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In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are recognized as accurate techniques, at a rather high computational cost though.

The use of polynomial chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The derivative-based global sensitivity measures (DGSM) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis.

Introduction

Nowadays, the increasing computing power allows one to use numerical models to simulate or predict the behavior of physical systems in various fields, e.g. mechanical engineering [START_REF] Reuter | Global sensitivity analysis in view of nonlinear structural behavior[END_REF], civil engineering [START_REF] Hasofer | Modern sensitivity analysis of the CESARE-Risk computer fire model[END_REF], chemistry [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF], etc. The considered systems usually lead to highly complex models with numerous input factors (possibly tens to hundreds [START_REF] Patelli | Monte Carlo gradient estimation in high dimensions[END_REF][START_REF] Sudret | Computing seismic fragility curves using polynomial chaos expansions[END_REF]) that are required to represent all the parameters driving the system's behaviour, e.g. boundary and initial conditions, material properties, external excitations, etc. In practice these input factors are often not perfectly known, since they are obtained from possibly noisy measurements, or simply by expert judgment. In order to take into account the uncertainty, probabilistic approaches have been developed in the last two decades, in which the model input parameters are represented by random variables. Then the input uncertainties are propagated through the computational model and the distribution, moments or probability of exceeding prescribed thresholds may be computed [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF][START_REF] De Rocquigny | Modelling Under Risk and Uncertainty[END_REF].

In this context, sensitivity analysis (SA) examines the sensitivity of the model output with respect to the input parameters, i.e. how the output variability is affected by the uncertain input factors [START_REF] Saltelli | Sensitivity analysis[END_REF][START_REF] Saltelli | Sensitivity analysis in practice: a guide to assessing scientific models[END_REF][START_REF] Saltelli | Global Sensitivity Analysis -The Primer[END_REF]. The use of SA is common in various fields: engineering [START_REF] Hasofer | Modern sensitivity analysis of the CESARE-Risk computer fire model[END_REF][START_REF] Pappenberger | Multi-method global sensitivity analysis of flood inundation models[END_REF][START_REF] Reuter | Global sensitivity analysis in view of nonlinear structural behavior[END_REF][START_REF] Kala | Sensitivity analysis of steel plane frames with initial imperfections[END_REF], chemistry [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF], nuclear safety [START_REF] Fassò | Sensitivity Analysis of Computer Models[END_REF], economy [START_REF] Borgonovo | Uncertainty and global sensitivity analysis in the evaluation of investment projects[END_REF], biology [START_REF] Marino | A methodology for performing global uncertainty and sensitivity analysis in systems biology[END_REF], and medicine [START_REF] Abraham | Partial derivative-based sensitivity analysis of models describing target-mediated drug disposition[END_REF], among others. One can traditionally classify SA into local and global sensitivity analyses. The former aims at assessing the output sensitivity to small input perturbations around a selected reference value, e.g. the mean value of the input random vector, or the so-called design point in reliability analysis [START_REF] Ditlevsen | Structural reliability methods[END_REF]. The latter aims at assessing the overall or average influence of input parameters onto the output. Local SA has the disadvantage of being related to a fixed nominal point in the input space, and the interaction between the inputs is not accounted for [START_REF] Kucherenko | Monte Carlo evaluation of derivative-based global sensitivity measures[END_REF]. In contrast, global SA techniques take into account the input interactions and are not based on the choice of a reference point but account for the whole input space, usually at a larger computational cost though.

The most common sensitivity analysis methods found in the literature are the method of [START_REF] Morris | Factorial Sampling Plans for Preliminary Copmputational Experiments[END_REF], FAST Cukier et al. (1973[START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF]; [START_REF] Mara | Extension of the RBD-FAST method to the computation of global sensitivity indices[END_REF] and variance decomposition methods originally investigated in [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]; [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]; [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models[END_REF]; [START_REF] Archer | Sensitivity measures, ANOVA-like techniques and the use of bootstrap[END_REF]; [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF]; [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF]. Usually standard Monte Carlo simulation (MCS) or quasi Monte Carlo (QMC) techniques are employed for estimating the sensitivity indices in all these approaches. This requires a large number of model evaluations though, which becomes unaffordable when complex systems are investigated. To overcome this problem, metamodels (also called surrogate models or emulators) are usually used in order to carry out the Monte Carlo simulation [START_REF] Sathyanarayanamurthy | Metamodels for variable importance decomposition with applications to probabilistic engineering design[END_REF]; [START_REF] Zhang | An effective approximation for variance-based global sensitivity analysis[END_REF]. In particular, polynomial chaos expansions (PCE) have been recognized as a versatile tool for building surrogate models and for conducting reliability and sensitivity analyses, as originally shown in [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]; Blatman and Sudret (2010a) 

Y = M(X) =M 0 + M i=1 M i (X i ) + 1≤i<j≤M M i,j (X i , X j ) + . . . + M 1, ... ,M (X 1 , . . . , X M ) (1) in which M 0 = E [M(X)] is a constant term and each summand M i 1 , ... ,is (X i 1 , . . . , X is ) is a function of the variables {X i 1 , . . . , X is } , s ≤ M .
For the sake of conciseness we introduce the following notation for the subset of indices:

u def = {i 1 , . . . , i s } (2)
and denote by X u the subvector of X that consists of the variables indexed by u. Using this set notation, Eq. ( 1) rewrites:

Y def = M 0 + u⊂{1, ... ,M } u =0 M u (X u ), (3) 
in which M u (X u ) is the summand including the subset of parameters X u .

According to [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF], a unique decomposition requires the orthogonality of the summands, i.e.:

E [M u (X u ) M v (X v )] = H M M u (x u ) M v (x v ) dx = 0 , u = v (4)
In particular each summand shall be of zero mean value. Accordingly the variance of the response Y = M(X) reads:

D def = Var [Y ] = u⊂{1, ... ,M } u =0 Var [M u (X u )] . (5) 
In this expansion Var [M u (X u )] is the contribution of summand M u (X u ) to the output variance.

The Sobol' sensitivity index S u for the subset of variables X u is defined as follows [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]:

S u def = D u D = Var [M u (X u )] D (6) 
The total sensitivity index for subset X u is given by [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]:

S T u def = D T u D = v⊃u Var [M v (X v )] D (7)
where the sum is extended over all sets v = {j 1 , . . . , j t } which contains u.

It represents the total amount of uncertainty apportioned to the subset of variables X u . For instance, for a single variable X i , i = 1, . . . , M the first order Sobol' sensitivity index reads:

S i = Var [M i (X i )] D , (8) 
and the total Sobol' sensitivity index reads:

S T i = v i Var [M v (X v )] D . (9) 
S i and S T i respectively represent the sole and total effect of the factor X i on the system's output variability. The smaller S T i is, the less important the factor X i is. In the case when S T i 1, say S T i ≈ 1 -5%, X i is considered as unimportant (unessential or insignificant) and may be replaced in the analysis by a deterministic value.

In the literature one can find different approaches for computing the total Sobol' indices, such as the Monte Carlo simulation (MCS) and the spectral approach. Sobol' (1993); [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] proposed direct estimation of the sensitivity indices for subsets of variables using only the model evaluations at specially selected points. The approach relies on computing analytically the integral representations of D u and D T u respectively defined in Eq. ( 6) and Eq. ( 7).

Let us denote by u the set that is complementary to u, i.e. X = (X u , X u ).

Let X and X be vectors of independent uniform variables defined on the unit hypercube H M and define X = (X u , X u ). The partial variance D u is represented as follows [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models[END_REF]:

D u = M(x)M(x u , x u ) dx dx u -M 0 2 (10)
The total variance D T u is given by [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models[END_REF]:

D T u = 1 2 M(x) -M(x u , x u ) 2 dx dx u (11) 
A Monte Carlo algorithm is used to estimate the above integrals. For each sample point, one generates two M -dimensional samples x = (x u , x u ) and

x = (x u , x u ). The function is evaluated at three points (x u , x u ), (x u , x u ) and (x u , x u ). Using N independent sample points, one computes the quantities of interest D, D u and D T u by means of the following crude Monte Carlo estimators:

M 0 = 1 N N i=1 M x (i) (12) D + M 0 2 = 1 N N i=1 M x (i) 2 (13) D u + M 0 2 = 1 N N i=1 M x (i) M x (i) u , x (i) u (14) D T u = 1 N N i=1 1 2 M x (i) -M x (i) u , x (i) u 2 (15)
The computation of the sensitivity indices by MCS may exhibit reduced accuracy when the mean value M 0 is large. In addition, the computational cost is prohibitive: in order to compute the sensitivity indices for M parameters, MCS requires (M + 2) × N model runs, in which N is the number of sample points typically chosen equal to 10 3 -10 4 to reach an acceptable accuracy. [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF] suggested a procedure that is more efficient for computing the first and total sensitivity indices. [START_REF] Sobol | Estimating the approximation error when fixing unessential factors in global sensitivity analysis[END_REF] modified the MCS procedure in order to reduce the lack of accuracy. Some other estimators for the sensitivity indices by MCS may be found in [START_REF] Monod | Uncertainty and sensitivity analysis for crop models[END_REF]; [START_REF] Janon | Asymptotic normality and efficiency of two Sobol index estimators[END_REF].

Derivative-based sensitivity indices

The total Sobol' indices may be used for screening purposes. Indeeed a negligible total Sobol' index S T i means that variable X i does not contribute to the output variance, neither directly nor in interaction with orther variables.

In order to avoid the computational burden associated with estimating all total Sobol' indices, a new technique based on derivatives has been recently proposed by [START_REF] Kucherenko | Monte Carlo evaluation of derivative-based global sensitivity measures[END_REF].

Derivative-based sensitivity analysis originates from the Morris method introduced in [START_REF] Morris | Factorial Sampling Plans for Preliminary Copmputational Experiments[END_REF]. The idea is to measure the average of the elementary effects over the input space. Considering variable X i one first samples an experimental design (ED) in the input space X = x (1) , . . . , x (N ) and then varies this sample in the i th direction. The elementary effect (EE) is defined as:

EE (j) i = M(x (j) r ) -M(x (j) ) ∆ (16) in which x (j) = x (j) 1 , . . . , x (j) i , . . . , x (j) M
is the j th sample point and x

(j) r = x (j) 1 , . . . , x (j) i + ∆, . . . , x (j) M
is the perturbed sample point in the i-th direction. The Morris importance measure (Morris factor) is defined as the average of the EE i 's:

µ i = 1 N N j=1 EE (j) i (17)
By definition, the variance σ 2 i of the EEs is calculated from:

σ 2 i = 1 N -1 N j=1 (EE (j) i -µ i ) 2 (18) 
The resulting mean µ i and standard deviation σ i are usually plotted in a twodimensional graph, see Figure 1. The interpretation of this graph reads as follows: when µ i and σ i are jointly small (lower left corner of the plot), the parameter X i is considered as unimportant. When µ i is large and σ i is small (lower right corner) then X i is considered as an important parameter, from which the model output quasi-linearly depends (a zero standard deviation indicates a fully linear relationship). Finally, when σ i is also large (upper part of the plot), parameter X i is considered as important, and the output depends on this very parameter in a nonlinear way and/or it interacts with other parameters. [START_REF] Kucherenko | Monte Carlo evaluation of derivative-based global sensitivity measures[END_REF] generalized the quantities in Eqs.( 17)-(18) as follows:

Mean (µ) Standard deviation (σ) X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12 X 13 X 14 X 15 X 16 X 17 X 18 X 19 X 20
µ i def = E ∂M ∂x i (X) = H M ∂M ∂x i (x)dx (19) σ 2 i = H M ∂M ∂x i (x) 2 dx -µ 2 i ( 20 
)
provided that ∂M ∂x i is square-integrable. The interpretation of these measures is similar as for the original Morris method.

Because the elementary effects may be positive or negative, they can cancel each other, which might lead to a misinterpretation of the importance of X i .

To avoid this, [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF] modified the Morris factor as follows:

µ * i = E ∂M ∂x i (X) (21) 
Recently, [START_REF] Sobol | Derivative based global sensitivity measures and their link with global sensitivity indices[END_REF] introduced a new sensitivity measure (SM) which is the mean-squared derivative of the model with respect to X i :

ν i = E ∂M ∂x i (X) 2 (22) 
Sobol ' and Kucherenko (2009) and [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with Sobol' indices and numerical tests[END_REF] have established a link between the ν i in Eq. ( 22) and the total Sobol' indices in Eq. ( 9). In case X i is a uniform random variable over [0, 1], one gets:

S T i ≤ S DGSM i def = ν i π 2 D (23)
where S DGSM i is the upper-bound to the total sensitivity index S T i and D is the model output variance. In case of a uniform variable X i ∼ [a i , b i ] this upper bound scales to:

S T i ≤ S DGSM i = (b i -a i ) 2 π 2 ν i D (24)
Finally the above results can be extended to other types of distributions. If

X i ∼ N (a i , b i
) is a Gaussian random variable with mean and variance a i and b 2 i respectively, one gets:

S T i ≤ S DGSM i = b i 2 ν i D (25) 
In the general case, [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with Sobol' indices and numerical tests[END_REF] define the upper bound of the total Sobol' index of X i as:

S DGSM i = 4C i 2 ν i D (26) in which C i = sup x∈R min [F X i (x), 1 -F X i (x)] f X i (x)
is the Cheeger constant, F X i is the cumulative distribution function of X i and f X i is the probability density function of X i .

Polynomial chaos expansions

Let us consider a numerical model Y = M(X) where the input vector X is composed of M independent random variables X = {X i , i = 1, . . . , M } and Y is the output quantity of interest. Assuming that Y has a finite variance, it can be represented as follows [START_REF] Ghanem | Stochastic Finite Elements : A Spectral Approach[END_REF]; [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF]:

Y = M(X) = ∞ j=0 y j φ j (X) (27) 
in which {φ j (X), j = 0, . . . , ∞} form a basis on the space of second order random variables and y j 's are the coordinates of Y onto this basis. In case the basis terms are multivariate orthonormal polynomials of the input variables X, Eq. ( 27) is called polynomial chaos expansion.

Assuming that the input vector X has independent components X i with prescribed probability distribution functions f X i , one obtains the joint probability density function:

f X (x) = M i=1 f X i (x i ) (28) 
For each X i , one can construct a family of orthogonal univariate polynomials

P (i)
k , k ∈ N with respect to the probability measure P X i (dx i ) = f X i (x i )dx i satifying:

P (i) j , P (i) k def = E P (i) j (X i )P (i) k (X i ) = P (i) j (x i )P (i) k (x i )f X i (x i )dx i = c (i) j δ jk (29)
where •, • is the inner product defined on the space associated with the probability measure

P X i (dx i ), δ jk is the Kronecker symbol with δ jk = 1 if j = k, otherwise δ jk = 0 and c (i)
j is a constant. The univariate polynomial P (i) j belongs to a specific class according to the distribution of X i . For instance, if X i is standard uniform (resp. Gaussian) random variable,

P (i) j j≥0
are orthogonal Legendre (resp. Hermite) polynomials. Then the orthonormal univariate polynomials are obtained by normalization:

Ψ (i) j = P (i) j / c (i) j (30)
Introducing the multi-indices α = (α 1 , . . . , α M ), a multivariate polynomial can be defined by tensor product as:

Ψ α (x) def = M i=1 Ψ (i) α i (x i ) (31)
Soize and [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF] prove that the set of all multivariate polynomials Ψ α in the input random vector X forms a basis of the Hilbert space of second order random variables:

Y = α∈N M a α Ψ α (X) ( 32 
)
where a α 's are the deterministic coefficients of the representation.

In practice, the input random variables are usually not standardized, therefore it is necessary to transform the input vector into a set of standard variables. We define the isoprobabilistic transform Z = T -1 (X) which is a unique mapping from the original random space of X i 's onto a standard space of M basic independent random variables Z i 's. As an example Z i may be a standard normal random variable or a uniform variable over [-1, 1].

In engineering applications, only a finite number of terms can be computed in Eq.( 32). Accordingly, the truncated polynomial chaos expansion of Y can be represented as follows [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF]:

Y = M(X) = M (T (Z)) = α∈A a α Ψ α (Z) (33)
in which A is the set of multi-indices α's retained by the truncation scheme.

The application of PCE consists in choosing a suitable polynomial basis and then computing the appropriate coefficients a α 's. To this end, there exist several techniques including spectral projection Le [START_REF] Le Maître | A stochastic projection method for fluid flow -II. Random process[END_REF]; [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF], stochastic collocation method [START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF] or least square analysis (also called regression, see [START_REF] Berveiller | Presentation of two methods for computing the response coefficients in stochastic finite element analysis[END_REF][START_REF] Berveiller | Stochastic finite elements: a non intrusive approach by regression[END_REF]).

A review of these so-called non-intrusive techniques is given in [START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF]. Recently, the least-square approach has been extended to obtain sparse expansions [START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF]Sudret, 2010b, 2011). This technique has been applied to global sensitivity analysis in Blatman and Sudret (2010a). The main results are now summarized.

First note that the orthonormality of the polynomial basis leads to the following properties:

E [Ψ α (Z)] = 0 and E [Ψ α (Z) Ψ β (Z)] = δ αβ (34)
As a consequence the mean value of the model output y is E [Y ] = a 0 whereas the variance is the sum of the square of the other coefficients:

D = Var [Y ] = Var α∈A a α Ψ α (Z) = α∈A α =0 a α 2 Var [Ψ α (Z)] = α∈A α =0 a α 2 (35)
Making use of the unique orthonormality properties of the basis, [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] proposed an original post-processing of the PCE for performing global sensitivity analysis. For any subset variables u = {i 1 , . . . , i s } ⊂ {1, . . . , M }, one defines the set of multivariate polynomials Ψ α which depends only on u:

A u = {α ∈ A : α k = 0 if and only if k ∈ u} (36) 
The A u 's form a partition of A, thus the Sobol' decomposition of the truncated PCE in Eq. ( 33) may be written as follows:

Y = a 0 + u⊂{1, ... ,M } u =∅ M u (Z u ) (37) 
where:

M u (Z u ) def = α∈Au a α Ψ α (Z) (38) 
In other words the Sobol' decomposition is directly read from the PC expansion. Consequently, due to the orthonormality of PC basis, the partial variance D u reads:

D u = Var [M u (Z u )] = α∈Au a 2 α ( 39 
)
As a consequence the Sobol' indices at any order may be computed by a mere combination of the squares of the coefficients. As an illustration, the first order PC-based Sobol' indices read:

S i = α∈A i a 2 α /D, A i = {α ∈ A : α i > 0, α j =i = 0} (40) 
whereas the total PC-based Sobol' indices are:

S T i = α∈A T i a 2 α /D, A T i = {α ∈ A : α i > 0} (41)
4 Derivative of polynomial chaos expansions

In this paper, we consider the combination of polynomial chaos expansions with derivative-based global sensitivity analysis. On the one hand, PCE are already known to provide accurate metamodels at reasonable cost. On the other hand, the derivative-based sensitivity measure (DGSM) is effective for screening unimportant input factors. The combination of PCE and DGSM appears as a promising approach for effective low-cost SA. In fact, once the PCE metamodel is built, the DGSM can be computed as a mere post-processing of the metamodel which simply consists of polynomial functions.

As seen in Section 2, a DGSM is related to the expectation of the square of the model derivative, which was denoted by ν i . We will express the model derivative in a way such that the expectation operator can be easily computed, more precisely by projecting the components of the gradient ∇M onto a PC expansion.

Hermite polynomial chaos expansions

In this section we consider a numerical model Y = M(X) where Y is the scalar output and X = {X i , . . . , X M } is the input vector composed of M independent Gaussian variables X i ∼ N (µ i , σ i ). The isoprobabilistic transform reads:

X = T (Z) : X i = µ i + σ i Z i (42) 
where Z i ∼ N (0, 1) are standard normal random variables. The truncated PCE of Y reads:

Y = M(X) = M (T (Z)) = α∈A a α Ψ α (Z) (43) in which α = {α 1 , . . . , α M } is a multi-index, A is the set of indices α in the truncated expansion, Ψ α (z) = M i=1
He α i (z i ) is the multivariate polynomial basis obtained as the tensor product of univariate orthonormal Hermite polynomials He α i (z i ) (see A) and a α is the deterministic coefficient associated with Ψ α (z).

Since T is a one-to-one mapping with

∂z i ∂x i = 1 σ i
, the derivative-based sensitivity index reads:

ν i = E ∂M ∂x i (X) 2 = E ∂M • T ∂z i ∂z i ∂x i 2 = 1 σ i 2 E ∂M • T ∂z i (Z) 2 (44)
The DGSM of X i , in other words the corresponding upper bound to the total Sobol' index S T i , is computed according to Eq. ( 25): He

S DGSM i = σ 2 i ν i D = 1 D E ∂M • T ∂z i (Z) 2 = 1 D E   ∂ ∂z i α∈A a α Ψ α (Z) 2   ( 
n (z) = √ n He n-1 (z) (46) 
Therefore the derivative of the multivariate orthonormal Hermite polynomial

Ψ α (z) = M i=1
He α i (z i ) with respect to z i reads:

∂Ψ α ∂z i (z) = M j=1 j =i He α j (z j ) √ α i He α i -1 (z i ) (47) 
provided that α i > 0, and ∂Ψ α ∂z i (z) = 0 otherwise. Then the derivative of a Hermite PCE with respect to z i is given the following expression:

∂M A ∂z i (z) = α∈A (i) √ α i a α Ψ α i (48) in which A (i) = {α ∈ A, α i > 0}
is the set of multi-indices α having a nonzero i th component and α i = {α 1 , . . . , α i -1, . . . , α M } is the index vector derived from α by subtracting 1 from α i . The expectation of the squared derivative in Eq. ( 45) is reformulated as:

E ∂M A ∂z i (Z) 2 = E   α∈A (i) β∈A (i) α i β i a α a β Ψ α i Ψ β i   (49)
Due to the linearity of the expectation operator, the above equation requires computing E Ψ α i Ψ β i . Note that the orthonormality of the polynomial basis leads to E Ψ α i Ψ β i = δ αβ where δ αβ is the Kronecker symbol. Thus one has:

E ∂M A ∂z i (Z) 2 = α∈A (i) α i a 2 α (50)
As a consequence, in case of a Hermite PCE the DGSM can be given the following analytical expression:

ŜDGSM i = 1 D α∈A (i) α i a 2 α = α∈A (i) α i a 2 α α∈A, α =0 a 2 α (51)
Note that the total Sobol' indices S T i can be obtained directly from the PCE by

ŜT i = α∈A (i) a 2 α / α∈A, α =0
a 2 α as shown in Eq. ( 41). With integer indices α i > 0, it is clear that the inequality S T i ≤ S DGSM i is always true by construction.

Legendre polynomial chaos expansions

Consider now a computational model Y = M(X) where the input vector X contains M independent uniform random variables

X i ∼ U[a i , b i ].
We first use an isoprobabilistic transform to convert the input factors into normalized variables Z = {Z i , . . . , Z M }:

X = T (Z) : X i = b i + a i 2 + b i -a i 2 Z i ( 52 
)
where 

Z i ∼ U[-
∂x i = 2 b i -a i
the derivative-based sensitivity index reads:

ν i = E ∂M ∂x i (X) 2 = 4 (b i -a i ) 2 E ∂M • T ∂z i (Z) 2 (53)
Similarly to Eq. ( 45), the upper bound DGSM to the total Sobol' index S T i is computed from Eq. (24) as: Le α i (z i ) with respect to z i reads:

S DGSM i = (b i -a i ) 2 π 2 ν i D = 4 π 2 D E ∂M • T ∂z i (Z) 2 = 4 π 2 D E   ∂ ∂z i α∈A a α Ψ α (Z) 2   ( 
∂Ψ α ∂z i (z) = M j=1 j =i Le α j (z j ) α i l=1 C Le α i l Le l-1 (z i ) (56)
For a given α = {α 1 , . . . , α M } let us define by α r i the index vector having the i th component equal to r:

α r i =    α 1 , . . . , i th position r , . . . , α M    (57) 
Using this notation Eq. ( 56) rewrites as follows:

∂Ψ α ∂z i (z) = α i l=1 C Le α i l Ψ α l-1 i (58)
Denote by A (i) the set of α having a non-zero index α i , i.e.

A (i) = {α ∈ A, α i > 0}.
The derivative of a Legendre PCE with respect to z i then reads:

∂M A ∂z i (z) = α∈A (i) a α ∂Ψ α ∂z i (z) = α∈A (i) α i l=1 a α C L α i l Ψ α l-1 i (z) (59) 
Denote by B (i) the set of multi-indices β representing the ensemble of multivariate polynomials generated by differentiating the linear combination of polynomials Ψ α (z), α ∈ A (i) . B (i) is obtained as:

B (i) = β = α + (k -α i ) • e i , α ∈ A (i) , k = 0, . . . , α i -1 (60)
where:

e i = (0, . . . , 0,

i th pos. 1 , 0 . . . , 0) (61)
The derivative of Legendre PCE rewrites:

∂M A ∂z i (z) = β∈B (i) b β Ψ β (z) (62)
in which the coefficient b β is obtained from Eq.( 59). Since the polynomials Ψ β are also orthonormal, one obtains:

E ∂M A ∂z i (Z) 2 = β∈B (i) b 2 β (63)
Finally, the DGSMs read:

ŜDGSM i = 4 π 2 β∈B (i) b 2 β α∈A, α =0 a 2 α (64)

General case

Consider now the general case where the input vector X contains M independent random variables with different prescribed probability distribution functions, i.e. Gaussian, uniform or others. Such a problem can be addressed using generalized polynomial chaos expansions [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF].

As the above derivations for Hermite and Legendre polynomials are valid componentwise, they remain identical when dealing with generalized expansions.

Only the proper matrix yielding the derivative of the univariate polynomials in the same univariate orthonormal basis is needed, see Appendix A for Hermite polynomials and Appendix B for Legendre polynomials. The derivation for Laguerre polynomials is also given in Appendix C for the sake of completeness.

5 Application examples

Morris function

We first consider the Morris function that is widely used in the literature for sensitivity analysis [START_REF] Morris | Factorial Sampling Plans for Preliminary Copmputational Experiments[END_REF]; [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with Sobol' indices and numerical tests[END_REF]. This function reads:

y = β o + 20 i=1 β i ω i + 20 i<j β ij ω i ω j + 20 i<j<l β ijl ω i ω j ω l + β 1234 ω 1 ω 2 ω 3 ω 4 (65)
in which:

• ω i = 2 (X i -1/2) except for i = 3, 5, 7 where ω i = 2 1.2

X i X i + 1 - 1 2 ,
• the input vector X = {X 1 , . . . , X 20 } contains 20 uniform random vari-

ables {X i ∼ U[0, 1], i = 1, . . . , 20},
• β i = 20 for i = 1, 2, . . . , 10,

• β ij = -15 for i, j = 1, 2, . . . , 6, i < j,

• β ijl = -10 for i, j, l = 1, 2, . . . , 5, i < j < l,

• β 1234 = 5,

• the remaining first and second order coefficients are defined by

β i = (-1) i , β 0 = 0 and β ij = (-1) i+j ,
• and the remaining third order coefficients are set to 0.

First, a PCE is built using the Least Angle Regression technique based on a Latin Hypercube experimental design of size N = 500. Then the PCE is postprocessed to obtain the total Sobol' indices and the upper-bound derivativebased sensitivity measures (DGSMs) using Eq. ( 41) and Eq. ( 64), respectively.

The procedure is replicated 100 times in order to provide the 95% confidence interval of the resulting sensitivity indices.

As a reference, the total Sobol' indices are computed by Monte Carlo simulation as described in Section 2.1 using the sensitivity package in R Pu- The total number of model evaluations required by the MCS approach is 5, 000 × (2 + 20) = 110, 000. After 100 replications we also obtain the 95% confidence interval on the sensitivity indices.

The DGSMs are also computed by Monte Carlo simulation for comparison, using a finite difference scheme to evaluate the gradient for each realization. Figure 2 shows the total Sobol' sensitivity indices computed by MCS and from the PC expansion as well as their 95% confidence intervals. The median results (circle and diamonds) are close to each other, and show that input parameters X 11 , . . . , X 20 are unimportant factors, while X 1 , X 2 , X 4 and X 6 are important ones. It is observed that the confidence intervals are much smaller for the PCE-based indices than for the MCS-based indices, at a cost which is two order of magnitude smaller though (500 runs instead of 110,000).

Figure 3 shows the DGSMs computed by MCS and from the PC expansion as well as their 95% confidence intervals. Again the results obtained by the two approaches compare very well to each other and it is observed that the confidence intervals are smaller when using PC expansions. By comparing 

Oakley & O'Hagan function

The second numerical example is the Oakley & O'Hagan function [START_REF] Sobol | Derivative based global sensitivity measures and their link with global sensitivity indices[END_REF]; Oakley and O'Hagan (2004) which reads:

f (X) = a T 1 X + a T 2 cos(X) + a T 3 sin(X) + X T M X (66)
in which the input vector X = {X 1 , . . . , X 15 } consists of 15 independent standard normal random variables {X i ∼ N (0, 1), i = 1, . . . , 15}. The 15 × 1 vectors a j , j = 1, 2, 3 and the 15 × 15 matrix M are provided at www. sheffield.ac.uk/st1jeo.

Given the complexity of the function, the PCE-based approach is run with a Latin Hypercube experimental design of size N = 600. The size of a single sample set for the MCS approach is N = 10, 000 resulting in 10, 000×(2+15) = 170, 000 model runs. The procedure is similar as in Section 5.1. cost is 600 runs for PCE against 500 × (15 + 1) = 8, 000 for the DGSMs. From the values one can conclude that X 11 , . . . , X 15 are important parameters, whereas the other have medium to little importance.

Oakley & O'Hagan function: convergence

In order to better assess the accuracy of the polynomial chaos expansions as a tool for computing the DGSMs, we carry out a parametric study on the number of samples used in the analysis. Precisely, a Latin hypercube sample of size N is used as the experimental design for establishing the PC expansion, and as the set of points where the gradient is computed for the MCS-based approach (thus 2 N points are used for computing a single DGSM ). The convergence plots are shown for variables X 3 , X 9 , X 15 and X 11 which range from unimportant to most important. In each case the reference solution is attained using 500 runs or less using PC expansions whereas the convergence is not attained even for 2 × 2, 000 runs using MCS. Again it is emphasized that a single experimental design (e.g. of size 500) is used for computing all 15 DGSMs, whereas Monte Carlo simulation requires (15 + 1) times this number as a whole, which makes PC expansions even more appealing in large dimensions.

Conclusions

In practical problems, the system of interest usually contains numerous random input factors which might lead to large uncertainty in the model output.

Therefore, it is important to quantify the important factors according to their contributions to the output uncertainty so as to fix unimportant factors to deterministic values and simplify the model. However, the commonly used sampling-based approaches for global sensitivity analysis may be computationally prohibitive in large dimensions.

In this paper, we combined the polynomial chaos expansions (PCE) metamodelling with a derivative-based sensitivity analysis technique. Polynomial chaos expansions are effective surrogate models for global sensitivity analysis. The very nature of the orthogonal expansions reduces the computation of (total) Sobol' indices to a mere post-processing of the PC coefficients. Similarly, DGSMs can be computed by a straightforward post-processing, i.e. without requiring additional model runs. One only needs to differentiate the multivariate polynomials, which in the end reduces to differentiating univariate polynomial functions. Expressions were given for the classical Hermite, Legendre and Laguerre polynomials. In order to carry out the computation efficiently the derivative polynomials shall be represented onto the orthonormal basis of the same family, which can be done once and for all. Note that the derivatives of classical orthogonal polynomial expansions is also an asset of this paper, which can be reused in other contexts including gradient-based optimization algorithms.

The proposed PCE/DGSM technique is illustrated on two well-known benchmark functions. By comparing with Monte Carlo simulation, the PCE approach is shown to provide sensitivity indices with smaller uncertainty at a computational cost that is one to two orders of magnitude smaller. The gain is even larger in high dimensions since the finite difference computation of the gradients leads to a linear increase of the computational cost with respect to the input dimension for MCS-based DGSMs, whereas the use of sparse polynomial chaos expansions makes the approach rather insensitive to that dimension.

As an outlook, the capacity of PC expansions to estimate DGSM indices using very small experimental designs shall be investigated, in order to have a real screening method that only makes use of limited information to rank qualitatively the input parameters according to their importance. This work is currently in progress. Oakley, J., O'Hagan, A.. Probabilistic sensitivity analysis of complex models: a Bayesian approach. J Royal Stat Soc, Series B 2004;66:751-769. 

A Hermite polynomial chaos expansions

The classical Hermite polynomials {He n , n ∈ N}, where n determines the degree of the polynomial, are defined on the set of real numbersR so as to be orthogonal with respect to the Gaussian probability measure and associated 

C Le =            √ 3 0 0 0 . . . 0 √ 5 √ 3 0 0 . . . √ 7 • 1 0 √ 7 √ 5 0 . . . . . . 0 √ 4p + 1 √ 3 0 √ 4p + 1 √ 7 . . . √ 4n + 1 √ 4n -1            (81) 
when n = 2p is even and

C Le =            √ 3 0 0 0 . . . 0 √ 5 √ 3 0 0 . . . √ 7 • 1 0 √ 7 √ 5 0 . . . . . . √ 4p + 3 • 1 0 √ 4p + 3 √ 5 0 . . . 0 √ 4p + 3 √ 4p + 1            (82) 
when n = 2p + 1 is odd.

C Generalized Laguerre polynomial chaos expansions

Consider a model Y = M(X) where the input vector X contains M independent random variables with Gamma distribution X i ∼ Γ(α i , β i ), (α i , β i > 0)

with prescribed probability density functions:

f X i (x i ) = β i α i 1 Γ(α i )
x α i -1 e -β i x i (83)

where Γ(•) is the Gamma function. We first use an isoprobabilistic transform to convert the input factors into a random vector Z = {Z i , . . . , Z M } as

  . Using PCE, variance-based sensitivity analysis becomes a mere post-processing of the polynomial coefficients once they have been computed. More recently, a new gradient-based technique has been proposed for screening unimportant factors. The so-called derivative-based global sensitivity measures (DGSM) are shown to be upper bounds of the total Sobol' indices while being less computationally demanding Sobol' and Kucherenko (2009, 2010); Kucherenko et al. (2009); Lamboni et al. (2013). Although the computational cost of this technique is reduced compared to the variancebased technique Kucherenko et al. (2009), its practical computation still relies on sampling techniques, e.g. the Monte Carlo simulation. In this paper we investigate the potential of polynomial chaos expansions for computing derivative-based sensitivity indices and allow for an efficient screening procedure. The paper is organized as follows: the classical derivation of Sobol' indices and their link to derivative-based sensitivity indices is summarized in Section 2. The machinery of polynomial chaos expansions and the link with sensitivity analysis is developed in Section 3. The computation of the DGSM based on PC expansions is then presented in Section 4, in which an original method for computing the derivatives of orthogonal polynomials is presented. Finally two numerical tests are carried out in Section 5. 2 Derivative-based global sensitivity measures 2.1 Variance-based sensitivity measures Global sensitivity analysis (SA) aims at quantifying the impact of input parameters onto the output quantities of interest. One input factor is considered insignificant (unessential) when it has little or no effect on the output variability. In practice, screening out the insignificant factors allows one to reduce the dimension of the problem, e.g. by fixing the unessential parameters. Variance-based SA relies upon the decomposition of the output variance into contributions of different components, i.e. marginal effects and interactions of input factors. Consider a numerical model Y = M(X) where the input vector X contains M independent input variables X = {X 1 , . . . , X M } with uniform distribution over the unit-hypercube H M and Y is the scalar output. The Sobol' decomposition reads Sobol' (1993):
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 1 Figure 1: Morris method: representation of the mean and standard deviation of the elementary effects

  45) in which D = Var [Y ] = α∈A, α =0 a 2 α . This requires computing the partial derivatives of polynomial functions of the form M A (z) = α∈A a α Ψ α (z). One can prove that the derivatives He n (z) = d He n dz (z) read (see A):

  54)Thus the derivative of univariate and multivariate Legendre polynomials are required. Denoting by Le i (z) in B that:Le 1 (z), . . . , Le n (z) T = C Le • { Le 0 (z), . . . , Le n-1 (z)} T (55)in which C Le is a constant matrix whose i th row contains the coordinates of the derivative of Le i (z) onto a basis made of lower-degree polynomials Le j (z), j = 0, . . . , i -1 . In other words, Le i (z) = i j=1 C Le ij Le j-1 (z). Using this notation, the derivative of the multivariate orthonormal Legendre polynomials Ψ α (z) = M i=1

  jol et al. (2013). One samples two experimental designs of size N = 5, 000 denoted respectively by A and B then computes the corresponding output vectors Y A and Y B . To estimate the total sensitivity index S T i with respect to random variable X i , one replaces the entire i th column in sample A (which contains the samples of X i ) by the i th column in sample B to obtain a new experimental design denoted by C i . Then the output Y C i is computed from the input C i . The variance-based S T i is obtained by means of Y A , Y B and Y C i using the sobol2007 function Pujol et al. (2013); Saltelli et al. (2010).

Figure 2 :

 2 Figure 2: Morris function: PCE-based vs. MCS-based total Sobol' indices

Figures 2 Figure 3 :

 23 Figures2 and 3, one can check that the obtained total Sobol' indices are always smaller than the DGSMs, as expected. Moreover, the less significant the parameter, the closer the DGSMs gets to the total Sobol' index.

Figures 4 Figure 4 :Figure 5 :

 445 Figures 4 and 5 show the total Sobol' indices and the DGSMs computed both from a PC expansion and by Monte Carlo simulation. The conclusions are similar to the ones already drawn from the first example: the median values of the PCE-based DGSMs are almost identical to the MCS-based estimators while the confidence intervals are much smaller. Here the computational

Figure 6 :

 6 Figure 6: Oakley & O'Hagan function: convergence of the PCE-based (resp. MCSbased) DGSMs as a function of the number of runs (NB: abscissa is the size of the experimental design for PCE, whereas the actual number of runs for MCS is twice larger, for each DGSM)

  Abramovitz, M., Stegun, I.A.. Handbook of mathematical functions. New York: Dover Publications Inc.; 1965. As seen in Section 4, the computation of polynomial chaos expansions derivative-based global sensitivity measures (PCE-DGSMs) consists of two steps. The first step is to represent the derivative of the PCE in terms of orthonormal polynomials from the same families. It essentially requires to construct the matrices of coefficients C that are used for differentiating the classical orthonormal polynomials. The second step is to post-process this "PCE" of the derivative. A general solution to compute the mean squared derivative using the coefficients matrices C was presented in Section 4.3.

R

  He m (z)He n (z) e -z 2 /2 √ 2π dz = n! δ mn (67)The Hermite polynomials satisfy the following differential equation(Abramovitz and Stegun, 1965, Chap. 22)d dz He n (z) = nHe n-1 (z)(68)From Eq. (67) the norm of Hermite polynomials reads:He n , He n = n! (69) so that the orthonormal Hermite polynomials are defined by:He n (z) n (z) + 2(n -2) + 1 Le n-2 (z) + 2(n -4) + 1 Le n-4 (z) + . . .(79)Introducing the matrix notation:Le 1 (z), . . . , Le n (z)T = C Le • { Le 0 (z), . . . , Le n-1 (z)} T(80)the matrix C Le reads:

Substituting for Eq. ( 70) in Eq. ( 68), one gets the derivative of orthonormal Hermite polynomial He n (z) def = d He(z) dz :

He n (z) = √ n He n-1 (z) (71)

For computational purposes the following matrix notation is introduced:

He 1 (z), . . . , He n (z)

which allows one to cast the derivative of the orthonormal Hermite polynomials in the initial basis. From Eq. ( 71), C H is obviously diagonal:

B Legendre polynomial chaos expansions

The classical Legendre polynomials {Le n , n ∈ N} are defined over [-1, 1] so as to be orthogonal with respect to the uniform probability measure and associated inner product:

They satisfy the following differential equation (Abramovitz and Stegun, 1965,

Using the notation Le n (z) def = dLe n (z) dz one can transform Eq. ( 75) into the equation:

From Eq. ( 74), the norm of Legendre polynomials reads:

so that the orthonormal Legendre polynomials read:

follows:

One can prove that:

which means Z i ∼ Γ(α i , 1).

By definition, the generalized Laguerre polynomials

where n is the degree of the polynomial, are orthogonal with respect to the weight function w(z) = z α-1 e -z over (0, ∞):

The derivative of L (α-1) n reads:

Recall that one obtains the Gamma distribution by scaling the weight function w(z) by 1/Γ(α). Therefore in the context of PCE, we use the generalized Laguerre polynomials functions orthonormalized as follows:

L(α-1)

where B(x, y) = Γ(x)Γ(y) Γ(x+y) is the beta function. Substituting for Eq. ( 88) in Eq. ( 87) one obtains:

Introducing the matrix notation: C La i,j = -