N

N

A comparative study of two formal semantics of the

SIGNAL language
Zhibin Yang, Jean-Paul Bodeveix, M Filali

» To cite this version:

Zhibin Yang, Jean-Paul Bodeveix, M Filali. A comparative study of two formal semantics of the
SIGNAL language. Frontiers of Computer Science, 2013, vol. 7 (n° 5), pp. 673-693. 10.1007/s11704-
013-3908-2 . hal-01154264

HAL Id: hal-01154264
https://hal.science/hal-01154264

Submitted on 21 May 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01154264
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

OpenArchive TOULOUSEArchive Ouverte ODATAO)

OATAO is an open access repository that collectsswbrk of Toulouse researchers .
makes it freely available over the web where podss

This is an author-deposited version published http://oatao.univoulouse.fr
Eprints IC : 1271¢

Tolink tothisarticle: DOI:10.1007/s11704-013-3908-2
URL : http://dx.doi.org/10.1007/s11704-013-3908-2

Tocitethisversion : Yang, Zhibin and Bodeveix, Jean-Paul and Filali,
MamounA compar ative study of two formal semantics of the SGNAL
language. (2013) Frontiers of Computer Science, vol. 7 (npp. 673693.
ISSN 209!-222¢

Any correspondare concerning this service should be sent to thesiagy
administrator staffoatao@liste-diff.inp-toulouse.

A comparative study of two formal semantics
of the SIGNAL language

Zhibin YANG (D)), Jean-Paul BODEVEIX (0<))2, Mamoun FILALI (D)2

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2 IRIT-CNRS, Université de Toulouse, Toulouse 31062, France

Abstract
family, which are broadly used in the design of safety-critical

SIGNAL is a part of the synchronous languages

real-time systems such as avionics, space systems, and nu-
clear power plants. There exist several semantics for SIG-
NAL, such as denotational semantics based on traces (called
trace semantics), denotational semantics based on tags (called
tagged model semantics), operational semantics presented by
structural style through an inductive definition of the set of
possible transitions, operational semantics defined by syn-
chronous transition systems(STS), etc. However, there is lit-
tle research about the equivalence between these semantics.

In this work, we would like to prove the equivalence be-
tween the trace semantics and the tagged model semantics, to
get a determined and precise semantics of the SIGNAL lan-
guage. These two semantics have several different definitions
respectively, we select appropriate ones and mechanize them
in the Coq platform, the Coq expressions of the abstract syn-
tax of SIGNAL and the two semantics domains, i.e., the trace
model and the tagged model, are also given. The distance
between these two semantics discourages a direct proof of e-
quivalence. Instead, we transform them to an intermediate
model, which mixes the features of both the trace semantics
and the tagged model semantics. Finally, we get a determined
and precise semantics of SIGNAL.

Keywords synchronous language, SIGNAL, trace seman-

tics, tagged model semantics, semantics equivalence, Coq

E-mail: {Zhibin.Yang, bodeveix, filali}@irit.fr

1 Introduction

Safety-critical real-time systems such as avionics, space sys-
tems, and nuclear power plants, are also considered as re-
active systems [1], because they always interact with their
environments continuously. The environment can be some
physical devices to be controlled, a human operator, or oth-
er reactive systems. These systems receive from the envi-
ronment input events, and compute the output information,
which are finally returned to the environment. The arrival
time of events may be different, and the computation need-
s time. Synchronous method is an important choice to de-
sign these systems, which relies on the synchronous hypothe-
sis [2]. Firstly, the computation time is abstracted as zero, that
lets system behaviors be divided into a discrete sequence of
instants. At each instant, the system does input-computation-
output, which takes zero time. Secondly, the different ar-
rival time of events are abstracted as the relative order be-
tween events. Even of the physical time is abstracted, the
inherent functional properties are not changed, so we can say
this method focuses on functional behaviors at a platform-
independent level.

There are several synchronous languages, such as ESTER-
EL [3], LUSTRE [4], SIGNAL [5] and QUARTZ [6]. Syn-
chronous languages can be considered as different implemen-
tations of the synchronous hypothesis. As a main difference
from other synchronous languages, SIGNAL naturally con-
siders a mathematical time model, in term of a partial order
relation, to describe multi-clocked systems without the neces-

sity of a global clock. This feature permits the description of
globally asynchronous locally synchronous systems (GAL-
S) [7, 8] conveniently.

There exist several semantics for SIGNAL, such as de-
notational semantics based on traces (called trace semantic-
s) [9-11], denotational semantics based on tags which are el-
ements of a partially ordered dense set (called tagged model
semantics) [10,12], operational semantics presented by struc-
tural style through an inductive definition of the set of possi-
ble transitions [5, 10], operational semantics defined by syn-
chronous transition systems (STS) [13]. The differences be-
tween the trace semantics and the tagged model semantics
are: logical time is represented by a totally ordered set (the
set of natural integers N) or a partially ordered set; absence of
events is explicitly specified (by the L symbol) or not. Addi-
tionally, Nowak proposes a co-inductive semantics for mod-
eling SIGNAL in the Coq proof assistant [14, 15]. However,
there is little research about the equivalence between these
semantics. The trace semantics and the tagged model seman-
tics are more commonly used, so we would like to prove the
equivalence between them, to get a determined and precise
semantics of the SIGNAL language.

The rest of the paper is organized as follows. Section 2
introduces the basic concepts of the SIGNAL language. The
abstract syntax of SIGNAL and its Coq expression is given
in Section 3. Section 4 presents the definitions of the two
semantics domains, i.e., the trace model and the tagged mod-
el. Section 5 gives the two formal semantics and their Coq
specifications. The proof of the semantics equivalence is pre-
sented in Section 6. Section 7 discusses the related work, and
Section 8 gives some concluding remarks.

2 An Introduction to SIGNAL

Signals As declared in the synchronous hypothesis, the be-
haviors of a reactive system are divided into a discrete se-
quence of instants. At each instant, the system does input-
computation-output, which takes zero time. So, the inputs
and outputs are sequences of values, each value of the se-
quence being present at some instants. Such a sequence is
called a signal. Consequently, at each instant, a signal may
be present or absent (denoted by L). In SIGNAL, signals
must be declared before being used, with an identifer (i.e.,
signal variable or the name of signal) and an associated type
for their values such as integer, real, complex, boolean, event,
string, etc.

Example 1 Three signals named inputl, input2, output

are shown as follows.

inputl 1 L 3 1 ---
input2 L. 5 7 9 ---
output L 1 10 L ---

Abstract Clock The set of instants where a signal takes
a value is the abstract clock of the signal. Two signals are
synchronous if they are always present or absent at the same
instants, which means they have the same abstract clock.

In the example given above, the abstract clock of inputl,
input2 and output, denoted respectively “inputl, “input2 and
“output, are defined by different set of logical instants.

Moreover, SIGNAL can specify the relations between the
abstract clocks of signals in two ways: implicitly or explicit-
ly.

Primitive Constructs SIGNAL uses several primitive
constructs to express the relations between signals, includ-
ing relations between values and relations between abstract
clocks. Moreover, the primitive constructs can be classified
into two families: monoclock operators (for which all sig-
nals involved have the same abstract clock) and multiclock
operators (for which the signals involved may have different
clocks).

e Monoclock operators, including instantaneous func-

tion and delay. The instantaneous function x :=

fx, -

produce the output x, while the delay operator x :=

-, x,) applied on a set of inputs xy,--- ,x, will

x1 $ init ¢ sends a previous value of the input to the
output with an initial value c.

e Multiclock operators, including undersampling and de-
terministic merging. The undersampling operator x :=
x1 when x; is used to check the output of an input at the
true occurrence of another input, while the deterministic
merging operator x := x| default x, is used to select be-
tween two inputs to be sent as the output, with a higher
priority to the first input.

Notice that, these operators specify the relations between
the abstract clocks of the signals in an implicit way.

In the SIGNAL language, the relations between values and
the relations between abstract clocks, of the signals, are de-
fined as equations, and a process consists of a set of equation-
s. Two basic operators apply to processes, the first one is the
composition of different processes, and the other one is the
local declaration in which the scope of a signal is restricted
to a process.

Example 2 Let us consider a simple process Count [12].
It accepts an input signal reset and delivers the integer output

signal val. The local variable counter is initialized to 0 and s-
tores the previous value of the signal val. When an input reset
occurs, the signal val is reset to 0. Otherwise, the signal val
takes an increment of the variable counter. The process Par-
allelCount is the composition of two Count processes. Here,
the program is not deterministic.

process ParallelCount = (!integer x1,x2;)
(| x1 := Count(r)
| x2 := Count(r)
|) where event r;
process Count = (? event reset; ! integer val;)
(| counter :=val $1 init 0
| val := (0 when reset) default (counter + 1)
|) where integer counter;
end,
end;

Extended Constructs SIGNAL also provides some oper-
ators to express control-related properties by specifying clock
relations explicitly, such as clock synchronization, set op-
erators on clocks (union, intersection, difference) and clock

comparison.
e Clock synchronization, the equation x; "= x, "=--- "=x,
specifies that signals x, x», - - - , X, are synchronous.

e Set operators on clocks, such as the equation x:= x; ~ +
x, defines the clock of x as the union of the clocks of
signals x; and x;, the equation x:= x; ~ * x, defines the
clock of x as the intersection of the clocks of signals x;
and x,, the equation x:= x; " - x, defines the clock of x
as the difference of the clocks of signals x| and x,.

e Clock comparison, such as the statement x; ~ < x, speci-
fies a set inclusion relation between the clocks of signals
x1 and x,, the statement x; ~ > x; specifies a set contain-
ment relation between the clocks of signals x; and x;.

3 Abstract Syntax of SIGNAL and its Coq Ex-
pression

In this section, we first give a brief introduction of the theo-
rem prover Coq, then, we give the abstract syntax of SIGNAL
and its Coq expression.

3.1 A Brief Introduction of Coq

Coq [16] is a theorem prover based on the Calculus of Induc-
tive Constructions which is a variant of type theory, follow-
ing the "Curry-Howard Isomorphism" paradigm, enriched
with support for inductive and co-inductive definitions of data

types and predicates. From the specification perspective, Co-
q offers a rich specification language to define problems and
state theorems. From the proof perspective, proofs are devel-
oped interactively using tactics, which can reduce the work-
load of the users. Moreover, the type-checking performed by
Coq is the key point of proof verification.

Here, we try to give an intuitive introduction to the Co-
q terminologies which are used in this paper. In the spirit
of "Curry-Howard Isomorphism" paradigm, types may rep-
resent programming data-types or logical propositions. So,
the Coq objects used in this paper can be sorted into two cat-
egories: the Type sort and the Prop sort:

e Type is the sort for data types and mathematical struc-
tures, i.e. well-formed types or structures are of type

Type.
bool, nat — nat, etc., and can be inductive structures,

Data types can be basic types such as nat,

record and co-inductive structures (for infinite objects,
as for example infinite sequences). We use Fixpoint and
CoFixpoint definitions to define functions over inductive
and to co-inductive data types.

e Prop is the sort for propositions, i.e. well-formed propo-
sitions are of type Prop. We can define new predicates
using inductive, record (for conjunctions of properties)
or co-inductive definitions.

3.2 The Abstract Syntax of SIGNAL

The semantics of each of the extended constructs is defined
in term of the primitive constructs, so we just consider the
primitive constructs, that is core-SIGNAL. Its abstract syntax
is presented as follows.

P:=x:= f(x1, - ,x,) instantaneous function
|x:=x; $initc delay
|x := x; when x, undersampling

|x := x1 default x, deterministic merging
|PIP’ composition
|P/x local declaration

To express more complex SIGNAL programs, all the right-
side signal variables of the equations can be replaced by an
expression on signal variables.

Here we give the Coq expression of the abstract syntax
of SIGNAL. It is parameterized by the set XVar of signal
variables, and the set Value of values that can be taken by
the variables. isTrue checks that a value is considered to be
true. mkBool is used to coerce Bool(s) to Value(s). The type
Process is defined using five constructors corresponding to
the constructs of the core-SIGNAL. We give a very abstract
expression of an instantaneous function. The function Pass

takes three parameters: a function f of type ((Index — Val-
ue) — Value) having an indexed set of input parameters, a
variable name of type XVar which contains the left-side vari-
able and an indexed set of variable names of type (Index —
XVar) which denotes the actual parameters of f. Index, for
example /, -- -, n, represents a set used to index the parame-
ters. Similarly, Pdelay, Pwhen, Pdefault, and Ppar build the
corresponding SIGNAL constructs. However, the local dec-
laration is ignored, to get a simplest criterion for the proof of
semantics equivalence (see Section 5 and Section 6).

Parameter XVar: Type.
Parameter Value: Type.
Parameter isTrue: Value — Prop.
Parameter mkBool: Bool — Value.
Inductive Process: Type :=
Pass: V Index ,((Index — Value) — Value)

— XVar — (Index — XVar) — Process
Pdefault: XVar —» XVar —» XVar — Process
Pwhen: XVar — XVar — XVar — Process
Pdelay: XVar — XVar — Value — Process
Ppar: Process — Process — Process.

4 Semantics Domains

Semantics domains such as the trace model and the tagged
model are introduced in this section. To avoid confusion, we
will treat signal variables and signals (sequence of values)
separately. The naming convention is given as follows:

o { X, X1, X2,...,Xp,Y,... }are signal variables.

e {V,v|,V2,...,Vy, VW, C, ... }arevalues, and c represents
a constant value.

o {5, 81,5,...,8,... }are signals.

o {i,i,ln,...,10n J,k,... }areindexes.

o {tr tri, try, ..., try, tr', trs,... } are traces.

o {1, tg,t1,..., 1, t,... } aretags.
e {Db,by,by, ..., Db, b, th, ... } are the behaviors on tag
structures.

The SIGNAL language specifies a system behavior as a
platform-independent model at first. However, it is finally
needed to guarantee a correct physical implementation from
it (i.e., need to deal with physical time). A formal support for
allowing time scalability in design is given in the modeling
environment Polychrony [17] by the so-called stretch-closure
property. This property can be defined both on the trace mod-
el and on the tagged model.

4.1 Trace Model

Let X be a set of signal variables, and let V be the set of
values that can be taken by the variables. The symbol L (L
¢ V) is introduced to express the absence of valuation of a
variable. Then we denote:

Vi=vVul{l}

The corresponding Coq expression is given as follows:

Inductive EValue:Type:=
Val: Value — EValue
| Absence: EValue.
Definition 1 (VSignal) [10]
(57)ier of typed values (of V*), where I is the set of natural

A signal s is a sequence

integers N or an initial segment of N, including the empty
segment.

A signal can be finite. However, we can extend the finite
signal with infinite absences, to get an infinite one. So, in the
Coq expression, a signal is defined as an infinite object.

ColInductive VSignal:Type:=
Vs: EValue — VSignal — VSignal.

In the following paragraphs, the definition of traces is giv-
en. Notice that, a signal is just a sequence of values corre-
sponding to a signal variable, while a trace defines the syn-
chronized sequences of values of a set of signal variables.

Definition 2 (Event) [9] Considering X a non-empty sub-
set of X, we call event on X any application

e:X—> Vg
e ¢(x) = L indicates that variable x has no value in the
event.

e ¢(x) = v indicates, for v € V,, that variable x takes the
value v in the event.

The absent event on X (X — {L}), where all the signals are
absent at a logical instant, is denoted L.(X). Moreover, the
set of events on X (X — Vy) is denoted Ex.

A trace is a sequence of events. For any subset X of X, we
consider the following definition of the set Ty of traces on
X.

Definition 3 (Traces) Ty is the set of traces on X, de-
fined as the set of applications N — Ex where N is the set of
natural integers.

The absent trace on X (N — {L1.(X)}), i.e., the infinite se-
quence formed by the infinite repetition of L.(X), is denoted
ly.

Similarly, a trace can be finite. However, we can extend
the finite sequence with infinite absent events, to get an infi-
nite trace.

Example 3 Let us consider the following equation: x3 :=
x1 * xp. The set of signal variables is X = {x|, x2, x3}. A
possible trace is given as follow:

L3 3110
X1 57119
X3 L1521 L1L0---

The trace can be seen as a sequence of events:

xp - L x1 =3
feg: x> Ll,er:|lxa—>5 |-}
X3 > L x3 15

The Coq expression of the definition of traces is given as
follows.

ColInductive Trace:Type:=
Tr: (XVar —» EValue) —» Trace — Trace.

As mentioned before, the set of instants where a signal
takes a value is the abstract clock of the signal. Its Coq ex-
pression is given as follows.

CoFixpoint AClock (x:XVar)(tr:Trace)
:VSignal:=
match tr with
Tr st tr’ =
match st x with
Absence = Vs Absence (AClock x tr)
|_ = Vs (Val (mkBool true))
(AClock x tr)
end
end .

Given a SIGNAL process, its
trace semantics, denoted as Sprocess, includes a set of sig-

Definition 4 (Sprocess)

nal variables defining the domain of the process and a set of
traces.

The Coq expression is given as follows:

Record Sprocess:Type:={

sdom: XVar — Prop;
straces: Trace — Prop

}.

Additionally, we give the definition of the stretch-closure
property on the trace model as the definition of compression
of a trace given in [18]. The intuition is to consider a trace
as an elastic with ordered marks on it. If it is stretched, the
marks remain in the same order but have more space (time)
between each other by adding columns of L (see Fig.1). The
same holds for a set of traces (a behavior), so stretching
gives rise to an equivalence between behaviors (stretch equiv-
alence).

Definition 5 (Stretching) For a given subset X of X, a
trace tr; is less stretched than another trace tr,, noted tr; <.,
try, iff there exists a mapping f : N — N such as:

x1 L 3 3 L L1 0
x2 1L 5 7 1L L 9
x3 1L 15 21 L 1 O

N

xl1 L L 3 L 3 L L 1 0
x2 1L L 5 1 7 1 L1 1 9
x3 L 115 L 21 L 1 1 0

Fig. 1 Stretching of a trace following f

e VYxe XVieN,try(f(i)(x) =tri(i)(x)
o VxeXVjeN,tn(j)(x) =1, if j¢ range(f)
e VijeN,i<j= f(i) < f())

The Coq expression is given as follows. trGetEV is used
to get the value (including L) of each signal at each instant of

a trace.
Fixpoint trGetEV tr i x:EValue:=
match i, tr with
O, (Tr st tr’) = st x
[(S j), (Tr st tr’) = trGetEV tr’ j x
end .

Record Stretching (trl:Trace)(tr2:Trace)
:Prop:={
Stretch_f:
Stretch_val:

nat — nat;

Vv x i, trGetEV trl i x

= trGetEV tr2 (Stretch_f i) x;

Stretch_bot: V x j, (Y i, Stretch_f j # i)
— trGetEV tr2 j x = Absence;

Stretch_mono: V i j, 1 < j

— Stretch_f i < Stretch_f j

Definition 6 (Stretch Equivalence) For a given subset
X of X, two traces tr; and tr, are stretch-equivalent, noted
tri 2 try, iff there exists another behavior 73 less stretched
than both tr; and try, i.e., try 2 try iff Atry tr3 <;, tr; and
try <;, tr.

The Coq expression is given as follows:
Inductive Stretch_Equivalence (trl :Trace)

(tr2:Trace):Prop:=

Str_EqPrf: V tr3:Trace, Stretching tr3 trl

— Stretching tr3 tr2
— Stretch_Equivalence trl tr2.

Definition 7 (Stretch Closure) For a given trace fr, the
set of all traces that are stretch-equivalent to fr, defines its
stretch closure, noted tr*.

The stretch closure of a set of traces T x, includes all the
traces resulting from the stretch closure of each trace tr € 7y,

T 3k
ie., Uper, "

The Coq expression is given as follows:

Inductive Stretch_Closure(trs:Trace — Prop)
:Trace — Prop:=
Stretch_cl: V trl tr2:Trace, trs trl
— Stretch_Equivalence trl tr2
— Stretch_Closure trs tr2.
Definition 8 (Stretch-Closed) A SIGNAL process is
stretch-closed, iff, for all 77/ € S process.straces and for all
tr € Ty, tr 2 tr' = tr € S process.straces

4.2 Tagged Model

Lee and Sangiovanni-Vincentelli proposed the tagged-signal
model [19] to compare various models of computation. Itis a
denotational approach where a system is modeled as a set of
behaviors. Behaviors are sets of events. Each event is a value-
tag pair. Complex systems are derived through the parallel
composition of sub-systems, by taking the intersection of the
sets of behaviors. After that, the tagged-signal model is also
used to express the semantics of the SIGNAL language [10,
12], because this model can represent the feature of multi-
clock naturally.

We reuse the sets X and V defined in Section 4.1.

Definition 9 (Tag Structure) A tag structure is a tuple
(T, <), where:

e T is the set of tags.

e <isa partial order on T.

The Coq expression is given as follows. 7ag represents a
set of tags, tle is a partial order, and 7lf is defined as a strict
partial order.

Record TAG: Type:={

Tag: Type;

tle: Tag — Tag — Prop;

tpo: order Tag tle;

tlt t1 t2:=tle t1 t2 A t1 # t2;

}.

Definition 10 (Tagged Event) [10] A tagged event ¢ on
a given tag structure (T, <) is a pair (r,v) € T X V.

Example 4 A tag structure associated with events is given
in Fig.2. Sharing the same tag among different events repre-
sents the events are synchronous at that logical instant.

A totally ordered set of tags C € T is called a chain, and
min{C} denotes the minimum element of C. In addition, we
denote by C7 the set of all chains on (T, <).

Definition 11 (TSignal) A signal on a tag structure (T,
<) is a partial function s € C — V which associates values
with the tags that belong to a chain C.

Let the set of signals on (T, <) be noted S 7. Here, we give
two signals as an example (see Fig.3).

(2,1)

(t6,8)
(6,9)

(t4,5)
t4,5)

(t5,1)
(t5,0)
(t0,1)
(0,0)

Fig.2 A tag structure with events

g O—>0—>0 >0 >0 >0
(t0,1) (t1,3) (t2,1) (t4,5) (t5,1) (16,8)

2 @—»Q—>»Q0—>0 »@
(0,0) (t3,4) (t4,5) (5,0) (t6,9)

Fig. 3 Two signals of the tag structure in Fig.2

The Coq expression is given as follows. The type Tsig-
nal_from is used to construct a chain from a tag t. Tsignal
represents the set of signals. "@<" is the notation for the
strict partial order tlt.

ColInductive Tsignal from {G:TAG}(t:Tag G): Type:

Tend: Tsignal_from t
| Tnext: V tn, t @ tn — Value

— Tsignal_from tn — Tsignal_from t.
Inductive Tsignal G: Type :=

Tempty: Tsignal G
| Tfrom: V (t: Tag G), Value

— Tsignal_from t — Tsignal G.

Definition 12 (Behavior) Given a tag structure (T, <), a
behavior b on X C X is a function b € X — S 7 that associates
each variable x € X with a signal s on (T, <).

Notice that, here signal variables and signals are treated
separately, and the behaviors on tag structures give the map-
ping between them.

The Coq expression is given as follows. In the type The-
havior, each variable is associated with a signal.

Definition Tbehavior (G:TAG):=
XVar — Tsignal G.

We denote by Bjx the set of behaviors of domain X € X
on (T, <). Given a behavior b € By, we write vars(b) and
tags(b(x)) (x € vars(b)) to denote the signal variables consid-
ered in b and the set of tags associated with the signal variable
x. O)x expresses the association of X with empty signal.

Definition 13 (Tprocess) Given a SIGNAL process, its
tagged model semantics, denoted as Tprocess, includes a set
of signal variables and a set of behaviors on tag structures.

The Coq expression is given as follows:

Record Tprocess (G:TAG):={
tdom: XVar — Prop;

tbehaviors: Tbehavior G — Prop

).

Remark 1 The logical time used in the trace model is
a totally ordered set, and the absence of events is explicitly
specified, while the logical time used in the tagged model
is a partially ordered set, and the absence of events is not
specified. Moreover, a tag structure may correspond to a set
of traces.

Additionally, we give the definition of the stretch-closure
property on the tagged model [10, 12]. The intuition is to
consider a signal as an elastic with tags on it. If it is stretched,
tags remain in the same order but have more space (time)
between each other (see Fig.4). The same holds for a set
of elastics: a behavior. If elastics are equally stretched, the
partial order between tags is unchanged.

sl
(t0,1) (t1,3) (t2,1) (t4,5) (t5,1) (t6,8)
s2
(t0,0) (t3,4) (t4,5) (t5,0) (t6,9)
\
sl
(tL) (12,3) (13.,1) (5,5) (to,1) (7,8)
s2
(t1,0) (t4,4) (15,5) (6,0) (t7,9)

Fig. 4 Stretching of a behavior composed of two signals following f

Definition 14 (Stretching) For a given domain X C X, a
behavior b, is less stretched than another behavior b,, noted
by <py by, iff there exists a mapping [: tags(b)) — tags(bs)
following b, and b, are isomorphic:

Vx € vars(by), f(tags(bi(x))) = tags(by(x))
Vx € vars(by) YVt € tags(by(x)), b1 (x)(t) = ba(x)(f (1))

Vit € tags(by),ty <t = f(t)) < f(t2)
e VCe(Cp,VteC,t < f(1)

The Coq expression is given as follows. tags_from and
tags are used to get the tags of a given signal, brags repre-
sents the tags of all the signals in a given behavior, while
tval_from and tval are used to get the value at each tag of a
signal. "@<=""is the notation of f/e.

Inductive tags_from {G}(t t0:Tag G)
:Tsignal_from t0 — Prop:=

in_curr: V ti h vi s’, t=ti
— tags_from t tO0 (Tnext tO ti h vi s’)
in_next: VY ti h vi s’, tags_from t ti s’

— tags_from t tO (Tnext tO ti h vi s’).

Inductive tags {G} t:Tsignal G — Prop:=
in_first: ¥V t0O vO s’ , tO=t
— tags t (Tfrom G t0 vO s’)
| in_from: V t0O vO s’, tags_from t
— tags t (Tfrom G t0 vO s’).

t0 s’

Inductive btags {G}(b:Tbehavior G)
(dom:XVar — Prop) t:Prop:=

btagsPrf: ¥V x, dom x — tags t
— btags b dom t.

(b x)

Record tStretching {Gl G2:TAG}
(bl:Tbehavior Gl1)(b2:Tbehavior G2)
(dom:XVar — Prop):Prop:={

tStretch_f: Tag Gl — Tag G2;
tStretch_tags: V t2 x, dom x

— tags t2 (b2 x)

— 3 tl, tags tl (bl x)

A t2=tStretch_f tl;

tStretch_val: V t x v, dom x

— tval (bl x) t v

— tval (b2 x)(tStretch_f t) v;
tStretch_mono: V tl1 t2: Tag GI,

btags bl dom tl

— btags bl dom t2 — tl @< t2

— tStretch_f tl1 @< tStretch_f t2;
tStretch_incr: V t, t @<= tStretch_f t

Definition 15 (Stretch Equivalence) For a given domain
X C X, two behaviors b, and b, are stretch-equivalent, noted
by = b,, iff there exists another behavior bj less stretched than
both b and b,, i.e., by = b, iff bz bs <By by and b3 <By b;.
The Coq expression is given as follows.
Inductive tStretch_Equivalence {Gl G2:TAG}
(bl:Tbehavior Gl1)(b2:Tbehavior G2)
(dom:XVar — Prop):Prop:=
tStrEq: V G3 (b3:Tbehavior G3),
tStretching b3 bl dom

— tStretching b3 b2 dom
— tStretch_Equivalence bl b2 dom.

Definition 16 (Stretch Closure) For a given behavior b,
the set of all behaviors that are stretch-equivalent to b, defines
its stretch closure, noted b*.

The stretch closure of a set of behaviors Bjy includes all the
behaviors resulting from the stretch closure of each behavior
b € Bix, i.e., Upep, D"

The Coq expression is given as follows.

Inductive tStretch_Closure {G:TAG}
(tb: Tbehavior G — Prop)(dom:XVar
— Prop): Tbehavior G — Prop:=
tStretch_cl:¥V bl b2, tb bl
— tStretch_Equivalence bl b2 dom
— tStretch_Closure tb dom b2.

Definition 17 (Stretch-Closed) A SIGNAL process is
stretch-closed, iff, for all b’ € T process.tbehaviors and for
all b € Bix, bz b’ = b € Tprocess.tbehaviors

5 Two Formal Semantics

Primitive constructs of the SIGNAL language specify the re-
lations between signals at the syntax level. The trace seman-
tics and the tagged model semantics are both denotational
style. They interpret and define precisely the relations be-
tween values and the relations between clocks of signals in
their semantics domains. In this paper, the semantics ignores
the local declaration of signal variables to get a simplest cri-
terion for the proof of semantics equivalence.

5.1 Trace Semantics

There are several definitions of the trace semantics of SIG-
NAL [9-11], we select [10] as the reference paper semantics
and mechanize it in Coq. Most of the Coq expressions are
close to the paper semantics, but some expressions are not,
so we need to justify the equivalence between them. We also
refer to the Coq expressions of Nowak [14, 15].

Here, each single signal is observed in the reference pa-
per semantics, while the corresponding trace with signal vari-
ables x, xj,...,x, is directly used in the Coq expressions.
The difference between them has been given in Section 4.1.
The mapping between them is done at the end (i.e., the defi-
nition Process2Sprocess).

Trace Semantics 1 (Instantaneous function) The trace
semantics of the instantaneous function is defined as follows:

VYT eN
5 = 1
T f(sl‘{'s'-

At each instant 7, the signals are either all present or all

ifS]TI...ZSm—:J_
s Sur) if S1eEFLACAS #E L

~

absent, i.e., they are synchronous, denoted as s "= s; "=+
= s,. sy gets the value of f(sir,..., S,;) when the signals are
all present. The function f includes different mathematical
operations, such as arithmetic operations, boolean operations,
etc.
The corresponding Coq expression is given as follows.
ColInductive Sassignment x Index (f:(Index —
Value) — Value)(xi:Index — Var)
:Trace — Prop:=
SassU: V st tr, (VY i, st (xi i) = Absence)
— st x = Absence
— Sassignment x Index f xi tr
— Sassignment x Index f xi (Tr st tr)

| SassP: V v st tr,(V i,st (xi i) = Val (v 1))
— st x=Val (f v)
— Sassignment x Index f xi tr
— Sassignment x Index f xi (Tr st tr).

Trace Semantics 2 (Delay) The trace semantics of the de-
lay construct is defined as follows:

—-VtreN)s,=Loe s, =1

—{k|sik # L} # 0 = Sminfkjsy=1) = €

—(VTeN)sir 2 LAtk>T s #zL#0
= Sminfk>t|sy#l) = Sit

Here, we make the definition of the trace semantics of De-
lay in [10] more precise. min(S) denotes the minimum of
a non-empty set of naturals. Similarly to the instantaneous
function, the delay construct also requires signals s and s
have the same clock, denoted as s "= s;. Given a logical in-
stant 7, s takes the most recent value of s, except the one at
7. Initially, s takes the value c.

The Coq expression is given as follows.

ColInductive Sdelay x x1 c:Trace — Prop:=

SdelayU: V st tr, st x1 = Absence

— st x = Absence
— Sdelay x x1 ¢ tr
— Sdelay x xI ¢ (Tr st tr)

| SdelayP: V st v tr, st x1 = Val v
— st x = Val ¢
— Sdelay x xI v tr
— Sdelay x x1 ¢ (Tr st tr).

Trace Semantics 3 (Undersampling) The trace semantics
of the undersampling construct is defined as follows:

VTeN
5 = {sh if s = true
L otherwise
Here, s and s; have the same type and s, is a boolean sig-
nal. The clock of s is the intersection of the clock of s; and
the clock of s, denoted as s=s; " * [s,], while [s,] represents
the true occurrences of s,. Given a logical instant 7, s, gets
the value of s;; when s,; is true, else gets the value L.
The Coq expression is given as follows.

Colnductive
SwhenT :

Swhen(x x1 x2:XVar): Trace—Prop:=
st v b tr, isTrue b

st x = Val v - st x1 = Val v

st x2 = Val b —» Swhen x x1 x2 tr
Swhen x x1 x2 (Tr st tr)

st b tr, =isTrue b

st x = Absence — st x2 = Val b
Swhen x x1 x2 tr

Swhen x x1 x2 (Tr st tr)

st tr, st x = Absence

st x2 = Absence

Swhen x x1 x2 tr

Swhen x x1 x2 (Tr st tr).

| SwhenF:

| SwhenU':

Ll <l ll<lll<

Trace Semantics 4 (Deterministic merging) The trace
semantics of the deterministic merging construct is defined

as follows:
YT eN

{slT if s;ip# L
S =

Sor otherwise

Here, signals s, 51 and s, have the same type. The clock of
s is the union of the clocks of sy and s,, denoted as s = s ~ +
5. Given a logical instant 7, s gets the merge of the values
of 51 and 55, and the value of s, has a higher priority.

The Coq expression is given as follows.

ColInductive Sdefault(x x1 x2:Var): Trace—Prop:=
SdefaultU : st tr, st x = Absence
st x1 = Absence
st x2 = Absence
Sdefault x x1 x2 tr
Sdefault x x1 x2 (Tr st
st v tr, st x = Val v
st xI = Val v
Sdefault x x1
Sdefault x x1
st v tr, st x =
st x1 = Absence
st x2 = Val v
Sdefault x x1 x2 tr
Sdefault x x1 x2 (Tr st

tr)
| Sdefaultl:

X2 tr
x2 (Tr st
Val v

tr)
| Sdefault2:

il l<lilli<lilll<

tr).

Finally, we apply these semantics rules to a SIGNAL
process, to get a complete semantics of the process, that
is Sprocess (defined in Section 4.1). SPassignment, SPde-
lay, SPwhen and SPdefault, used to construct the corre-
sponding Sprocess on the semantics rule Sassignment, Sde-
lay, Swhen and Sdefault respectively, while the function Pro-
cess2Sprocess is used to combine them as one Sprocess. We
also give the semantics of processes composition, that is SP-
prod.

Program Definition SPassignment x Ind f xi:=
{1
sdom y:=
straces t
.
Program Definition SPdelay x x1 c:
{l
sdom y:=
straces t
I
Program Definition SPwhen x x1 x2:
{l
sdom y:= y=x V y=xl V y=x2;
straces tr:= Swhen x x1 x2 tr
I
Program Definition SPdefault x x1 x2:
{1
sdom y:=
straces t

di, y=xi i;

y=x V
r:= Sassignment x Ind f xi tr

y=x1;

y=x V
r:= Sdelay x x1 ¢ tr

VvV y=x1 VvV y=x2;

y:
r:= Sdefault x x1 x2 tr

I}.
Program Definition SPprod pl p2:=
{1
sdom y:= sdom pl y V sdom p2 y;
straces tr:= straces pl tr
A straces p2 tr

I}

Fixpoint Process2Sprocess(p:Process)

:Sprocess:=

match p with

Pass Ind f x xi = SPassignment x Ind f xi

Pwhen x x1 x2 = SPwhen x x1 x2

Pdelay x x1 ¢ = SPdelay x xI ¢

Pdefault x x1 x2 = SPdefault x x1 x2

Ppar pl p2

= SPprod(Process2Sprocess pl)
(Process2Sprocess p2)

end .

Example 5 The trace semantics of the process Parallel-
Count (example 2) is a set of traces, and two possible traces
are given as follows. Here, we just consider the external visi-
ble signals (the local declarations are hidden).

tl-x” 12101 12 1310L...
1112001121301,

t2'XI012J'012J'3 0L...
X201 110L01 L0L...
Property 1 For all SIGNAL processes, the trace seman-

tics is stretch-closed.

5.2 Tagged Model Semantics

Similarly, there are several definitions of the tagged model
semantics of SIGNAL [10,12], we select [10] as the reference
paper semantics and mechanize it in Coq.

Here, signal variables x, xy, ..., x, are used in the refer-
ence paper semantics, while the tag structure with signals
s, 81,...,8, 1s used in the Coq expressions. The relation be-
tween them has been shown in Section 4.2. The mapping
between them is done at the end (i.e., the definition Pro-
cess2Tprocess).

Tagged Model Semantics 1 (Instantaneous function)
The tagged model semantics of the instantaneous function is

defined as follows:

[[)C = f(xh T sxn)ﬂ =
(b € Bl lrags(b(x) = tags(b(x) = - - = rags(b(x,))
=C € Crand Vt € C,b(x)(t) = [f](b(x1)@)," -, b(x,)(1))}

The semantics of the instantaneous function is the set of
behaviors b. The tags of each signal involved in b represent
the same chain C, i.e., all the signals are synchronous. When

the signals are all present, at each tag of C, the output signal
gets the corresponding value.

The corresponding Coq expression is given as follows. 7-
SA_T is used to express the relation between values, while
TSA_S represents all the signals are synchronous. tval_from
and #val represent that, given a signal of a tag structure G and
a tag of the signal, we can get the corresponding value. tsync
means two signals are synchronous.

Inductive tval_from{G}(t0:Tag G):
Tsignal_from t0 — Tag G — Value — Prop:=

tv_curr: Y t h v s tt vv, t=tt — v=vv
— tval_from tO (Tnext tO t h v s) tt vv
| tv_next: Y t h v s tt vv,
tval_from t s tt vv —
tval_from tO (Tnext tO t h v s) tt vv.
Inductive tval {G}:Tsignal G - Tag G —
Value — Prop:=
tv_first: ¥ t v s tt vv, t=tt — v=vv
— tval (Tfrom G t v s) tt vv
| tv_from: V t0 v s tt vv,
tval_from t0 s tt vv —
tval (Tfrom G tO v s) tt vv.
Definition tsync {G}(sl s2:Tsignal G):Prop:=
V t, tags t sl < tags t s2.

Record TSassignment {G} s Index (f:(Index
— Value) — Value)(si:Index — Tsignal G)

:Prop:={
TSA_T: ¥V t d v, (Y i,

tval (si i) t (d i))

— tval s t vov =f d;
TSA_S: V i, tsync (si i) s

}.

Tagged Model Semantics 2 (Delay) The tagged model
semantics of the delay construct is defined as follows:

[x:=x1$ init] =

{le,)q }U

{b € By x| tags(b(x)) = tags(b(x,)) = C € Cr\{0};
b(x)(min(C)) = c;
Vt € C\min(C), b(x)(t) = b(x)(predc(t))}

Similarly to the instantaneous function, the tags of each
signal represent the same chain C. When the signals are both
present, x gets the value c at the initial tag of C, and for all
the other tags r € C, x gets the value carried by x; at the
predecessor of 7.

The Coq expression is given as follows. 7SY0 and TSYN
are used to express the relation between values, while TSYL
represents the signals are synchronous. tfirst s t represents
that 7 is the first tag of a given signal s, and tnext s t| t>
means 7, is the next tag of #; of a given signal s; (it has the
same meaning as t; = predc(ty)).

{G}: Tsignal G —» Tag G

Inductive tfirst

— Prop:=
tf_prf: V t v s tt, t=tt
— tfirst (Tfrom G t v s) tt.
Inductive tnext_from {G}(t0:Tag G):
Tsignal_from t0 — Tag G —» Tag G
— Prop:=
tnfO: V t h v s tl t2, tl=t0 — t2=t
— tnext_from tO (Tnext tO t h v s) tl t2
| tnfi: V t h v s tl t2, tnext_from t s tl t2
— tnext_from tO0 (Tnext tO t h v s) tl t2.
Inductive tnext {G}:Tsignal G —» Tag G
— Tag G — Prop:=
tnn: ¥V t v s tl t2, tnext_from t s tl (2
— tnext (Tfrom G t v s) tl t2.

Record
TSYO:
TSYN:

TSdelay {G}(s sl:Tsignal G) c:Prop:={
VYV t, tfirst s t > tval s t c;

YV tl t2 v, tnext sl tl t2

— tval sl tl1 v — tval s t2 v;

TSYL: tsync s sl

Tagged Model Semantics 3 (Undersampling) The
tagged model semantics of the undersampling construct is de-
fined as follows:

[x := x; when x;] =

(b € By, wltags(b(x)) = (1 € tags(b(x))
Ntags(b(xx))|b(x2)(t) = true} = C € Cr
and ¥t € C,b(x)(t) = b(x1)(t)}

The set of tags of x is the intersection of the set of tags
associated with x| and the set of tags at which x, carries the
value true. Moreover, at each tag of x, the value held by x is
the value of x;.

The Coq expression is given as follows. Here, we give all
the cases. tnval s t means it is absent at the tag ¢ of a given

signal s.
Definition tnval {G} s (t:Tag G):Prop:=
-1 v, tval s t v.

Record TSwhen {G}(s sl s2:Tsignal G):Prop:={
TSW_T: V t v b, tval sl t v

— tval s2 t b - isTrue b

— tval s t v;
TSW_F: V t b, tval s2 t b

— =isTrue b — tnval s t;
TSW_UI: V t, tnval sl t — tnval s t;
TSW_U2: ¥V t, tnval s2 t — tnval s t
.

Tagged Model Semantics 4 (Deterministic merging)

The tagged model semantics of the deterministic merging
construct is defined as follows:

[x := x| default x;] =
(b € By, wltags(b(x)) = tags(b(x))) U tags(b(x)) = C € Cr
and ¥Vt € C,b(x)(t) = b(x)(t) if t € tags(b(xy)) else b(xy)(t)}

The set of tags of x is the union of the tags of x; and
x. The value taken by x is that of x; at any tag when x; is
present. Otherwise, it takes the value of x, at its tags, which
do not belong to the tags of x;.

The Coq expression is given as follows.

Record TSdefault{G}(s sl s2:Tsignal G):Prop:={

TSDO: V t v, tval s t v —

(tval sl t v vtnval sl t Atval s2 t v);
TSD1: V t v, tval sl t v — tval s t v;
TSD2: ¥V t v, tnval sl t —

tval s2 t v — tval s t v

Finally, we apply these semantics rules to a SIGNAL pro-
cess, to get a complete semantics of the process, that is 7-
process (defined in Section 4.2). Tassignment,