now we choose 0 ă ε ă η{2. The restrictions L i of L to X i satisfy the following properties.

There exist constants C 1 ě 1 and C 2 ě 1 such that, for k ě 0, 

´ε , and the quantities γ i , i " 1, 2, with 1 `ε ă γ 2 ă γ 1 ă 1 `η, satisfying (A. [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF] λ ˚pγ 1 qLippRq " λpγ 2 qLippRq " 1 , and λ ˚pγqLippRq ă 1 , @γ ˚P pγ 2 , γ 1 q .

We finally require that the following inequality holds:

(A.29)

Applying Theorems A.1 and A.4 to the above flow Sp.q, we obtain the following properties, which are used in Sections 3 and 4.

Theorem A.5. Assume that the hypotheses (HA.3) and (HA.5) are satisfied. Then, the following properties hold.

(1) There exists a globally Lipschitz map g cu : X cu Ñ X s with g cu p0q " 0, so that the Lipschitz center unstable manifold W cu p0q

W cu p0q " tx c `xu `gcu px c `xu q | x c P X c , x u P X u u satisfies all the properties described in Theorem A.1. In particular, if Spτq is of class C 1 , then g cu : X cu Ñ X s is of class C 1 . (2) There exists a globally Lipschitz map g u : X u Ñ X cs with g u p0q " 0, so that the Lipschitz unstable (also called strongly unstable) manifold W u p0q W u p0q " tx u `gu px u q | x u P X u u satisfies all the properties described in Theorem A.1 with γ replaced by γ ˚and γ i replaced by

And, if a negative semi-orbit uptq, t ď 0, of Sp.q is contained in W u p0q, then, (3) There exists a globally Lipschitz map g cs : X cs Ñ X u with g cs p0q " 0 so that the Lipschitz center stable manifold W cs p0q

W cs p0q " tx c `xs `gcs px c `xs q | x c P X c , x s P X s u satisfies all the properties described in Theorem A.4. In particular, if Spτq is of class C 1 , then g cs : X cs Ñ X u is of class C 1 . (4) There exists a globally Lipschitz map g c : X c Ñ X s ' X u with g c p0q " 0, so that the Lipschitz center manifold W c p0q

satisfies the following properties: (i) W c p0q is invariant under Sptq, i.e., SptqW c p0q " W c p0q, for any t ě 0.

(ii) The properties (ii) of Theorem A.1 and the properties (ii) of Theorem A.4 hold. In particular, if a trajectory uptq, t P p´8, 8q of Sp.q is contained in W c p0q, then

Moreover, W c p0q contains all the equilibria of Sptq.

(iii) If the map Spτq : X Ñ X is of class C 1 , then g c : X c Ñ X s ' X u is of class C 1 , that is, W c p0q is a C 1 -submanifold of X. (5) If moreover the condition (A.10) holds with β 1 " 1 ´ε and β 2 " 1 ´η, then one has a foliation of X over W cu p0q as defined in Theorem A.2.

Proof.

(1) Statements ( 1) and ( 5) are direct consequences of Theorem A.1 and Theorem A.2 respectively, applied to the case where β 1 " 1 ´ε and β 2 " 1 ´η.

(2) Statement ( 2) is a direct consequence of Theorem A.1, applied to the case where β 1 " 1 `η and β 2 " 1 `ε.

(3) Statement ( 3) is a direct consequence of Theorem A.4, applied to the case where β ´1 2 " p1 `εq ´1 and β ´1 1 " p1 `ηq ´1.

Let us next prove the statement (4). We are looking for the trajectories uptq, which satisfy both properties of (A.31). These two properties together are satisfied only by the elements in W cu p0q X W cs p0q. Thus, we are looking for the elements x " x c `xs `xu so that (A.32) x c `xu `gcu px c `xu q " x c `xs `gcs px c `xs q " x c `gcu px c `xu q`g cs px c `gcu px 0 `xu qq , or also for the elements x u P X u satisfying (A.33)

x u " g cs px c `gcu px c `xu qq .

In other terms, given x c P X c , we are looking for the fixed point of the map x u P X u Þ Ñ Fpx c , x u q " g cs px c `gcu px c `xu qq P X u . We notice that the Lipschitz constant of Fpx c , .q satisfies LippFpx c , .qq ď Lippg cs q ˆLippg cu q . By Theorems A.1 and A.4 and the assumption (A.29), we have, for any

(A.34)

Therefore, x u P X u Ñ Fpx c , x u q P X u is a strict contraction, uniformly in x c . Thus, for any x c P X c , there exists a unique fixed point hpx c q P X u of Fpx c , .q. And g c px c q is given by g c px c q " x c `hpx c q `gcu px c `hpx c qq .

The regularity of the map g c is proved by using the regularity of the mappings g cu and g cs and by applying the uniform contraction principle of [12, Theorem 2.2 on Page 25].

Remark A.6. 1. If the equilibrium point is hyperbolic (that is, σ c " H), then one can choose ε " η in the hypotheses (HA.5.1) and (HA.5.2). The center unstable manifold W cu p0q and the (strongly) unstable manifold W u p0q coincide (that is, g cu " g u ). And the center manifold W c p0q reduces to 0.

2. In the above theorem, we have only stated those properties which are used in this paper. We leave it to the reader to state the existence of the (strongly) stable manifold.

Appendix B. Classical convergence results

In the study of asymptotic behaviour of dynamical systems, one often encounters the following question: knowing that the ω-limit set of a relatively compact trajectory contains an equilibrium point x 0 , does this ω-limit set reduce to the point x 0 , i.e., does the trajectory converge to x 0 ? This question is especially interesting in the case of gradient systems (that is, systems which admit a strict Lyapunov functional). In fact, consider a gradient system with a hyperbolic equilibrium x 0 . Then x 0 is isolated and the whole trajectory converges to this point x 0 . If the equilibrium x 0 is not hyperbolic and the spectrum of the linearized dynamical system around x 0 intersects the unit circle, then x 0 could lie in a continuum of equilibria, which could be contained in the ω-limit set. If x 0 belongs to a normally hyperbolic manifold of equilibria, we can still have convergence to x 0 , under additional hypotheses.

In the proof of Theorem 1.2, we use the convergence property to an equilibrium point in order to prove the boundedness of the orbits, which are global in forward time. We recall here the general convergence property in the form proved by Brunovský and Poláčik in [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], who extended earlier convergence results, proved for example by Aulbach [START_REF] Aulbach | Continuous and Discrete Time Dynamics Near Manifolds of Equilibria[END_REF] in the finite-dimensional frame, or by Hale and Raugel [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF], who generalised the convergence property of Aulbach to the infinite-dimensional setting (see also the paper [START_REF] Hale | Asymptotic behavior of gradient-like systems, Dynamical Systems II[END_REF] of 1982, and [START_REF] Raugel | Dynamics of Partial Differential Equations on Thin Domains[END_REF] for applications). In the case of the one-dimensional parabolic equation with separate boundary conditions, convergence proofs had been given before in [START_REF] Matano | Convergence of solutions of one-dimensional semilinear parabolic equations[END_REF] and [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF].

Let X be a Banach space and Φ : X Ñ X be a continuous map admitting a fixed point y 0 . Without loss of generality, we may choose y 0 " 0. Brunovský and Poláčik assumed the following hypotheses: ' (HB.1) There exists a neighborhood U of 0 in X so that the restriction Φ ˇˇU : U Ñ X is of class C 1 . ' (HB.2) The spectrum σpDFp0qq can be written as σpDFp0qq " σ s Yσ c Yσ u , where σ s , σ c and σ u are closed subsets of tλ P C | |λ| ă 1u, tλ P C | |λ| " 1u, and tλ P C | |λ| ą 1u. As in Appendix A, we introduce the spectral projectors P i of B " DFp0q associated with the spectral sets σ i , i " s, c, u and the images X i " P i X. We recall that these spaces are all B-invariant and X " X s ' X c ' X u . We also denote X cu " X c ' X u .

As we have seen in Appendix A, the hypotheses (HB.1) and (HB.2) allow one to construct Lipschitz continuous local center unstable and local center manifolds W cu loc p0q, W c loc p0q of Φ at 0 as graphs over X cu and X c , respectively, and also the local unstable manifold W u loc p0q as a graph over X u , by extending the map Φ into a global Lipschitz continuous and C 1 mapping Φ, which coincides with Φ on the ball B X p0, δq of center 0 and radius δ ą 0 (δ being small enough), and by applying Theorems A.1 and A.5. These local invariant manifolds are defined in the following way (B.1) W i loc p0q " Wi δ p0q , i " cu, c, u , where Wcu δ p0q, Wc δ p0q and Wu δ p0q are the global center stable, center and unstable manifolds of Φ around 0.

(2) Φ j px k q P B X p0, βq for j " 0, 1, 2, . . . , p k and Φ p k `1px k q R B X p0, βq, where 0 ă β ă δ.

(3) In the case, where dim X cu " 8, the set tΦ j ˚px k q | k P N, j " 0, . . . , p k u is relatively compact. Then Φ p k px k q contains a subsequence converging to an element of W u loc p0qzt0u. As an easy consequence of Theorem B.2, Brunovský and Poláčik have obtained the following more classical theorem.

Theorem B.4. Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold. Let x 0 be a point in X such that the fixed point 0 belongs to the ω-limit set ωpx 0 q of x 0 and such that ωpx 0 q is contained in the set FixpΦq of fixed points of Φ. Assume that either X cu is finite-dimensional or that the trajectory Φ n px 0 q, n " 1, 2, ¨¨¨, of x 0 is relatively compact. Assume moreover that one of the following two properties holds:

(1) dim X c " 1 and the trajectory Φ n px 0 q, n " 1, 2, ¨¨¨, of x 0 is relatively compact.

(2) dim X c " m ă 8 and there is a submanifold M Ă X with dim M " m such that 0 P M Ă FixpΦq. Then ωpx 0 q " t0u.

Proof. We give the proof, because it is short.

First assume that (2) holds. Then, if δ ą 0 is small enough, the sets M and W u loc p0q coincide since M Ă W u loc p0q, and they both have the same dimension m. The assumption M Ă FixpΦq thus implies that 0 is stable for the map Φ ˇˇW c loc p0q . Since W u loc p0qzt0u contains no fixed point if δ ą 0 is small enough and since ωpx 0 q P FixpΦq, Theorem B.2 implies that ωpx 0 q " t0u.

In the case (1), we first remark that, since the trajectory Φ n px 0 q, n " 1, 2, ¨¨¨, of x 0 is relatively compact and since ωpx 0 q consists only of fixed points, the omega-limit set ωpx 0 q is connected (see for example [START_REF] Hale | Convergence in Gradient-Like Systems with Applications to P[END_REF]Lemma 2.7]). If ωpx 0 q contains more than one fixed point, then all fixed points near 0 are contained in W c loc p0q and thus 0 belongs to a curve of fixed points. If 0 belongs to the relative interior of this curve, one applies the case (2), which leads to a contradiction. If 0 does not belong to the relative interior of this curve, we consider a fixed point y ˚near 0, contained in the relative interior of this curve of fixed points and in ωpx 0 q. Replacing Φ by Φpy ˚`xq, we are now back to the case (2). Applying the case (2), we obtain that ωpx 0 q " y ˚, which also leads to a contradiction. Suppose we consider an element x 0 P X such that we do not a priori know that the trajectory tΦ n px 0 q | n P Nu is bounded. Then, even if dim X c " 1, we cannot directly apply case (1) of Theorem B.4. Indeed, the proof of case (1) uses the connectedness property of ωpx 0 q. One can then try to apply the more general Theorem B.2 in order to obtain a convergence result.

In Section 3.2 we encountered such a case. We did not know there that the forward trajectory tS α ptq u 0 | t ě 0u is bounded. Thus, as in the proof of Lemma B.3, we used the property that W cu loc p0q is exponentially attractive in X with asymptotic phase together with the fact that dim X c " 1, to obtain that S α ptq has the stability property (3.41) (or (B.2)).

Then, we applied Theorem B.2 to the time τ-map Φ " S α pτq, where τ ą 0 is small enough, in order to obtain the convergence result.

Since the arguments in Section 3.2 did not use the particular properties of S α ptq, it is also valid in the case of a more general semi-flow and allows us to state the following general result.

Corollary B.5. Assume that the map Φ " Spτq where Sptq : RˆX Ñ X is a continuous dynamical system and that τ ą 0 is a small enough positive time, so that Φ " Spτq satisfies the hypotheses (HB.1) (or (HB.1bis)) and (HB.2). Let x 0 be a point in X such that the equilibrium point 0 belongs to the ω-limit set ωpx 0 q of x 0 and such that ωpx 0 q is contained in the set of equilibrium points of Sptq. Assume that either X cu is finite-dimensional or that the trajectory Φ n px 0 q, n " 1, 2, ¨¨¨, of x 0 is relatively compact. Assume moreover that dim X c " 1. Then ωpx 0 q " t0u.

Let us finally notice that, in the case of gradient systems generated by some evolutionary equations with an analytic non-linearity or satisfying the hypotheses (1) or (2) of Theorem B.4, one also obtains convergence results based on the Łojasiewicz inequality (see [START_REF] Simon | Theorems on regularity and singularity of energy minimizing maps[END_REF][START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF][START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]) and on the construction of appropriate energy functionals, when the trajectories are relatively compact. The convergence proofs given [START_REF] Simon | Theorems on regularity and singularity of energy minimizing maps[END_REF][START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF][START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF] require in an essential way that the trajectory Sptqx 0 , t ě 0, be relatively compact and thus do not seem to be applicable in Section 3.2 above.