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Abstract We study numerically the propagation of an

acoustic pulse through a loaded granular material un-

der the hypothesis that the conventional modeling of
solid friction used in soft sphere discrete element mod-

eling remains valid at acoustic time scales. As a pulse

crosses the material, it temporarily suppresses sliding

contacts, making it difficult to prepare states that cor-
respond to experimental conditions. The pulse speed is

strongly affected by the loading in a very anisotropic

way, varying by as much as a factor of two depending
on the propagation direction. We separate the contri-

bution of the contact network from that of sliding con-

tacts, and show that sliding contacts can reduce the
propagation speed as much as changes in coordination

number. Sliding contacts have a characteristic acoustic

signature: pulse speed depends on sign (compression or

rarefaction), even at very small amplitudes.

1 Introduction

Several recent experiments use acoustical waves to probe
the deformation granular materials [1; 2; 3; 4; 5]: changes

in the acoustic transmission properties are shown to

coincide with deformation events [2] or changes in im-

posed shear [1]. These techniques give information about
the interior of the packing while remaining non-intrusive,

and will probably become more widespread in the fu-

ture.

The weakness of these methods lies in their inter-

pretation. One observes that acoustical changes are cor-
related to deformation, but it is not clear exactly how.

S. McNamara
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Explanations usually advanced are changes in the co-

ordination number [1] or, in other situations, contact

nonlinearity [2]. Recently, other possible mechanisms
have been proposed: intergranular collisions, frictional

slip, and excitations of small groups of grains or force

chains [6].

One possible way forward is to examine numeri-

cal simulations. While simulations are necessarily sim-

plistic, they do allow for precise control of parameters
and detailed examination of results. If certain acousti-

cal phenomena could be reproduced in simulations, one

could then determine their origin, for in simulations,
one has access to all the physical variables. Accordingly,

some numerical studies of granular acoustics have ap-

peared [7; 8; 9; 10; 11; 12; 13]. These works focus on the
propagation of a pulse through a packing subjected to

an isotropic stress, and focus on the geometrical disor-

der of granular materials that prevents the application

of methods used in crystals.

But one often wants to probe packings subjected to

an anisotropic stress or undergoing deformation, where
sliding contacts play an important role. Recent experi-

mental works [14; 15] have shown that the interaction

between sound waves and tangential forces is complex.
However, to our knowledge, this work is the first nu-

merical study of the interaction between sliding and

acoustics.

The numerical model of the tangential force used

here is very simplistic: it uses only a single, linear, stiff-
ness, and a constant friction ratio. Thus this work can-

not describe many effects such as contact ageing, sound

wave-induced changes in friction ratio [14], or nonlinear

contact stiffness. Instead, this work studies one effect,
namely, the interaction between the sliding-nonsliding

transition and acoustics. As will be shown, this inter-

action can be very strong.
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This study must also confront the great difference

the acoustic frequencies and the strain rate. Granular
material are probed at frequencies of order 100 kHz,

whereas typical shear rates are of order 10−5Hz [1] – a

difference of ten orders of magnitude. It is not possible
to resolve both time scales in the same way in a nu-

merical model. But we show how this difficulty can be

overcome using the elementary soft sphere “molecular
dynamics” method.

This paper is organized as follows. In Sec. 2, we ex-

plain and motivate the numerical setup, and introduce

the different numerical techniques used in the article.
In Sec. 3, we then examine the effect of sound waves on

sliding contacts, whereas the effect of sliding contacts

on acoustic properties is examined in Sec. 4. The paper
concludes with Sec. 5 where experimental evidence for

the effects found in this paper are discussed.

2 Numerical setup

2.1 Biaxial tests and Checkpoints

We study two-dimensional quasi-static packings of N =
128 × 128 = 16384 grains confined by four walls, The

grains have a two-dimensional mass density ρ∗, and

the total mass of the packing is M∗. The packing was
formed by compressing a granular gas. During the com-

pression, the bottom and left walls were fixed, while the

upper and right walls were mobile. A constant pressure

p∗ was applied to them, and their motion was obtained
by integrating Newton’s second law, as if they were

grains with a mass of about M∗/100. During compres-

sion, the grains were frictionless, and a weak, diagonally
directed gravitational force was applied to push rattlers

against the granular skeleton.

In this way, a very dense motionless state is ob-
tained, that will serve as the initial condition of the bi-

axial test. Friction is “turned on” by setting the friction

ratio µ = 0.2, although grain-wall interactions remain

frictionless. Note that all tangential forces vanish, as
the packing was constructed without friction. This is

different from the experimental initial condition where

friction is always active. A constant velocity is imposed
on the upper wall, but the right wall remains mobile,

with the same pressure p∗ applied to it. Fig. 1 shows

two resulting stress-strain curves that are typical for
this kind of numerical experiment. The curve marked

“compression” is obtained by moving the upper wall

downward, and the curve marked “extension” is ob-

tained by moving the upper wall upward.
As the packing is being deformed, a “checkpoint”

is written into a file periodically at regular strain inter-

vals ∆ε = 10−5. A checkpoint is a complete snapshot of
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Fig. 1 Stress-strain curve for the simulations studied in this pa-

per. The first principal stress is σ1 and σ2 is the second principal
stress. In the compression test, the upper wall is lowered, and
σ1 = σyy > σ2 = σxx = p∗. In the extension test, the upper wall
is raised, and σ1 = σxx = p∗ > σ2 = σyy .

the system that can be used to restart the simulation.

Their usual purpose is to make the simulation program

more robust. If there is a power cut in the middle of a
long simulation, one does not need to restart the sim-

ulation from the beginning; instead one can restart the

simulation from the last checkpoint recorded. In this

paper, checkpoints are an essential part of the numer-
ical method, enabling us to probe a state at different

amplitudes, and to modify the imposed strain rate.

2.2 Signal generation

To acoustically probe the sample, we reload a check-

point, and restart the simulation. A signal is generated

by adding a perturbation on the constant force on the

right hand wall:

p(t) = p∗ [1 + f(t)] . (1)

The same checkpoint can be reloaded many times,
and pulses with different amplitudes can be generated

each time. In this way, we can apply different signals to

exactly the same packing. If necessary, we can apply a
zero-amplitude pulse, i.e., simply replay the simulation

without any change at all.

2.3 Why compression and extension?

We consider both compression and extension tests be-
cause the acoustic properties a granular material sub-

jected to an anisotropic stress are also anisotropic. As

will be described above in Sec. 2.2, the mobile wall is
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used to generate signals that propagate only in the hor-

izontal direction, the vertical direction being inaccessi-
ble. To overcome this difficulty, we will assume that the

vertical direction in the compression test is equivalent

to the horizontal direction in the extension test.

To support this assumption, and to illustrate the

anisotropy, we generate a wave at the center of the
sample, and examine its propagation. This is done by

reloading a checkpoint, and then multiplying the ra-

dius of one grain near the center by 1 + 10−5 before

beginning the simulation. This sudden change of radius
generates a perturbation in the packing that radiates

outward. The velocities of all the particles are recorded

at a high sampling rate.

To identify the changes introduced by the perturba-

tion, a second simulation is done with the same initial

conditions, except no particle radius is changed. The
particle velocities are recorded in exactly the same way

as in the first simulation. Then, the perturbed velocity

v of each grain is obtained by subtracting the results
of the second simulation from the first.

When we examine the perturbed velocity of each
grain, we find that it is zero until a well defined time

when it suddenly begins to fluctuate. We interpret the

appearance of these fluctuations as the arrival of the

disturbance generated at the center. The arrival time
is estimated as the time when |v| first rises to 10% of

its maximum value. Doing this for each grain in three

different simulations yields Fig. 2.

The level of gray in this figure is determined by the

arrival time of the disturbance, but we pass from white

to black four times. More precisely, we first calculate a
normalized arrival time at each particle i: τi = ti/tf ,

where ti is the pulse arrival time at grain i, and tf is

the duration of the simulation. Note that 0 ≤ τi ≤ 1.
Next, let J be the number of times to pass from white

to black. In Fig. 2, J = 4. We then calculate a gray

level gi, 0 ≤ gi < 1 by taking the non-integer part of
Jτi, or

gi = Jτi − floor(Jτi). (2)

where the floor function returns the largest integer not
greater than its argument.

Fig. 2 shows that the disturbance propagation speed
is strongly anisotropic when the packing is loaded –

the disturbance travels much more quickly in one di-

rection that the other. The propagation velocity is de-

termined by the first principal stress direction: it prop-
agates quickly in the direction where normal stress is a

maximum (vertically on the left of Fig. 2, horizontally

on the right), and more slowly in the other direction.

2.4 Particle interactions

We use the simple linear spring and dashpot model for

the particle-particle interaction. The normal force Fn

at each contact is

Fn = −KnDn − γnḊn, (3)

where Dn is the overlap between the two particles. In

this paper, we set the normal stiffness Kn = 2000p∗
unless indicated otherwise. The damping coefficient γn
is chosen to obtain a restitution coefficient of about

0.92.

The tangential force is calculated in a similar way,

but with an additional condition to allow sliding. A
candidate tangential force F̂t is calculated:

F̂t = −KtDt − γtḊt, (4)

where Dt is the integral of the tangential component of

the relative motion, and Kt, γt are constants analogous
to Kn, γn. In this paper, we use Kt = Kn/2, γt = γn/2.

After calculating F̂t, we check if it satisfies

|F̂t| ≤ µFn, (5)

where µ is the friction ratio (µ = 0.2 in this paper).

If it does, then the tangential force is set equal to the
candidate: Ft = F̂t. Otherwise, the contact is said to be

“sliding”, and Ft = ±µFn, choosing the sign so that Ft

and F̂t have the same sign. If the contact slides, we set
Dt = −Ft/Kt. This last step is necessary to model the

sliding of the two surfaces.

This modelization is standard, but we repeat it here

to draw the reader’s attention to on important conse-
quence, namely that when the contact slides, the force

is incrementally non-linear, i.e., the derivative ∂Ft

∂Dt

does

not exist. To see this, let Fn be constant, and Ft =
µFn > 0. If the motion is quasi-static, Eq. (4) tells us

that Dt = −µFn/Kt < 0. Then note

lim
h→0+

Ft(Dt + h)− Ft(Dt)

h
= −Kn, (6)

since h > 0 reduces F̂t so that F̂t < µFn, satisfying
Eq. (5) On the other hand,

lim
h→0−

Ft(Dt + h)− Ft(Dt)

h
= 0, (7)

since h < 0 increases F̂t so that Ft remains equal to its

maximum value µFn. This is the microscopic origin of

the incremental nonlinearity observed in granular ma-
terials [16].

In addition to the normal and tangential forces, a

weak rolling resistance is applied.
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compression: εyy = 1% initial condition: ε = 0 extension: εyy = 1%

Fig. 2 Propagation of a perturbation originating in the center of the packing. The grayscale indicates when the perturbation arrival

time at each particle. The strain rate is ε̇ = 4× 10−7t−1
a in all panels.

2.5 Units

The quantities p∗, M∗, and ρ∗ define the units used
throughout this paper. In two dimensions, ρ∗ has units

of mass divided by length squared, and p∗ has units

of force divided by length. This implies that the unit
of length is L∗ =

√

M∗/ρ∗, the unit of time is t∗ =
√

M∗/p∗, and the unit of energy is E∗ = M∗p∗/ρ∗.

Since we are observing acoustical phenomena, it is

useful to measure time and velocity in appropriate units.
A long wave propagating through a line of grains inter-

acting according to Eq. (3) travels with a velocity

va = d

√

Kn

m
=

√

4Kn

ρ∗π
, (8)

where d is the particle diameter and m the particle
mass. The first expression is general, and the second

applies to disks with m = ρπd2/4. Note that for disks

(but not from spheres), this velocity is independent of
particle size. The acoustic velocity enables us to define

an acoustic time scale ta = L∗/va, the time for a wave

to travel through a line of length L∗.

An important dimensionless parameter is the ratio
of the acoustic time scale to the unit of time used in

the simulation:

t∗
ta

=

√

4Kn

πp∗
. (9)

For most of the simulations in this paper, t∗/ta ≈ 50.

2.6 Dimensionless Parameters

The values of the grain stiffness, system size, and defor-

mation rate are chosen for numerical convenience. The

capabilities of the computer impose constraints on these

Simulations Experiments

Container size L/d 128 O(100)
Wavelength λ/d 10 – 100 20

Grain stiffness G/p 2000 O(105)
Strain rate ε̇T O(10−6) O(10−10)
Acoustic strain rate ε̇a/ε̇ O(10−6) – 1 O(104)

Table 1 Principal dimensionless parameters characterizing the
simulations presented here and the experiments[1; 3]. Explana-

tion and method of calculation is given in the text.

parameters – for example, if there are too many parti-

cles, the simulations will take too much time. In the

experiments, these parameters are subjected to other
constraints. For example, the elastic properties of the

beads is imposed by the material used to make them.

When interpreting the simulations, it is necessary to

take these differences into account. This can be done by
comparing various dimensionless parameters that char-

acterize both the experiments and the simulations. To

make our comparison concrete, we will consider two rel-
atively small acoustic transmission experiments [1; 3]

where the experimental parameters are clearly docu-

mented.. The principal dimensionless parameters and
their values are shown in Tab. 1. As one can see certain

parameters are quite close while others are different.

The first two parameters describing the system size are

roughly similar, but those describing the grain stiffness
and the strain rate are very different. Accordingly, the

effect of these last two parameters will be carefully ex-

amined in the paper.

In the rest of this subsection, we discuss the estima-
tion of each parameter.

2.6.1 Container size

The experiments are done with a grain diameter d of

a bit less than a millimeter (0.6mm < d < 0.8mm),
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in containers sizes L of several centimeters (20mm <

L < 60mm). This leads to a non-dimensional con-
tainer size of L/d ≤ 102 close to the value used in

the simulations. This is possible because the simula-

tions are two-dimensional while the experiments are
three-dimensional. Therefore, the simulation concerns

about (L/d)2 ≈ 104 grains while the experiments in-

volve (L/d)3 ≈ 106.

2.6.2 Wavelength

The wavelength given in the papers are λ ≈ 10mm [1]

and λ ≈ 15mm [3]. The wave length is thus roughly

one order of magnitude larger than he particle diam-
eter (λ/d ≈ 20), and a bit smaller than the container

(L/λ ≈ 3). Waves of this length are easily generated in

simulations.

Note that the wavelength is much larger than the
grain diameter. This means that we do not acoustically

probe the vibrational modes of the grains.

2.6.3 Grain stiffness

The confining pressures p0 cited in these articles are
206 kPa and 85 kPa – 340 kPa, while the shear modu-

lus G of glass (the material of the grains) is given as

25GPa. This leads to a non-dimensional grain stiffness
of order G/p0 ∼ 105. The equivalent parameter in the

simulations is Kn/p∗ = 2000, or about two orders of

magnitude lower. RaisingKn increases simulation time,
because the time step used to integrate the equations of

motion must be decreased. Nevertheless, we will carry

out a few simulations with a higher value of Kn to as-

sess its effect on the results.

The choice Kn/p∗ = 2000 was motivated by the ob-

servation [17] that quasi-static flows are independent of

Kn if Kn is several thousand times larger as the confin-
ing pressure. This threshold occurs because variations

in an applied isotropic stress no longer modify the num-

ber of contacts.

2.6.4 Strain rate

In the experiments done with the shear cell [1], the

imposed shear velocity was 0.6µm/s. Given the rele-

vant container dimension (30mm), this corresponds to
a shear rate of ε̇ ≈ 2× 10−5 s−1.

Since we want to study the relation between de-

formation and sound, one dimensionless number is the

imposed deformation per wave period T . The wave fre-
quencies used with the shear were 40 kHz, leading to

a period of T = 2.5× 10−5 s. The total externally im-

posed shear during one wave period is thus ε̇T ≈ 5× 10−10.

On the other hand, the shear rate in the simula-

tions is ε̇ = 2× 10−5t−1
∗

, and wave periods are of order
ta ≈ t∗/50, leading ε̇T ≈ 4 × 10−7, or three orders of

magnitude smaller. The deformation rate in the simula-

tion is thus very large. The effect of this parameter will
also be carefully examined. It is very difficult to attain

such values in numerical simulations.

2.6.5 Acoustic strain rate

Another non-dimensional number is the ratio of the
acoustical strain rate ε̇a to the imposed strain rate.

In another experiment[3], the range of displacement

amplitudes of generated longitudinal waves is given as

2 nm ≤ U ≤ 50 nm, with a wavelength of 15mm, and
a frequency of 50 kHz. Estimating ε̇a ≈ U/λT leads to

ε̇a/ε̇ ∼ O(104) ≫ 1. In simulations, easily accessible

values are in the range O(10−6) ≤ ε̇a/ε̇ < O(1). The
difference between the simulations and the experiments

is very large. In the experiments, the strain is a small

perturbation of the wave, whereas in the simulations,
the wave is a small perturbation of the strain.

2.7 Absorbing walls

The wall-grain interaction is usually assumed to be the
same as the grain-grain interaction, leading to a bound-

ary that is nearly a perfect reflector of acoustic energy.

When a signal crosses the packing and arrives at the

opposite wall, it is reflected back into the packing, and
the situation becomes much more complicated and dif-

ficult to analyze. In addition, energy generated inside

the packing remains trapped inside the simulation, in-
stead of radiating into the surroundings, as it would in

an experiment. These problems become more acute as

the size of the simulation in grain diameters becomes
large.

A nearly absorbing wall can be implemented by de-

creasing the stiffness of the grain-wall interaction, and

then choosing a dissipation rate so that the dominant
oscillation frequency is critically damped. Specifically,

the wall-grain interaction has a stiffness of Kn/
√
N

and a large damping coefficient. This choice maximizes
the damping of the longest vibration mode. Incoming

higher frequency waves are overdamped, and are mostly

absorbed at the walls. [18]
Soft walls, however, have the disadvantage of com-

plicating the calculation of strain during the biaxial

test. The strain is usually calculated from the displace-

ment of the external walls. But in our case, the walls
are so soft that a large part of the deformation occurs

between the wall and the first layer of grains. Thus we

return to the definition of the strain as the gradient of
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Fig. 3 Number Ms of sliding contacts for the compression ex-
periment shown in Fig. 1.

the displacement. The following procedure is used: The

position (xi, yi) of each grain i in a reference state (ini-
tially the zero strain state) is recorded. Then, as the

simulation advances, the displacement (ui, vi) of each

grain from its reference position is calculated. To ob-
tain the yy-component of the strain tensor, we do a

linear regression on the y-components, i.e., we look for

εyy, b such that minimizes
∑

i(vi−εyyyi−b)2, the fit pa-

rameter εyy being the strain. When εyy increases above
10−5, the state of the simulation is recorded, and it

defines a new reference state.

Another disadvantage of the soft walls is that acous-

tical signals generated by the walls are not transmitted

to the packing. Therefore, we do not soften the right,
mobile wall, so that we can use it to generate acoustical

signals.

3 The effect of sound on sliding

In this section, we show that sliding contacts are very

sensitive to sound waves, showing that loaded granular

packings must be carefully handled (numerically and
experimentally) if the effect of sliding contacts is to be

studied in a meaningful way.

3.1 Spontaneously generated noise

Vibrations in loaded granular materials suppress slid-

ing contacts. In Fig. 3, we show the number of sliding

contacts in the compression test. The envelope of the

curve resembles the stress-strain relation in Fig. 1, but
the curve is punctuated by numerous sudden drops in

the number of sliding contacts, followed by a rapid re-

covery to the original level.

0,62

0,64

0,66

0,68

M
s/N

0 20 40 60 80
t/t

a

1,1

1,2

E
/E

*
  (

x 
10

-1
0 )

Fig. 4 Two spontaneously generated events within the biaxial
test of Figs. 1 and 3. Top panel: number Ms of sliding contacts,
bottom panel: total kinetic energy E.

In Fig. 4, we show two such events from the same

simulation as in Fig. 3, but on a magnified time scale.
The top panel shows the number of sliding contacts,

and the bottom panel the kinetic energy. The events

shown in this figure are small compared to those in

Fig. 3. Examining the larger of the two events shows
a distinct sequence of events. First, the kinetic energy

rises at an accelerating rate, due to an instability within

the packing. Then suddenly drops, and at the same time
the number Ms of sliding contacts also drops due to a

sound wave that radiates from a particular location in

the sample [19]. Finally, Ms returns slowly back to its
original value.

Are these events quasi-static (governed by the global

strain) or dynamic (governed by equilibrated intergran-

ular forces and their resulting accelerations)? To exam-
ine this question, the simulation of Fig. 4 was redone

with the strain rate divided by ten. The two events were

again obtained, with the same energy, both beginning
at precisely the same values of the global strain, indicat-

ing that such events are triggered by events generated

by the quasi-static evolution of the system, as found in

earlier work [19].

But the kinetic energy rise time, and the recovery

time of Ms are nearly independent of strain rate are in-

dependent of strain rate, suggesting that these are dy-
namic processes. This is confirmed by simulations with

very stiff particles (Kn = 2×105). Measured in units of

ta (which takes into account grain stiffness), the recov-

ery time of Ms does not change. The energy rise times
(again measured in ta) are perhaps two times longer,

but this difference is small compared to the factor of 10

in ta.
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Fig. 5 Number of sliding contacts after applied pulses of varying
dimensionless amplitude pa - see Eq. (10).

3.2 Applied pulses

Now we want to study this phenomena in a more con-

trolled way. To do so, we use the technique of replaying
the simulation described above. We choose a time when

there are no events, and generate a pulse at the begin-

ning of each “replay” by exerting a δ-function stress on
the mobile wall of varying amplitude:

p(t) = p∗ [1 + paδ(t)] . (10)

In Fig. 5, we show the effect of the pulse on the number

of sliding contacts. As the pulse propagates through the

material, it suppresses the sliding contacts as it goes
along. This accounts for the rapid, linear drop at the

beginning of the simulation. Then, there follows a slow

recovery.

Note that the initial loss depends strongly on the

amplitude of the pulse. At pa = 10−5, 2/3 of the sliding

contacts are lost, but the pa = 10−8 pulse leaves them
almost unchanged.

3.3 A random walk model

In this section, we present a simple model that explains

why shocks cause a drop (and not an increase) in slid-
ing contacts, followed by a slow recovery. This model is

a biased random walk with a threshold. Let us suppose

that a crowd of drunkards emerges at time t = 0 from
a bar at x = 0. They then execute independent biased

random walks, with a steps ∆x drawn uniformly from

the interval [µ̄− s, µ̄+ s] with µ̄ > 0. The parameter µ̄

gives the drunks a mean positive velocity (they have a
vague idea that they should go toward positive x), while

s characterizes their fluctuations about the mean drift

(s being perhaps proportional to the number of drinks).
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time
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Fig. 6 Results from a biased random walk with a threshold used
to model the effect of vibrations on sliding contacts. 1000 drunk-
ards were released at x = 0 at t = 0. The graph shows the fraction
of drunkards stuck on the fence at x = 1. The step standard devi-

ation is temporarily multiplied by 10 in the interval 50 ≤ t < 60
(vertical lines).

There is a fence at x = 1 that prevents the drunkards

from entering the region x > 1. When a drunkard ar-

rives at the fence, he simple stops, and waits until he

draws a negative step. He then leaves the fence.

In this model, the position of the drunkard corre-

sponds to Fn − µ|Ft| that measures the distance of a

contact from its sliding threshold. The drunkards at the
fence correspond to sliding contacts. The contact forces

and the drunkards act in exactly the same way: when

they arrive at a barrier (the fence, or the Coulomb con-
dition), the simply stop there until they decide to move

in the other direction. The bias of the random walk rep-

resents the steady, constant imposed strain rate. This
strain rate causes a steady relative motion at each con-

tact that causes the contact forces to evolve in a con-

stant, steady way. Finally, the random part of the drunk-

ard’s walk correspond to vibrations that propagate through
the packing.

In Fig. 6 we show the fraction of drunkards at the

fence during an experiment designed to mimic the pas-
sage of a wave through a loaded granular material.

For t ∈ [0, 49], we set µ̄ = 0.1 and s = 0.2. The

drunkards thus choose a step distance in the interval
[−0.1, 0.3]. When they arrive at the fence, their proba-

bility of choosing a positive number, and thus remaining

at the fence, is 0.75. Note that this is very close to the
maximum fraction of drunkards that are stuck on the

fence.

To model the arrival of a pulse, s is increased by

an order of magnitude, modeling the increased fluctua-
tions. In Fig. 6, the pulse lasts for ten steps, 50 ≤ t <

60. Finally, at t = 60 we set s back to its original value.

The drunkards who have been scattered by the strong
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Fig. 7 The x-component of the perturbed velocity as a function
of time during pulse transmission experiments for selected grains,

with pa = 10−10. Top row: a grain near right hand wall. Middle
row: a grain near the center of the packing. Bottom row: a grain

near the left wall. The vertical and horizontal scales on all graphs

are the same. The pulse appears as a negative velocity because

the initial motion of the right wall is inwards.

fluctuations, slowly return to the fence. This part of the

curve models the recovery of Ms after the passage of a

pulse.

Note that the only parameter in the model is the

ratio s/µ̄ that gives the strength of the vibration rela-

tive to the steady bias. This suggests that the lowering

the strain rate (lowering µ̄) will make the sliding con-
tacts sensitive to lower amplitude pulses. This is indeed

the case. Reducing the strain rate also increases the the

loss of sliding contacts. Indeed, reducing the strain by
a factor of 1000 and generating a pulse with pa = 10−8

suppresses more sliding contacts than the pa = 10−5

pulse in Fig. 5.

4 Effect of sliding contacts on sound

4.1 Procedure

In this section, we consider “tapping” the mobile wall

with a well defined amplitude, and study how the speed

of the resulting pulse. We use the pulse generation tech-
nique described above in Sec. 3.2 and in Eq. (10).

Note that the pulse amplitude pa can be positive or

negative. If pa < 0, pressure is reduced momentarily on

the right hand wall, and a rarefaction wave is generated.
On the other hand, if pa > 0, a compression wave is

generated.

To follow the progression of the pulse, we record

the velocities of all the particles every ∆t = 0.005ta.

We then subtract the velocities of the pa = 0 simu-

lation from each of the pa 6= 0 simulations to obtain
the perturbed velocity v of each grain. If the pulse is

superimposed in a linear way on the ongoing deforma-

tion, this procedure should separate the effects of the
pulse from those of the imposed deformation. Exam-

ples of the velocities obtained in this way are shown in

Fig. 7. This figure shows that the pulse broadens and
diminishes in amplitude as it travels, in accord with

previous work[13]. When the packing is loaded (right

column in Fig. 7), the dissipation and broadening be-

come stronger, and the coda (the vibrations after the
passage of the main pulse) have a much greater ampli-

tude.

The next step is to identify the time the pulse ar-
rives at each grain. We do this simply by locating the

time where vx, the x-component of the perturbed grain

velocity, attains its maximum absolute value. Results
for each grain, are shown for three different situations

in Fig. 8. The pulse arrival times are encoded in the

same way as in Fig. 2.

Fig. 8 shows the dramatic effect of the loading. The
left panel shows the pulse propagation through the ini-

tial condition: the pulse propagates in an organized way.

Each grain feels the arrival of the pulse at about the
same time as its neighbors. When the sample is de-

formed (middle panel), however, the pulse is spatially

fragmented – small irregular regions appear. Moreover,
the size of these regions increases from right to left.

This is probably due to the broadening of the pulse. If

the deformation is stopped (using the procedure that

will be described in Sec. 4.3) before the pulse is sent,
we obtain the right panel. The pulse is no longer as

fragmented as in the middle panel, but the wave fronts

remain ragged.

4.2 Pulse velocity

The pulse arrival time of each grain is plotted as a func-

tion of the x-coordinate of position in the upper panels
of Fig. 9. Before the load is applied (εyy = 0), all the

points are concentrated in a single narrow band whose

slope gives the pulse velocity. The loading changes two
things: First, the slope of the band changes, indicating

a reduced pulse velocity, and second, many grains have

their maximum velocity after the passage of the pulse,
showing that the “coda” is much stronger.

The points in the upper panels of Fig. 9 are confined

above a diagonal line whose slope is the inverse of the

pulse velocity. To calculate the pulse speed, therefore,
we first divide the domain into 128 vertical strips. In

each strip, we sort the particles by pulse arrival time

(time of maximum vx). Then we identify the grain with



9

initial condition: εyy = 0 ε = 1% εyy = 1%, static

Fig. 8 Time of pulse arrival at each grain. The pulse arrives at light particles before dark ones, but we pass from white to black six
times during the simulation. The simulation time is 3ta, so the time between two successive wavefronts is ta/2.
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Fig. 9 Two examples of the measurement of pulse velocity. Up-
per panels: the time of the velocity maximum for each particle.
Lower panels: Third smallest pulse arrival time for the grains in
thin vertical strips, used to calculate pulse velocity. These data
come from the left and center panels of Fig. 8.

the third smallest arrival time in each strip. The results
are shown in the lower panels of Fig. 9. We fit the data

of these lower panels to obtain a pulse speed.

4.3 The static limit

As discussed in Sec. 2.6, the zero strain rate limit is
relevant to experiments. Unfortunately, one can not

abruptly slow or stop the applied strain for the slid-

ing contacts are extremely sensitive to vibrations, and
one would like to preserve them in order to study their

effect. We therefore approach the static limit in two

steps.

The first step is to reload a checkpoint, and “replay”

it at a reduced strain rate, multiplying all velocities by

a factor γ < 1 before beginning the simulation. Since

the initially simulation is quasi-static, this procedure

should generate a new equilibrium state with a strain
rate multiplied by γ. The resulting state is not precisely

in equilibrium for some forces, especially the forces in-

volving the soft walls, do depend on velocity. Therefore
an adjustment occurs that suppresses sliding contacts.

These sliding contacts can be recovered by applying an

addition strain of ∆ε = 2×10−6. In this way, we obtain
states for γ = 0.1, 0.01, 0.001.

The second step is to reload the γ = 0.001 state, and

then stop the walls as gently as possible. Specifically,
the velocity of the upper wall is slowly decreased to

zero:

vwall = v0(1− cosπt/ts), (11)

where ts can be given various values. Finally, the pack-

ing is allowed to radiate its remaining energy over a
time of about 100ta.

In Fig. 10, we show the pulse speed in samples ob-
tained in the way described above. First of all, let us

examine the effect of reducing the strain rate by a fac-

tor of γ. These simulations change most significantly

for pa > 0. We observe a rapid jump in velocity at a
value of pa that appears to be proportional to γ; at

pa ≈ γ/10−5. We interpret this drop as correspond-

ing to the amplitude where the pulse becomes strong
enough to suppress the sliding contacts as it travels.

As the strain rate drops, weaker pulses can suppress

the sliding contacts. This interpretation is confirmed
by examining the number of sliding contacts.

Note that these simulations yield a pulse speed inde-

pendent of the sign of pa for very small pa (|pa| < 10−9).
This indicates that the pulses are linear. They are too

weak to suppress any sliding contacts, that are main-

tained by the imposed shear rate.
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Now let us examine the second series of samples,

obtained by stopping the γ = 0.001 sample over a time
ts. In these samples, the strain rate vanishes, so that

any pulse, no matter how weak, can suppress sliding

contacts. As a result, the pulses are more rapid than
those with finite strain rate. But the most interesting

feature is that the pulse speed depends on the the sign

of pa, even at very small pulse velocities. Furthermore,

it seems that if we could stop the strain rate with an
infinite gentleness, the pulse speed would be discontin-

uous at pa = 0. This is an acoustical manifestation of

the incremental non-linearity of sliding contacts.

Physical process Compression Extension

pa < 0 pa > 0 pa < 0 pa > 0

Loss of contacts -0.233 -0.236 -0.038 -0.037
Sliding contacts -0.260 -0.179 -0.090 -0.107
Non-zero strain rate -0.034 -0.115 -0.032 -0.014
Total -0.527 -0.530 -0.160 -0.158

Table 2 Relative loss of sound speed ∆c/c0, due to the three
physical processes tested in the simulations. The sound speeds
are measured at |pa| = 10−9.

4.4 Physical processes affecting pulse speed

Fig. 11 separates the different physical processes affect-

ing the pulse speed. Four different types of experiments
are shown:

1. Deforming. The pulse propagates while the defor-

mation is ongoing (circles in Fig. 11).
2. Static. The strain rate is slowly brought to zero as

described in Sec. 4.3 before generating the pulse

(squares).

3. Non-sliding. The same as the static experiment, ex-
cept that we set the friction ratio to 2 (instead of

0.2) to suppress the effect of sliding contacts (dia-

monds).
4. Undeformed. The pulse travels through the packing

before any deformation is applied (stars).

The difference between the various experiments en-

ables us to isolate the various physical effects that re-
duce the pulse speed. For example, the only difference

between the deforming and static experiments is that

imposed strain rate is nonzero in the first case, but zero
in the second case. Thus the difference between the two

reveals the effect of the motion.

The difference between the static and non-sliding

experiments is that the first contains sliding contacts,

or contacts close to the sliding threshold, whereas the
second case does not. Thus the difference between these

two shows the effect of sliding contacts.

Finally, neither the non-sliding experiment nor the

undeformed experiments contain sliding contacts, but
their contact networks do differ. The application of the

load creates an anisotropic contact distribution, whereas

the undeformed state has a nearly isotropic distribu-
tion. Thus the effect of this change is given by the dif-

ference between these two cases.

The contribution of all these effects is summarized in

Tab. 2. The loss in sound speed at each step is given as

a fraction of the sound speed c0 in the undeformed sam-
ple. Also appearing in Tab. 2 are the results of the same

experiments done on the extension experiments. In this

case, the changes in sound speed are much weaker.
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4.5 Contact network anisotropy

To confirm the interpretations given in Fig. 11 and
Tab. 2, angular distribution of the contacts. The changes

and anisotropy of the pulse speed should correspond to

changes in the contact network.

In Fig. 12, we show the number of contacts at a given

angle, per radian and per grain. The contact angle θ is
the angle between the x-axis and the line of centers.

The two states used to construct Fig. 11 are used, and

both total and sliding contacts are considered.

Let us consider first the total contacts. The global

stiffness of the packing should be proportional to the

number of contacts, and the sound speed is proportional
to the square root of the stiffness. Fig. 12 shows that

the loading depletes horizontal contacts but not verti-

cal ones: at εyy = 1%, about a third of the horizontal
contacts have been lost, but none of the vertical ones.

Assuming that the pulse is carried mainly by the con-

tacts aligned in the direction of propagation, we find

that the loss of contacts should reduce the sound speed
by a factor of about 1 −

√

2/3 ≈ 0.184 in the com-

pression test, but not at all in the extension test. The

observed reductions are a bit larger, the difference be-
tween the two could be explained by appealing to the

non-affine motion of the grains that reduce the stiffness,

and are probably more important when the coordina-
tion number is smaller [].

Now let us consider the sliding contacts. Fig. 12

shows that the largest number of sliding contacts have
θ = ±π/4. There is some asymmetry: there are more

sliding contacts for θ < 0 than for θ > 0. Bringing the

strain rate to zero reduces this asymmetry.

If we consider the fraction of contacts at a given θ

that are sliding, a different picture emerges. Due to the
depletion of horizontal contacts, nearly half the con-

tacts are sliding at θ = 0, between a half and a third

at θ = ±π/4, and only about one seventh at θ = ±π/2.
Turning to now to Tab. 2, we see that the sound ve-

locities have the same isotropy. The reduction in sound

speed is between two and three times greater in the
compression test than in the extension test.

Note that there is no theoretical result for the in-
fluence of sliding contacts. Neither are they mentioned

when explaining experimental results. These results sug-

gest that they should be taken into account.

The anisotropy of the wave propagation speed can
also be understood by considering the loaded granular

material as a superposition of a strong contact network

and a weak one [20]. The strong contact network con-

sists of contacts with above average normal force and
acts as an anisotropic solid, with the majority of the

contacts aligned along the direction of the first princi-

pal stress. The weak contact network consists of con-
tacts with below average normal force, and is nearly

isotropic and dissipative. In the extension experiments,

the pulses travel along the direction of the first princi-
pal stress and are carried by the strong network. Sliding

contacts have a minimal effect because most of them are

in the weak network. In the compression experiments,

however, the pulses are carried by the weak network,
and sliding contacts have a major effect.

4.6 Effect of particle stiffness

In Fig. 13, we show the effect of particle stiffness. Rescal-

ing the pulse velocities with va ∝
√
Kn. is sufficient to

bring the curves close together. The discontinuity of the

speed when pa changes sign is visible in both cases, in-

dicating that the use of relatively soft (Kn = 2000p∗)
grains captures the essential physics.

The harder particles are technically more difficult

to handle. The weak pulses do not propagate through

the material, and so the velocities are estimated using

only the right half of the simulation.

4.7 Dependence on load

Do the changes in Fig. 11 appear only near failure or

are they also visible in lightly loaded situations? To an-

swer this question, we show in Fig. 14 how the pulse
speed changes as the load is increased. As one can see,

the decrease in sound velocity occurs in a continuous

way, rapidly at first, and then more slowly. The most
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important point of this figure, however, is that the dis-

continuity at pa = 0 appears as soon as the loading

begins. It is not a consequence of being close to the

failure threshold. One can furthermore see that sound
speed is not related in a simple way to the number of

sliding contacts. The sound speed decreases monotoni-

cally between εyy = 0 and εyy = 1%, but the number of
sliding contacts is strongly non-monotonic (see Fig. 3).

5 Discussion and conclusion

To conclude this paper, we examine in Sec. 5.1 some ex-

periments for evidence of the reduction of sound speed

due to sliding contacts. The experimental results are

p-wave s-wave

Compression [4]

vertical +0.054 -0.057
horizontal -0.134, -0.107 -0.049

Extension [4]

vertical -0.168 -0.121

horizontal +0.097, +0.080 -0.007
Oedometric [5]

vertical +0.473 +0.616
horizontal +0.296 +0.384,+0.419

Table 3 Changes in sound speed ∆c/c0 measured in
experiments[4; 5]. Here = ∆c = c0 − cf , where cf is the sound
speed for the largest available shear stress. The oedometric data
are for the “decompaction” initial condtion [5]. When two speeds
are given, it is because there are two independent directions or
polarizations.

indecisive: they neither exclude nor confirm the action

of sliding contacts. An anisotropic reduction in sound
speed is indeed observed, but an explanation in terms

of a simple change in the contact network could be en-

visaged.

We then recall in Sec. 5.2 the assumption that the
modelization of sliding contacts used in the simulations

applies at acoustic time scales. We propose an alterna-

tive where sliding contacts would not affect the acous-
tics, but still govern the quasi-static stress-strain rela-

tion.

The paper concludes with Sec. 5.3 where the distinc-
tive acoustic signature of sliding contacts is discussed.

The modelization used for sliding contacts could be

checked by looking for this signature in experiments.

5.1 Is there experimental evidence of sliding contacts?

First of all, in the study used to dimension the simula-

tions [1], the loss of contacts could explain the reduc-
tion of the p-wave speeds, but only have of the s-wave

speeds. This paper concerns only p-waves, and there

are other ways of explaining the slowing of s-waves. For

example, the shear modulus is much more sensitive to
non-affine motions than the bulk modulus [21; 22]. An

increase in these motions would affect mainly the s-wave

speed.
But it is the experiments of Agarwal and Ishibashi[4]

that correspond most closely to the situation studied in

the paper. They measured sound speed along different
paths during stress-controlled compression and exten-

sion tests. We also use the more recent experiments of

Khidas and Jia [5] who measured sound speeds in an

oedometric test. The most relevant results are summa-
rized in Tab. 3.

The experiments show the same anisotropy of the

sound speed as the simulations: the sound speeds are
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Compression Extension Oedometric

Initial -0.042, -0.016 -0.087, -0.096 0.018
Final 0.154, 0.150 0.188, 0.165 0.145

Table 4 Anistropy for the experiments [4; 5], as calculated using

Eq. (12), for p-waves.

pa < 0 pa > 0
Initial 0.002 -0.003
Non-sliding 0.228 0.228
Static 0.533 0.372
Deforming 0.562 0.563

Table 5 Anisotropy from the simulations, for different numerical
experiments. The names of the the numerical experiments are
taken from Fig. 11, and the data from Tab. 2.

larger in the direction of the principal stress (vertical
in the compression and oedometric test, horizontal in

the extension test).

The experimental results of Tab. 3 can be compared

to the numerical results of Tab. 2. In general, we see
that the changes of velocity are greater in the simula-

tions than in the experiments, suggesting that sliding

contacts do not need to be invoked to explain the ob-
servations. Indeed, the change in fabric (“Loss of con-

tacts” in Tab. 2) is more than sufficient to account for

the observed change in sound speed.

A more detailed comparison is made difficult by the
augmentation of the experimental sound speeds with

confining pressure, which does not exist in the simu-

lations. To get around this difficulty, we consider the

anisotropy of the sound speeds:

A = 2
c1 − c2
c1 + c2

. (12)

Here, c1 is the sound speed along the direction of the

first principal strain (vertical for the compression test,

horizontal for the extension tests), and c2 is the speed
measured in the other direction. The anisotropy for dif-

ferent simulations and experiments is given in Tabs. 4

and 5. Again, an explanation of the anisotropy observed
in experiments does not require appealing to sliding

contacts We conclude therefore that these experiments

do not show evidence for sliding at acoustic time scales.

5.2 Alternative models of sliding contacts

Sliding contacts are necessary to obtain realistic stress-

strain curves in a discrete element simulation of a tri-

axial test. It is therefore difficult to deny that sliding
contacts simply do not exist in the experiments. Per-

haps they determine the stress-strain curve but not the

acoustic properties.

As we have noted in Sec. 3, sliding contacts are very

delicate and can be disrupted by applied vibrations. It
is possible that vibrations in the experiments suppress

sliding contacts, while still allowing sliding to occur.

Another possibility is that their modelization is not

correct at acoustic time scales. As pointed out in the
introduction, the work in this paper depends on the

strong hypothesis that the solid friction law discussed

in Sec. 2.4 is valid at acoustic time scales.

Let us propose an alternative formulation of the
solid friction law that introduces a time scale τ related

to the activation of slip. We let Ft = −KtDt − γtḊt as

in Sec. 2.4, but

Ḋt = vt −Θ(|Dt| − |Dc
t |)

Dt −Dc
t

τ
. (13)

Here vt is the tangential component of the relative ve-

locity traditionally used in the tangential force law,
Dc

t = µFn/Kt is the critical value of Dt at which the

contact begins to slide. The Heaviside function Θ as-

sures that the second term is active only when Dt ex-

ceeds Dc
t . The modelization used in the paper is equiva-

lent τ → 0, so that contact react instantaneously to any

possible violation of the condition |Ft| ≤ µFn. But if τ

had a value intermediate between the imposed strain
rate and the acoustic time scale, contacts would slide

nearly instantaneously at long time scales, giving the

correct stress-strain curve, but behave as non-sliding
contacts as far as sound waves are concerned.

5.3 The acoustic signature of sliding contacts

The discussion in Sec. 5.1 does not show that sliding

contacts have no effect; it shows that sliding contacts

are not needed to explain any of the experimental re-
sults.

But what would be an clear sign of their presence?

One could look for the characteristic signature of sliding

contacts that appears throughout this paper: incremen-
tal non-linearity. At low or zero strain rates, the pulse

speed depends on the sign of pa, even when pa is very

small. This effect could be searched for experimentally.

In many experiments, a wavelet that is a high order
derivative of a Gaussian peak is used. Would the char-

acteristic signature of sliding contacts still appear? To

answer this question, we applied a fourth derivative of
the Gaussian

f(t) = pa
(

3− 6τ2 + τ4
)

e−τ2/2. (14)

to the right wall, and measured the progression of the

pressure signal through the material. The measured

pulse speeds are shown in Fig. 15. As one can see, the
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Fig. 15 Speed of wavelets in the granular material.

discontinuity of the speed is reduced but still visible.
Thus we expect that this non-linearity could be de-

tected experimentally, if contacts were sliding at acous-

tic time scales. In this way, the applicability of the

model could be checked experimentally.

6 Disclosures

The author thanks Jim Jenkins for pointing out the

existence of Ref. [4], and D. Imbert, Y. Le Gonidec,
and L. Le Marrec for discussions.

This work was supported by the ANR grant STABIN-
GRAM No. 2010-BLAN-0927-01. The author confirms

that the work presented in this paper has never been

submitted to any other journal or to any conference
proceeding.

References

1. Y. Khidas and X. Jia, Probing the shear-band formation in
granular media with sound waves, Phys Rev E 85 051302

(2012).
2. V. Yu. Zaitsev, P. Richard, R. Delannay, V. Tournat and V.E.

Gusev, Pre-avalanche structural rearrangements in the bulk

of granular medium: Experimental evidence EPL 83 64003
(2008).

3. X. Jia, Th. Brunet, and J. Laurent Elastic weakening of a
dense granular pack by acoustic fluidization: slipping, com-

paction, and aging Phys Rev E 84 020301R (2011).
4. T.K. Agarwal and I. Ishibashi, Anisotropic Elastic Constants

of Granular Assembly from Wave Velocity Measurements,

Advances in Micromechanics of Granular Materials, H.H.
Shen et al (eds) p.51-60 (1992)

5. Y. Khidas, X. Jia, Anisotropic nonlinear elasticity in a
spherical-bead pack: Influence of the fabric anisotropy, Phys

Rev E 81 021303 (2010)
6. G. Michlmayr and D. Or, Mechanisms for acoustic emissions

generated during granular shearing,Granular Matter 16 627-
640 (2014).

7. O. Mouraille, W. A. Mulder, S. Luding, Sound wave acceler-
ation in granular materials JSTAT P07023 (2006).

8. O. Mouraille, O. Herbst and S. Luding, Sound propagation in

isotropically and uni-axially compressed cohesive, frictional

granular solids Engineering Fracture Mechanics 76 786-791,
(2009).

9. O. Mouraille and S. Luding, Sound wave propagation in

weakly polydisperse granular materials [ Ultrasonics 48 (6-7)
498-505, 2008

10. O. Moraille, Sound Propagation in dry granular materials:

discrete element simulations, theory, and experiments, Uni-
versity of Twente (2009).

11. Y. Sakamura and H. Komaki, Numerical simulations of
shock-induced load transfer processes in granular media us-

ing the discrete element method Shock Waves 22 57-68
(2012).

12. S. Melin, Wave propagation in granular assemblies, Phys Rev

E 49 2353-2361 (1994).

13. E. Somfai, J.-N. Roux, J.H. Snoeijer, M. van Hecke, and W.
van Saarloos, Elastic wave propagation in confined granular

systems Phys Rev E 72 021301 (2005).

14. J. Lopolds, G. Conrad, and X. Jia, Onset of Sliding in Amor-
phous Films Triggered by High-Frequency Oscillator Shear,

Phys Rev Lett 110 248301 (2013).
15. S. van den Wildenberg, M. van Hecke, and X. Jia, Evolution

of granular packings by nonlinear acoustic waves, EPL 101

14004 (2013).
16. F. Darve and F. Nicot, On incremental non-linearity in gran-

ular media: phenomenological and multi-scale views, Int J

Num and Analytic Meth in Geomechanics 29 1387-1409
(2005).

17. J.N. Roux and F. Chevoir, Dimensional Analysis and Control

Parameters, in Discrete-element modeling of Granular Mate-

rials, F. Radja and F. Dubois, eds. ISTE, J. Wiley p. 199-228
(2011).

18. S. McNamara, Absorbing boundary conditions for granular

acoustics, in III International Conference on Particle based

Methods – Fundamentals and Applications, PARTICLES
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