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Abstract

Tribological  properties of a  silicon  carbide  in  homogeneous  contact  configuration  are  often related in  lubricated  or  even  dry  conditions but only

for  ball  or pin-on-disk  configurations.  The present  study develops  an  experiment using  a ring-on-ring  device under dry friction  in  order  to  better

match  the  industrial needs  for dry  mechanical seals  applications.  Tribological tests  were  run  at a temperature  of  120 ◦C,  a  sliding  speed of 2  m/s

and  a  contact pressure  of 0.15  MPa  on SiC/SiC  and  SiC/C  pairs,  with different impregnated  carbon materials.  The  measurements were  sensitive  to

the  formation  and  the circulation  of  the  third  body at  the  contact  interface.  This  third  body was mainly  composed by carbon, oxygen  and  the carbon

impregnants.  An amorphization process of  the tribofilm  was  revealed by  using Raman  spectroscopy.  Based  on chemical  analysis  and  mechanical

considerations,  the  wear  mechanisms  were  found  to be  driven  by cracking  process and oxidation.
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1. Introduction

The  development  of new  high-performance  mechanical seals

working in severe conditions  requires  higher  material  perform-

ances. Sintered  silicon  carbide (SiC),  widely used  as a hard

mating material,  is  a potential candidate  but  its  friction  and  wear

properties need  to be  investigated  in  the  scope of these  new  appli-

cations. Silicon  carbide offers good  mechanical  properties (high

hardness, high  Young modulus),  good corrosion resistance  and

good thermal conductivity,  that  make it  suitable for  tribological

applications in different  atmosphere  (in air,  argon  or vacuum)1,2

and  in  dry  or lubricated sliding.3,4 Overall, it  shows  a coeffi-

cient of friction  in  the range  of 0.2–0.7 and a low  wear rate,

particularly when lubricated.5–7

Combined  with  a  counter-face ring  made  of  a softer

carbon–graphite, the  dry  sliding  of  SiC  can be sustained even

under severe  conditions of  pressure and  speed.8 Graphite has

been intensively  studied in  tribology  since  Bragg first  described

its lamellar  structure.  It  has  been thought  during  many  years  that
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graphite  could  act  as a  solid  lubricant  because  of this  structure.  In

fact, the  environmental  conditions,  as humidity,  strongly  influ-

ence its tribological  behavior.9,10 The  hardness of the  ceramic

facing the  carbon seal  has also  an impact  on its friction  proper-

ties. A transfer layer of carbon  is generally  found on the  ceramic

surface.11

This  study  deals with  the tribological  behavior  of SiC  sliding

against  SiC and two  different  carbon  graphite  materials  in  ring-

on-ring configuration  under  dry friction.

2. Materials  and  methods

2.1. Material

As  sample  material  for  the primary  ring, pressureless-sintered

silicon carbide,  SiC BOOSTEC®, was  used.  It  has  a high  homo-

geneous and  fine microstructure, and it  shows  a closed  porosity

of less than  3.5 vol.% with  a non-interconnected  structure.  The

surface was  polished  to  provide  an arithmetic  roughness Ra of

less than 0.1 mm. Fig.  1 shows  a scanning  electron micrograph

of the  microstructure  of  this SiC etched  by boiling  Murakami’s

reagent (45 g  of  K3Fe(CN)6,  40  g of NaOH  and 200 mL  of H2O).

The average size of  the  silicon carbide grains is  about  5 mm.

http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.038

      



Fig. 1. Microstructure of SiC BOOSTEC® etched by Murakami’s reagent.

Black  regions  are  identified as graphite, boron carbide B4C and

porosities.

Two different  carbon–graphite materials  from MERSEN

(Genneviliers, France)  were manufactured for  counter-face

rings: a  polyester  resin  impregnated carbon–graphite  (referred as

C(PES))  and  an  antimony  impregnated  carbon–graphite (referred

as C(Sb)).  Impregnations are  used to fill  the porosities  and shape

the properties  of the initial material. Polyester  resin and  anti-

mony strengthens  the carbon–graphite  giving  flexural  strengths

of 92  MPa and 128  MPa, respectively.  Moreover,  antimony,  as  a

ductile metal,  is considered as  a solid  lubricant  by its  ability to

easily deform and to  allow  the accommodation  at the interface.

In the  same  way as for  the  SiC,  the surfaces  were polished  to

get Ra < 0.1 mm.  Properties  of  the  materials  used  in this work  are

summarized in Table 1.

2.2. Tribometer

Experiments  were performed  under dry  friction  using  a  ring-

on-ring tribometer12,13 (Fig. 2).

This tribometer  rotates  the  mating ring  against  the counter-

face ring. The carbon  ring  dimensions  were  38  mm  outer

diameter, 30 mm  inner diameter  and 13.5  mm  height. For  the

SiC, it was  40  mm  outer  diameter and 30 mm  inner  diameter.

The load is applied by  means  of  dead weights.  A  torque  and

force sensor  records  continuously  the  applied  normal  force  FN

Table 1

Main properties of studied materials.

Material Density (kg/m3) Hardness Flexural strength

(MPa)

C(PES) 1800 110 Shore A 91.8

C(Sb) 2330 107 Shore A 128

SiC BOOSTEC® 3180 2200 HV  450

and  the  resistant torque Cr. These parameters give the  friction

coefficient m  through  Eq.  (1):

µ  =
3

2
×

Cr

FN
×

r2
1 − r2

2

r3
1 − r3

2

(1)

where r1 and  r2 are  the  outer  and inner radii of the samples.

Tribological tests  were run  at 120 ◦C  in ambient  air.  The slid-

ing speed  was  2 m/s and  the  contact force  64N  giving  a  contact

pressure of  0.15 MPa  to a contact area  of 428.5  mm2.  Experi-

ments were conducted  for  two hours  (total  sliding  distance of

14,400 m) inside a tighten enclosure.  Three  pairs  of materials

were tested:  a SiC/SiC  couple  and two SiC/C pairs using  the

two supplied carbons  C(PES) and C(Sb).

2.3.  Characterization  methods

Wear loss  was  measured by weighting the  samples  using  a

scale (R1809,  Sartorius  Research)  with  a degree  of accuracy of

±0.01 mg.

The  topography  and surface  profiles  of the  worn  ring  speci-

mens were  determined using  a 3D  optical  profilometer  (Wyko

NT1100, Veeco) and the  surfaces  of tested samples  were all

examined by optical  microscopy  as well as  scanning  electron

microscopy (SEM-FEG  7000F, Jeol).

In association with SEM  imaging,  elemental  chemistry of

the wear tracks was analyzed  by Energy  Dispersive  X-ray

Spectroscopy (XFlash  4010,  Bruker)  using  the  same  settings

(accelerating voltage:  15 kV;  working  distance:  10 mm).

Raman  micro-spectroscopy using  a Horiba  LabRAM HR  800

Raman confocal spectrometer  with  a confocal hole of 100 mm

and the monochromator  is  a 1800  lines/mm  holographic  grating

and an argon laser emitting  at 532  nm  provided  chemical  and

structural characterizations  of  the  samples. Using a  100 magni-

fying lens  with a  numerical  aperture of  0.9, the spot  diameter

was 721 nm  and the  axial  resolution was  2.6  mm.

3.  Results

3.1. Friction  coefficients

Fig.  3 presents  the friction coefficients  m  for  each test as a

function of  sliding  time  or distance.  At the  beginning  of  the

SiC sliding  against  SiC test  (Fig.  3a), the friction coefficient

was high  and kept oscillating  between  0.4  and 0.8.  Then,  at

2000 s  it stabilized at  a  value  of 0.15.  The  friction behavior  of

the SiC/C(PES) pair was  very different (Fig. 3b): the transitory

period was  reduced  and  the level  of the  friction coefficient  was

smaller with  a  mean  value  of 0.1 and showing short  jumps up to

0.4 all along the test.  Finally, for  the  last couple SiC/C(Sb),  high

instabilities of  the  friction coefficient  were  observed all  along

the test without  stabilization  period  (Fig.  3c). The  coefficient

of friction is also  represented as box plots  for  the  3  studied

compounds (Fig. 3d).  This statistical representation  confirms

that the coefficient  of  friction of  the SiC/C(PES) couple  is  the

lowest and the more  stable  of the study.  The  coefficient  of  friction

of the  SiC/C(Sb) couple,  the  most  disturbed.



Fig. 2. Ring-on-ring tribometer and samples dimensions.

Fig. 3. Friction coefficients: SiC/SiC (a), SiC/C(PES) (b), SiC/C(Sb) (c) and distribution (d).



Fig. 4. Wear volumes of the tested pairs.

3.2.  Wear volumes

Fig. 4  shows  the  wear volume  of ring  specimens  for  each  test.

The SiC/SiC  pair  exhibited  a high mass loss,  with a  difference

of one  order  of  magnitude with  the  pairs using carbon  materials.

Using carbon  samples  as counter-faces  decreased  the wear vol-

ume of the couple and particularly  of SiC.  Moreover,  while  there

was a transfer  of material  on the SiC  surface  for  the  pair using

C(Sb), there  was  a shared  wear for the  pair  with C(PES).  The  high

hardness of silicon  carbide  did  not  prevent  its  wear and only  the

use of  C(Sb) had a protective  effect  on  it.

3.3.  Worn  surfaces observations  and analyses

3.3.1. Optical microscopy

Micrographs  of  the  worn  counter-face  surfaces  (upper  rings)

are shown in Fig.  5. A  tribofilm  appeared on both silicon  car-

bide and  carbon surfaces.  This  tribofilm,  deposited in  the  sliding

direction, creates a  separation  between the surfaces  and  accom-

modates the speed  between the  rotating  silicon  carbide and the

fixed counter-face.

Debris were  deposited  onto the  inner  area of  the  SiC (white

grey) while they were  more  spread  out onto the carbon sam-

ples. At a macro scale,  the two  carbon  surfaces  C(PES) and C(Sb)

seem  quite  similar, showing  the  tribofilm formed by  the  debris

deposited on the whole  friction area.

3.3.2. SEM  microscopy

Fig.  6–8  show SEM images  of  the same  surfaces  at a  smaller

scale, where differences between  the samples  are  revealed.  The

tribofilm found  on  the  SiC sample after a SiC/SiC  test  (Fig. 6)

shows a powdery  plates  shape  inhomogeneously  spread  over  the

surfaces with  some  cracks  due to a  cooling  effect that happened

after the friction test.

Scratches from  abrasion are observed  in the  sliding  direction

on the  C(PES) surface  (Fig.  7)  and large  debris are  also  trapped

inside depressions  created  by  the material  extraction  on the wear

track.

The debris found on the  C(Sb) surface  (Fig. 8)  are smaller  and

a thick  tribofilm  was formed.  The surface of  the  C(Sb) does  not

Fig. 5. Micrographs of the worn surfaces: from SiC/SiC friction test (a), C(PES) (b) and C(Sb) (c).

Fig. 6. SEM images of the worn surfaces (left: secondary electron beam, right: backscattered electron beam): SiC (a) from SiC/SiC friction test.



Fig. 7. SEM images of the worn surfaces (left: secondary electron beam, right: backscattered electron beam): SiC (a) from SiC/C(PES) friction test.

Fig. 8. SEM images of the worn surfaces (left: secondary electron beam, right: backscattered electron beam): SiC (a) from SiC/C(Sb) friction test.

show  any  scratch  or  big  removal of material  and is  fairly close

to the  initial  surface  compared to the  C(PES). This  initial surface

can be  seen  in Fig.  8, on the left:  black  regions  are identified

as carbon and white  regions  as  antimony. As  a summary  of the

morphology and topography  analysis  of the worn surfaces,  it

seems that  each  couple involved  different  wear mechanism  and

that the  impregnation  also  played  a role  on  the  formation  of the

tribofilm.

Using EDS,  the  chemical  composition of  the tribofilms  is

found to  be  mainly  composed  of carbon  and oxygen.  Looking

at the  oxygen maps (Figs.  9 and 10),  the  tribofilm is  observed

and covers  the  initial samples.

Fig. 9. SEM image and EDS analysis of worn SiC surface from SiC/C(Sb) friction test.



Fig. 10. SEM image and EDS analysis of C(Sb) surface.

In  the  case of  the  SiC/C(Sb) test,  the impregnant  is  seen  within

this tribofilm,  following oxygen  traces.  An oxide  of  antimony

mixed with  carbon  makes up the tribofilm  at the interface of  the

two sliding  specimens.  In  addition,  a small  amount  of silicon

on the surfaces  of carbon materials  was also  revealed  (Fig. 10)

testifying the wear  of the  SiC  sample.

In summary,  the tribofilms  created at  the  interface are  com-

posed by  the  elements  of  the  initial specimens  and undergo an

oxidation process  which leads  to  the  set-up of material  flow  at

the interface.

3.3.3.  Raman  spectroscopy

As shown by the  scheme given by  Colomban,14 the Raman

spectroscopy assesses  the  molecular species signature  by the

peaks position on  the Raman  spectrum, the  crystallinity of the

molecules and finally,  the mechanical  stresses  by the shift of

peaks position  on the spectrum (Fig.  11).

A chemical  analysis was realized  on the  samples  before  and

after friction:  silicon  carbide, carbon  graphite  and  antimony were

followed. A focus  is  made on  the crystallinity  of graphite at

the sliding  interface and graphite crystallite size  was measured.

Fig. 11. Contribution of the Raman spectroscopy.14

Finally,  the  evolution with  friction  of  the mechanical  stresses on

the samples  is  assessed.

Chemical analysis  The  SiC spectrum (Fig.  12)  can be divided

in two regions. Between 100  and 700 cm−1, the peaks related to

the folded  longitudinal  and transversal  acoustic  modes  (FLA  and

FTA) are observed.  The  peaks  related to  the  folded  longitudinal

and transversal optical  modes  (FLO and FTO) are seen  between

700 and  1000  cm−1.

In this  study,  the focus  is  on the most  intense FLO  and  FTO

modes. The  presence of three polytypes  was identified  at  the

initial state: SiC-4H,  -6H and -15R; written  in  the Ramsdell

notation.15 These polytypes differ  by their crystalline  lattice  and

stacking order.  The associated  Raman spectrum is  a  combination

of these polytypes  from  which  some  peaks  are characteristics  of

one polytype.  For  example,  the  peak at 789 cm−1 characterizes

the SiC-6H,  the  peak  at 777 cm−1,  the  SiC-4H  and  the peak  at

785 cm−1,  the SiC-15R (Table  2).  Regarding  the evolution  of  the

silicon carbide structure with  friction process, neither  the  nature

of these  polytypes,  nor  their  population,  nor  the  full width at

Fig. 12. SiC BOOSTEC® Raman spectrum.



Fig. 13. Raman spectra of C(PES) (a) and C(Sb) (b) at initial state with their fitting.

Table 2

Raman peaks of SiC BOOSTEC® (the modes in bold refers to  common modes.)

Polytype Mode Symmetry Raman shift (cm−1)

6H

FTA

E2 145

E2 150

E1 235

E1 241

FLA
A1 505

A1 514

FTO

E2 767

E2 789

E1 798

FLO
A1 889

A1 970

4H

FTA

E2 197

E2 204

E1 266

FLA A1 614

FTO
E2 777

E1 798

FLO A1 970

15R

FLA A1 334

FTO E1 798

FLO A1 970

half maximum  of the highest  peak  at 789 cm−1,  were changed.

The structure  of  the silicon  carbide samples  was not impacted

by friction.

The  Raman spectra of the  two  carbon–graphite C(PES) and

C(Sb) show two peaks, one peak around  1580–1600 cm−1 related

to monocristalline  graphite,  which is  called  G and a  second peak

around 1350 cm−1,  called D (Fig.  13,  Table  3).

Another  peak  called  D′, related  also  to  disorder, appears  on

C(PES) spectrum and merges  with G  for  C(Sb). The  best fitting of

Table 3

Raman peaks of graphite.

Peak name Mode symmetry Raman shift (cm−1)

D A1g 1350

G E2g 1580

D′ – 1620

the curves was  obtained  with five peaks:  D,  G,  D′ +  2 at  ∼1100

and ∼1400  cm−1 as proposed  by Ferrari and Robertson.16 The

origin of these  two  last  peaks  is quite  uncertain  but it  is  often

related to an  amorphization process.

For all the  friction  tests  with carbon–graphite  samples, the

analysis of the  silicon carbide Raman spectra reveals  now  poly-

crystalline graphite  with  the  G  and  D  bands  (Fig.  14).  These

spectra were  first normalized  by the height  of the SiC-6H  peak  at

789 cm−1.  In  SiC/C  couples, a transfer  phenomenon of  particles

from the  C ring  to the SiC ring  is confirmed.

Furthermore, for  the SiC/SiC  test, the presence of  poly-

crystalline graphite  on the  top  surface  means  that  the  clusters

of graphite  that were observed at  the  initial  state  in the  SiC

microstructure (Fig. 1) take part  into  the friction process.

In the case  of the  C(Sb),  the antimony  is  also detected  by

Raman spectroscopy (Fig.  15).  As  reported  in  the  literature, the

ratio A1g/Eg is close to  317 but the peaks are shifted  downwards

when compared  to references18–20 (Table  4).  A downward  shift

of the A1g and  Eg modes is generally  detected under  compres-

sion and below 8 GPa;  where a  transition  of the ambient  phase

of antimony,  showing  a rhombohedral  structure,  is  observed.

In this range  of  pressure, the linear  pressure  coefficients  -3.5

and -3.8  cm−1/GPa  are described  for  the  A1g and Eg modes,

Fig. 14. Raman spectra of worn silicon carbide surfaces.



Fig. 15. Antimony Raman spectrum from C(Sb).

Table 4

Raman peaks of antimony.

Mode symmetry Raman shift (cm−1) References Raman

shift  (cm−1)18–20

Eg 106 110–115

A1g 144 149–151

respectively.20 Here, it  suggests  that the  Sb phase  sustains  a

compressive stress  about 1.9 GPa.

The  material  transfers  observed  with  EDS were  confirmed

with Raman  spectroscopy.  The presence of the  impregnant, par-

ticularly in the case  of SiC/C(Sb) test,  is  revealed  in the  tribofilm.

Following the  trace of the  antimony, the  oxidation  process of  the

tribofilm is also shown by the  presence of  a new  compound: the

antimony trioxide,  in the  senarmontite  phase,  which is  the  cubic

phase of Sb2O3
21 (Table  5). Fig.  16 shows its  Raman spectrum

that was  recorded  on the silicon  carbide  sample after  a  SiC/C(Sb)

test.  This  outcome  gives an idea  of the maximum  temperature

that was  reached during friction as  this  compound  is stable below

570 ◦C.22 Moreover,  the A1g mode  of Sb  phase is  still  observed

after friction, therefore  antimony was  only partially oxidized.

Table 5

Raman peaks of Sb2O3 (senarmontite phase) - * the peak does not refer to  the

spectrum  of Sb2O3 but to initial Sb.

Mode symmetry Raman shift (cm−1) References Raman shift (cm−1)21

B2 – 82

E 118 118

A1g 151* –

B2 189 189

A1 254 254

E – 355

B2 373 373

A1 451 450

B2 – 712

A  pressure release happened  during  friction  on the antimony

cluster as the position  of the A1g peak is  closer to 151 cm−1.

Graphite  crystallite size.  The  peak D  (Fig. 13) is known to

be the result of  disorder  inside  the  polycrystalline  graphite  due

to a  particle size  effect.23 Its intensity  is  inversely proportional

to the crystallite size La for λ= 514.5  nm  through  the  so-called

Tuinstra and Koenig’s equation:

La(nm)  = 4.4 × R−1,  withR  =
ID

IG
(2)

More recently,  Ferrari  and Robertson16 demonstrated  the

non-validity of  the Tuinstra and Koenig  model for  crystallite

length lower  than  2  nm  and  proposed a new  model  for  λ=

514.5 nm  and  this range of La:

La(nm) = 1.35  ×  R1/2 (3)

The  crystallographic  structure of  the  tribofilm was assessed

by making Raman spectroscopy  maps of the surfaces (50  mm ×

50 mm) before and after  each test (Fig. 17).  Points  of the  map

are separated by a  step of  3 mm and each  of them linked  to  one

Raman spectrum.  At the end,  266 spectra  for  each sample were

processed. The ratio  of the intensities  of the D and G peaks

ID/IG was  first  plotted. As  shown  previously,  this  ratio  is  linked

to the crystallites  length La through  Eq. (2). Additionally,  the

full width at half  maximum  of  the  G  peak  FWHMG and  the  area

of the  amorphous  peak  at  ∼1400 cm−1 were  monitored.

Fig. 16. Raman spectrum of the tribofilm after a SiC/C(Sb) test (a)  and the presence of antimony trioxide is well identified in the range of 100–500 cm−1 (b).



Fig. 17. Raman map of the ID/IG ratio for C(PES).

Fig. 18. Gaussian fitting of the distribution of La represented on bar diagrams.

The  results  on the  La values  are first  represented  on bar  dia-

grams where  the  distribution  of  the crystallites length  is plotted

before and after  friction,  here  for  the  initial C(PES) (Fig. 18).

Then, a Gaussian  curve is  adjusted to  fit the  distribution. Table  6

Table 6

FWHMG and Mean La before and after friction for C(PES) and C(Sb).

Material C(PES) C(Sb)

FWHMG (cm−1)

Before friction 53.5  58.5

After friction 69.1  83.2

Mean La (nm)

Before friction 3.4 2.8

After friction 4.2  4.1

shows  the FWHMG of  the  G peak and the mean  crystallite  length

values.

The FWHMG increased  with  friction. Therefore,  friction

induced disorder  and thus,  amorphization  on the top surface  of

the material.  This result  is  also  highlighted  by the  intensification

of the amorphous  peak (∼1400  cm−1) area, as  it  can be seen  in

Fig. 19.

However, an increase  of the  mean La is  also  shown  on Fig.  20

and could be attributed  to a graphitization  process during  fric-

tion which  does contradict  the previous result. Furthermore,

as viewed previously,  the  temperature did  not exceed 570 ◦C

and was not high enough to  cause  graphitization. Nonetheless,

graphitization is reached after a  long  time  at  a very  high temper-

ature over 3000 ◦C.  To conclude, it  seems that  friction  removes

the short crystallites  from  the surfaces  in  favour  of the  largest

ones that cause  the  increase of  the mean La.

Mechanical  stresses.  Mechanical  stresses  σ  are linked  to the

shift of peak  position through  the Liu  and Vohra’s  equation  (4)

for silicon  carbide,24 centred on  the highest peak  of SiC-6H  and

the Schindler  and  Vohra’s  equation (2) for  carbon  samples,25

centred  on G  peak.  σ is  given in GPa in  Eqs.  (4)  and  (2).

SiC  : ν̄TO(cm−1) =  789.2  + 3.11σ  −  0.009σ2 (4)

C  : ν̄(E2g)(cm−1) =  1580  + 4.32σ  − 0.0408σ2 (5)

Raman maps  of  the  peaks  position  of  SiC-6H  at  789 cm−1

and of G  peak  for carbon  samples  were made  (Fig.  21).

The results  are first  represented  on bar  diagrams  where the

distribution of  mechanical stresses  is  plotted,  here  for  C(PES)

before friction (Fig. 22)  with  the  Gaussian  fitting.

Fig. 19. Distribution of the area of the amorphous peak at  ∼1400 cm−1: C(PES) before and after friction (a), C(Sb) before and after friction (b).



 

Fig. 20. Distribution of the crystallites length La: C(PES) before and after friction (a), C(Sb) before and after friction (b).

Fig. 21. Raman maps of the mechanical stresses before friction: SiC (a) and C(PES) (b).

All the Gaussian  curves  for  SiC,  C(PES) and C(Sb) before and

after friction  are presented  on  Fig.  23.  Table  7 shows  the  mean

mechanical stresses  σ  and Table  8  the  full width  at  half maximum

(FWHMσ)  of the mechanical stress distribution.

Fig. 22. Gaussian distribution of the mechanical stresses for C(PES) at initial

state.

The  initial stress field  on SiC is  mainly  compressive  (Fig.  23a)

with a mean  value  of 0.5  GPa.  After friction  it  decreases  to -  0.18

± 0.43  GPa, -0.42  ± 0.33  GPa, 0.29  ± 0.45  GPa after friction

against  SiC,  C(PES) and C(Sb),  respectively.

Table 7

Mean σ before and after friction for all the friction tests.

Material Mean σ (GPa)

Before friction After friction

SiC/SiC SiC 0.46 ± 0.51 -0.18 ± 0.43

SiC/C(PES))
SiC 0.46 ± 0.51 -0.42 ± 0.33

C(PES) 2.47 ± 0.84 3.47 ± 0.57

SiC/C(Sb))
SiC 0.46 ± 0.51 0.29 ± 0.45

C(Sb))  3.40 ± 1.17 4.33 ± 0.55

Table 8

FWHMσ before and after friction for all the friction tests.

Material FWHMσ (GPa)

Before friction After friction

SiC/SiC SiC 0.77 0.81

SiC/C(PES))
SiC 0.77 0.51

C(PES) 0.87 0.46

SiC/C(Sb))
SiC 0.77 0.99

C(Sb)) 2.65 0.84



Fig. 23. Distribution of the mechanical stresses: SiC (a), C(PES) (b) and C(Sb) (c).

Generally,  on  brittle  material  such as SiC,  this stress field

could proceed  from  a change in  the  microstructure  or a cracking

process inside  the material.  However, as previously  concluded,

the SiC  structure  was not impacted  by friction.  Therefore,  the

main possible  damaging mode  of  silicon carbide was  crack-

ing. Friction  against  C(Sb) induced the lowest stress  field  on SiC

which is in good accordance with  the  result  obtained for  the wear

measurements. In the  case of  the  two carbon  materials C(PES) and

C(Sb), the initial  stress field  increase  is tightly  compressive.  After

friction, the carbons  increase their  compression  level  (Fig. 23b

and c)  of 40%  and 27%,  respectively. The  difference  of  mechani-

cal stresses  distribution  at initial  states between  the  two  materials

is removed by  friction.  Regarding  the full width  at half  maxi-

mum of  the mechanical  stresses  distribution  FWHMσ ,  it  seems

that friction  tends  to  homogenize the stress  at the  surface  of the

materials. For  both  carbons,  the material  was in  overpressure

and damaged  quickly, leading to a  high wear.

4. Discussion

The  three different  couples  of this study  reveal  three differ-

ent behaviours. This  seems  to  be related to the  nature of the

impregnation material in  the carbon ring.  In agreement with  our

observations, we propose  three mechanisms of degradation for

the following  couples:  SiC/SiC  - SiC/C(PES) and SiC/C(Sb).

In  the  first  case (Fig. 24),  both  SiC  surfaces  produce  a source

flow of matter  (Qs1, Qs2).  The  production of particles  is due to

a fracture  phenomenon  that has  been identified  by measurement

of residual  tensile stresses  at their  surface. These fractures  cause

detachment of clusters of SiC from  the  surface.

When two SiC rings  slide one against  the other, the  interface

is filled  not  only  with  SiC particles  but also grains of  pyro-

graphite and B4C. The  pyrographite  acts  as  a lubricant,  and B4C,

in agreement  with  its high  hardness plays  the  same role  as SiC

and contributes  to the abrasive  wear.  Porosities are  considered

as sites  of accumulation of  debris  and also  places where frac-

ture phenomena  could  be preferentially  initiated.  This  third body

circulates in  the contact and constitute the internal  flow (Qi).

Molecules  from the  atmosphere  (Qext),  in  peculiar O2 and

H2O, can be introduced into  the contact  and  can  contribute

Fig. 24. Wear mechanism proposed for a  SiC/SiC couple. Red arrows represent

the  tensile stress at the surface of the 2 first bodies. (For interpretation of the

references to color in  this text, the reader is referred to the web version of the

article.)



Fig. 25. Wear Mechanism for a  SiC/C(PES) couple (a) and a SiC/C(Sb) couple (b).

significantly  in  this process.  After  a  transition  period, the

third body  circulates  between  the two rings (Qi).  The  friction

coefficient is low because  of this layer of  debris and the regime

is stable.

But this film of  particles is abrasive  and accentuates  wear.

Fractions of the  third  body are  ejected  with an  external  flow

(Qw) and  both  rings lose  continuously matter  throughout  the

end of the  test.

With the SiC/C(PES) couple (Fig. 25a), the SiC  ring  behaviour

is similar  to the SiC/SiC  initial  degradation  mechanism  and SiC

particles are fractured from the surface.  However,  the  quanti-

ties emitted  are  10 times  smaller  (Qs1).  The presence  of  the

carbon–graphite ring, as a  counter-face, reduces  the  intensity of

the surface  stress.  However,  the mechanical  stress is  mostly  sup-

ported by  the  C(PES) ring and  due to  compression, particles  are

broken and milled  from  the  carbon–graphite  surface (Qs2).  This

mechanism causes  the amorphization  of graphite  grains but the

particles with  a size around  4 nm remain  stable  in  the internal

flow (Qi).  Mixed  with the  SiC  particles,  they constitute the  third

body.

Finally, in  the last case,  with  the SiC/C(Sb) couple, the  C(Sb)

ring emits  a  lot  of particles  because  of  compressive stresses

(Qs2). The amorphous carbon  and also  graphite particles  of 4 nm

size are maintained  in the  interface. EDX  and Raman  spectros-

copies permit  us  to  reveal  that antimony react  with oxygen  from

the external flow  (Qext)  and  antimony  (III)  oxide  is produced  by

the reaction  (6):

2  Sb  +  3 O2 →  2  Sb2O3 (6)

In  this last  case, the  surface  stresses  do not initiate  the  flow of

SiC particles  and the film  is largely made  of  graphite particles,

amorphous carbon,  antimony  and  its oxide  (Fig. 25b).  This third

body avoids  the transmission  of mechanical  stress  to the  SiC ring

(Qi). Moreover,  a fraction  of tribofilm  adheres  to  the SiC  surface

and constitutes  a screen.  This third body  seems to be adhesive,

thus, sometimes  both  rings are stuck  together and this conducts

to an unstable  stick-slip  regime during  the sliding  motion.

This SiC/C(Sb) couple, is  the  most  efficient in terms  of pro-

tection of  the SiC  surface even  though  the stability  of  the  sliding

regime is not improved. The  C(Sb) ring  loses a lot  of matter  (Qw).

Its wear  resistance  has  to be enhanced.

Unlike the SiC/C(Sb) couple,  the SiC/C(PES) couple  does not

prevent wear of the  SiC surface  However,  this  couple  is  the

most efficient  of this study  by reducing the  stick-slip  regime and

giving the smallest  friction coefficient  of the three.

5. Conclusions

SiC/SiC  and  SiC/C couples  for  mechanical  seal  applications

were tested under  sliding  friction  at 120 ◦C.  SiC/C couples pre-

sented two  grades  of  carbon–graphite:  one,  impregnated  by

polyester resin  and, another one, by  antimony. These pairs of

materials present  different tribological  behaviors in terms  of

friction coefficient  and  wear. Using  characterization  methods

such as  electronic microscopy and Raman spectroscopy  allowed

building a  relevant  wear mechanism for  the  tested  tribopairs.

Mechanical stresses,  crystallinity  of  the tribofilm and material

transfer were  assessed.

In the  case  of a SiC/SiC couple,  we  highlighted  that the  ten-

sile stresses  on  the surface  of the  rings lead  to the  propagation

of cracks  on the surface  and the  flow of  abrasive  debris (SiC,

B4C) and  lubricating pyrographite particles  into  the interface.

Mechanical seals  made  with  silicon  carbide  operating  in  dry

sliding conditions  led  to unfavourable  wear.

The replacement  of the  SiC counter-face by carbon–graphite

reduces by one order  of magnitude the wear  loss of  the pair  by

first protecting  the  silicon  carbide  samples, particularly  with the

C(Sb) ring. But the mechanisms involved  are different according

the impregnated  compound.

The carbon  ring  emits particles in  the interface  due to com-

pressive stresses.  Those particles  are  crushed  in fine grains,  a

fraction can  be  amorphized  and constitute the third body.  More-

over, another fraction  of particles  is  ejected  out  of the  interface.

• When  the  ring  is  impregnated  with  antimony  a tribo-activated

phenomenon of  oxidation  appears  in surplus and causes  the

formation of  Sb2O3,  well  identified  by Raman  spectroscopy.

In this situation, the high  adhesion  of the  tribofilm  created

by the antimony  impregnated  carbon lead  to a high  stick-slip

phenomenon.

• This  is not  the case of the tribofilm  produced  with  an impreg-

nation with polyester resin  that tends  to  strengthen  mechanical

ring and reduces  mechanical  stress. The  use of the  polyester

resin impregnant  reduces  the  friction  coefficient  level  but also,

the frequency  of creation-destruction of  the  tribofilm  and thus,

improves its stability. In addition,  the  polyester  resin gives



greater wear resistance of  the carbon–graphite  by restraining

the compressive mechanical stresses  increase.

This study showed  that the ability  for  the carbon  materi-

als to  create  a stable third body inside the  contact controls  the

performances of  the  couple.
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