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Anacknowledged interpretationofpossibilitydistributions inquantitativepossibility theory

is in terms of families of probabilities that are upper and lower bounded by the associated

possibility and necessity measures. This paper proposes an informational distance function

for possibility distributions that agreeswith the above-mentioned view of possibility theory

in the continuous and in the discrete cases. Especially, we show that, given a set of data

following a probability distribution, the optimal possibility distribution with respect to our

informational distance is thedistributionobtainedas the result of theprobability–possibility

transformation that agrees with the maximal specificity principle. It is also shown that

when the optimal distribution is not available due to representation bias, maximizing this

possibilistic informational distance provides more faithful results than approximating the

probability distribution and then applying the probability–possibility transformation. We

show that maximizing the possibilistic informational distance is equivalent to minimizing

the squared distance to the unknown optimal possibility distribution. Two advantages of the

proposed informational distance function is that (i) it does not require the knowledge of the

shape of the probability distribution that underlies the data, and (ii) it amounts to sum up

the elementary terms corresponding to the informational distance between the considered

possibility distribution and each piece of data.We detail the particular case of triangular and

trapezoidal possibility distributions and we show that any unimodal unknown probability

distribution can be faithfully upper approximated by a triangular distribution obtained by

optimizing the possibilistic informational distance.

1. Introduction

Possibility theory, based on max-decomposable set-functions, associated with possibility distributions, may have either

a qualitative or a quantitative understanding [6], depending on the nature of the scale used for possibility degrees. Quanti-

tative possibility theory corresponds to the case where the interval [0, 1] is used as a ratio scale. In qualitative possibility

theory, only the ordering of the possibility values makes sense. In this paper, we deal with quantitative possibility theory.

Quantitative possibility measures can be viewed as upper bound of probabilities. Then, a possibility distribution represents

a family of probability distributions [4]. The quantitative viewwas first suggested by Zadeh [17] when he expressed the idea

that what is probable must be possible. Following this intuition a probability–possibility transformation has been proposed

[7]. This transformation associates a probability distribution with the maximally specific possibility distribution which is

such that the possibility of any event is indeed an upper bound of the corresponding probability.
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We call informational distance any function that evaluates the adequateness between a distribution of probability (or

possibility) and a set of data. Thus, the likelihood is a well-known informational distance used for building a probability

distribution from a set of data. Given a set of parametrized probability distributions and a set of data, the likelihood function

is used for optimizing the choice of the parameters in order to determine the best suited distribution with respect to the

data. However, this approach supposes that the shape of the distribution is a priori known. Otherwise, generic probability

distributions, such as Gaussian mixtures, can be used. However, it requires to have a large amount of data at our disposal.

Moreover, due to the constraints on the probability distributions, induced by their additive nature, there are no simple

distribution that allows for a faithful description of any set of data. An informational distance function is also useful for

comparing the relative adequateness of two distributions with respect to the same set of data.

There exist different kinds of methods for eliciting possibility distributions from data. For instance, some approaches

build directly the possibility distribution on the basis of a proximity relation defined on the universe of the data [5]. This

is to be related to the idea of building fuzzy histograms based on fuzzy partitions, which has been fully investigated in

[16,10]. Mauris proposes a method for constructing a possibility distribution when only very few data are available (even

only one or two) based on probability inequalities [12,13]. This latter method is justified in the probabilistic view of possi-

bility theory. In the same setting, Aregui and Denoeux studies the building of possibility distributions that bound a family

of probability distributions on the basis of the confidence intervals of the parameters of these latter distributions [1]. This

kind of approach has also been studied in the discrete case by using simultaneous confidence intervals [11]. These methods,

how different they are, have in common to build the distributions directly. In this paper, we investigate another road based

on the optimization of an appropriate informational distance function. The proposed informational distance function is in

agreement with the view underlying the probability–possibility transformation, as we shall see. This paper is a fully revised

and expanded version of [15], which is also the basis of the regression method at work in [14]. More precisely, the present

paper proposes an interpretation of the possibilitstic informational distance function and establishes different properties

that formally justify it and supports its practical use.

The paper is organized as follows. Section 2 provides the necessary background about possibility distributions and their

interpretations in terms of families of probabilities. Section 3 presents informational distance functions for probability

distributions, and in particular a new non-logarithmic one, which can be used for approximating unbounded distributions

by bounded ones. Sections 4 and 5 focus on the definition of the possibilistic counterpart of the new informational distance

function, in the discrete and continuous settings respectively. The specific cases of triangular or trapezoidal distributions

are also discussed in this section. We propose some examples of the construction of a possibility distribution from data

using the possibilistic informational distance function in Section 6. Lastly, we emphasize the usability of this function in the

conclusion.

2. Possibility theory: basic settings

In this background section, we first recall the basic definitions of possibility theory. We then present the view of a

possibility measure as representing a family of probabilities, and the probability–possibility transformation.

2.1. Basic notions

Possibility theory, introduced by Zadeh [17], was initially created in order to deal with imprecision and uncertainty due to

incomplete information as the one provided by linguistic statements. This kind of epistemic uncertainty cannot be handled

by a single probability distribution, especially when a priori knowledge about the nature of the probability distribution is

lacking. A possibility distribution π is a mapping from � to [0, 1] (� may be a discrete universe, i.e., � = {C1, . . . , Cq}, or
a continuous one, i.e., � = R). The value π(x) is called the possibility degree of the value x in �. For any subset of �, the

possibility measure is defined as follows:

∀E ⊆ �, 5(E) = sup
x∈E

π(x).

If it exists at least a value x ∈ � for which we have π(x) = 1, the distribution is normalized. We can distinguish two

extreme cases of information situations:

• complete knowledge: ∃x ∈ � such as π(x) = 1 and ∀y ∈ �, y 6= x, π(y) = 0

• total ignorance: ∀x ∈ �, π(x) = 1.

The necessity is the dual measure of the possibility measure. We have:

∀E ⊆ �,N(E) = 1 − 5(E).



Let us introduce the α-cuts of π . They are subsets of � such that:

Aα = {x ∈ �, π(x) ≥ α}.

Then, it can be checked that, if � = R and the distribution is continuous and normalized, we have ∀α ∈ [0, 1], 5(Aα) = 1

and N(Aα) = 1 − α.

Lastly, a possibility distribution π1 is said to be more specific than a possibility distribution π2 (π1 � π2) if and only if

∀x ∈ �, π1(x) ≤ π2(x)

2.2. A possibility distribution as a family of probability distributions

One view of possibility theory is to consider a possibility distribution as a family of probability distributions (see [2]

for an overview). Thus, a possibility distribution π will represent the family of the probability distributions for which the

measure of each subset of�will be respectively lower and upper bounded by its necessity and its possibilitymeasures.More

formally, if P is the set of all probability distributions defined on �, the family of probability distributions Pπ associated

with π is defined as follows:

Pπ = {p ∈ P, ∀E ⊆ �,N(E) ≤ P(E) ≤ 5(E)}. (1)

where P is the probability measure associated with p. In this scope, the situation of total ignorance corresponds to the case

whereall probabilitydistributionsarepossible. This typeof ignorancecannotbedescribedbyasingleprobabilitydistribution.

When � = R, this family of probability distributions can also be described in terms of confidence intervals. Given a

probability distribution p, a confidence interval Iα is a subset of� such as P(Iα) = α. We define I∗α as the smallest confidence

interval with probability measure equal to α. In the following, we will only use the expression ‘confidence interval’ for

referring to I∗α . It can be observed that:

∀α, ∃β, I∗α = {x|p(x) ≥ β}.

Moreover, if the distribution has a finite number of modes, I∗α is a finite union of intervals. When π is continuous, we have:

∀p ∈ Pπ , ∀I∗α ∈ �, I∗α ⊆ A1−α (2)

where A1−α is the (1 − α)-cut of π . Indeed we have ∀E ⊆ �,N(E) ≤ α ⇒ E ⊆ A1−α and N
(

I∗α
)

≤ α (Eq. (1)). Thus,

the α confidence interval of a probability distribution in Pπ is bounded by the (1 − α)-cut of π . In this scope, a possibility

distribution can be viewed as an upper bound of the confidence interval of a family of probability distributions.

2.3. Probability–possibility transformation

According to this probabilistic interpretation, amethod for transforming probability distributions into possibility distrib-

utions has beenproposed in [7]. The idea behind this is to choose themost informative possibilitymeasure that upper bounds

the considered probabilitymeasure. This possibilitymeasure corresponds to themost specific possibility distributionwhich

bounds the distribution. We denote π sp the probability–possibility transformation of p. This distribution is defined in the

following way:

∀π, p ∈ Pπ ⇒ π sp � π. (3)

and is obtained with this equation:

∀x ∈ �, π sp(x) = max
α,x∈Iα

(1 − α). (4)

Let us first consider the discrete case (� = {C1, . . . , Cq}) and a set of data X = {x1, . . . , xn} that are realizations of a

random variable on �. Let α1, . . . , αq be the frequency of the elements of X that belong respectively to {C1, . . . , Cq}. Let us
also assume that the frequencies of examples in class Ci are put in decreasing order, i.e., α1 ≥ · · · ≥ αq. In the following,

given a possibility distributionπ , we noteπi the valueπ(x ∈ Ci) (orπ(Ci)). It has been shown in [3] that the transformation

of p (which is derived from the frequencies) into a possibility distribution π sp (see Eq. (4)), is:

∀i ∈ {1, . . . , q}, π
sp
i =

q
∑

j=i

αj. (5)



Fig. 1. Probability to possibility transformation of a Gaussian distribution.

This possibility distribution is one of the cumulated functions of p. It is worth noticing that it is the tightest one.

Example 1. For instance, we consider X that leads to the frequency α1 = 0.5, α2 = 0.3, α3 = 0.2. We obtain π
sp
1 =

0.5 + 0.3 + 0.2 = 1, π
sp
2 = 0.3 + 0.2 = 0.5 and π

sp
3 = 0.2.

In the case where � is continuous (� = R) given p and its transformed distribution π sp we have:

A∗
1−α = I∗α

where A∗
1−α is the (1 − α)-cut of π sp. Thus, if p has a finite number of modes, π sp is the possibility distribution for which

each (1−α)-cuts correspond to the confidence interval of p. When p is unimodal, the unique value x such thatπ sp(x) = 1 is

themode of p. Fig. 1 illustrates this transformation for a Gaussian distribution. The density function is in green, its possibility

transformation in blue. The α-cuts of the possibility distribution corresponds to the (1 − α) confidence interval of the

probability distribution.

3. Probabilistic informational distance functions

Informational distance function is commonly used for evaluating the adequateness of a probability distribution with

respect to a set of data. In the following, the likelihood function is first recalled as a noticeable informational distance

function. Then, we shall look for an informational distance of the form I(f , X) where f is a distribution (probabilistic or

possibilistic) and X = {x1, . . . , xn} is a set of data, which is decomposable, as the likelihood function, i.e.,

I(f , X) =
n

∑

i=1

I(f , xi) (6)

Let us consider a set of realizations X = {x1, . . . , xn} of a random variable over a discrete universe� = {C1, . . . , Cq}. We

noteα1, . . . , αq the frequency of the elements of X that belong respectively to {C1, . . . , Cq}. Given a probability distribution

p on the discrete space� = {C1, . . . , Cq}, we define p1, . . . , pq the probability of belonging to each element of�, i.e., p(x ∈
Ci) = pi. The values pi, . . . , pq entirely define p, and are then the parameters of p. The maximization of the informational

distances is used for estimating the parameters of a probability distribution with respect to the data. In the continuous case,

the shape of the distribution has to be known, and the parameters are obtained through an optimization procedure with

respect to the informational distances function. In the discrete case, the parameters are pi, . . . , pq, and obey the constraint
∑q

i pi = 1.

The likelihood is the most used informational distance function for probability distribution. Formally the likelihood

coincides toaprobabilityvalue. The logarithmic-based likelihood isdefinedas follows (under thestrict constraint
∑q

i pi = 1):

Ilog(p|X) = −
n

∑

i=1

log(p(xi))



or, when considering frequency directly

Ilog(p|X) = −

q
∑

i=1

αilog(pi).

It is equivalent to compute the joint probability of the elements of x with respect to p. As an informational distance, the

likelihood has a strong limitation, since it gives a very highweight to the errorwhen probability is very low. This is especially

true when � is continuous. Since Ilog is not defined when p(xi) = 0, an unbounded density cannot be approximated by

a bounded one by optimization of Ilog . In order to overcome these limitations, we propose another informational distance

function, named Isurf , that is based on the distance between the probability distribution considered and the optimal one.

We have:

Isurf (p|X) =





n
∑

i=1

p(xi)



 −
1

2
∗

q
∑

i=1

p2i

or, when considering frequency directly

Isurf (p|X) =





q
∑

i=1

αi ∗ pi



 −
1

2
∗

q
∑

i=1

p2i .

Roughly speaking, Isurf favors the probability distributions that share the maximum surface with the optimal one. Thus,

when, � is continuous, it allows the approximation of unbounded densities by bounded ones.

Proposition 1. Given a set of realization X = {x1, . . . , xn} of a random variable over a discrete universe � = {C1, . . . , Cq},
finding the distribution p that maximizes Isurf is equivalent to find the distribution that minimizes the square of the distance to

the optimal one p∗.

Proof. Given X = {x1, . . . , xn}, the optimal p∗ is p∗
i = αi

d(p∗, p)2 = d(α, p)2

=

q
∑

i=1

(αi − pi)
2

=

q
∑

i=1

α2
i − 2 ∗





q
∑

i=1

αi ∗ pi −
1

2

q
∑

i=1

p2i





= Cp − 2 ∗ Isurf (α, p)

where Cp =
∑q

i=1 α2
i is independent of p. �

Proposition 2. Given a set of data X = {x1, . . . , xn} belonging to a discrete universe � = {C1, . . . , Cq}, we have

argmax
p∈P

(Ilog(p|X)) = argmax
p∈P

(Isurf (p|X)).

Proof. Let plog = argmaxp∈P(Ilog(p|X)) be the optimal probability distribution given X . This distribution is such as the

probability of an event Ci is equal to the frequency of element of X in Ci, i.e., plog(x ∈ Ci) = pi = αi. We now look for the

probability distribution psurf that maximizes Isurf . We have:

∀i = 1 . . . q,
δIsurf (p|X)

δpi
= αi − pi

thus

∀i = 1 . . . q,
δIsurf (p|X)

δpi
= 0 ⇔ pi = αi.

Since the derivative of Isurf (p|X) with respect to pi (the parameters of p) does not depend on the other parameters pj , j 6= i,

we obtain psurf (x ∈ Ci) = pi = αi. Thus psurf = plog . �

This proposition proves that, given X , the probability distribution that maximizes Ilog is the same as the one that maxi-

mizes Isurf .
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Fig. 2. Approximation of a Gaussian density with a triangular density by maximization of Isurf .

Isurf can be extended to the case of � = R in the following way:

Isurf (p|X) =





n
∑

i=1

p(xi)



 −
1

2
∗

∫

R

p(t)2dt.

Proposition 2 remains true when � = R. Fig. 2 shows the triangular density that maximizes Isurf given a set of 3000

values that are generated by a Gaussian distribution withmean equal to 0 and standard derivation equal to 1. This triangular

probability distribution is parametrized by m, l and r which are respectively the mode, the left and the right spread of the

probability distribution.We have used an optimization procedure in order to find the parameters thatmaximizes Isurf .What

we obtain is the triangular probability distribution that shares the maximum of surface with the histogram computed from

the sample set. If we use Ilog , the support of the triangle would grow to infinity as the number of values increases.

4. Possibilistic informational distance: discrete case

In this section we show how to use Isurf in order to define an informational distance function for possibility distribu-

tions that supports the interpretation of a possibility distribution in terms of a family of probability distributions. Roughly

speaking, the idea is to have an informational distance function that is maximal for the result of the probability–possibility

transformation of the distribution and that favors the approximations of the distribution that share themaximal surfacewith

the optimal one (as for Isurf in the probabilistic case).We first consider the case of a discrete universe, i.e.,� = {C1, . . . , Cq}.
In this case, it is expected that the possibility distribution π∗ that maximizes the informational distance is exactly π sp

defined in Eq. (4). This possibility distribution is one of the cumulated functions of p∗. What we want to obtain is a function

that is maximized for a possibility distribution π having following properties:

• π is a cumulated function of p

• ∀i, j, πi ≥ πj ⇔ pi ≥ pj .

In a first step, we will use Isurf for estimating the possibility distribution π as the cumulated function that respects the

ordering of the possibility degrees inπ . Then, in the followingwe consider that the ordering of subsets Ci and the frequencies

αi reflect the possibility ordering, i.e., π1 ≥ · · · ≥ πq. By considering π as a cumulated function, we suppose that, for all

i, the pair (πi, 1 − πi) is a binomial probability distribution for the sets
⋃q

j=i Cj and
⋃i−1

j=1 Cj . By estimating this probability

function by Isurf we obtain:

Isurf ((πi, 1 − πi)|X) =





q
∑

j=i

αj



 ∗ πi +





i−1
∑

j=1

αj



 ∗ (1 − πi) −
π2
i + (1 − πi)

2

2

= πi ∗





q
∑

j=i

αj −



1 −

q
∑

j=i

αj







 +
i−1
∑

j=1

αj −
2π2

i + 1 − 2πi

2



= 2 ∗ πi ∗





q
∑

j=i

αj



 − π2
i +

1

2
+

i−1
∑

j=1

αj

= 2 ∗ πi ∗





q
∑

j=i

αj



 − π2
i +

3

2
−

q
∑

j=i

αj

We obtain an evaluation π as a cumulated function by summing this calculus for all the πi:

Isurf (cumul(π)|X) =
∑

i

Isurf ((πi, 1 − πi)|X)

= 2 ∗

q
∑

i=1



πi ∗





q
∑

j=i

αj







 −

q
∑

i=1

π2
i +

q
∑

i=1

3

2
−

q
∑

i=1





q
∑

j=i

αj





= 2 ∗

q
∑

i=1



πi ∗





q
∑

j=i

αj







 −

q
∑

i=1

π2
i +

3 ∗ q

2
−

q
∑

i=1

αi ∗ i

(7)

Proposition 3. Given a set of realizations X = {x1, . . . , xn}, Isurf (cumul(π)|X) is equal to the same value for any π that is a

cumulated function of p∗

Proof. (sketch) By replacing π by a cumulated function of p∗ we obtain an expression that only depends on αi’s and that is

independent of the ordering of the αi’s. �

Proposition 4. Given a set of realizations X = {x1, . . . , xn} of a random variable over a discrete universe � = {C1, . . . , Cq}
and given a fixed order for the πi’s finding the possibility distribution π that maximizes Isurf (cumul(π)|X) is equivalent to find

the distribution that minimizes the square of the distance to the cumulated functions of p∗ which have the αi’s and the πi’s in the

same order.

Proof. Given X = {x1, . . . , xn}, the cumulated functions of p∗ which have the αi’s and the πi’s in the same order is

π ′
i =

∑q
j=i αj

d(π ′, π)2 =

q
∑

i=1





q
∑

j=i

αj − πi





2

=

q
∑

i=1











q
∑

j=i

αj





2

+ π2
i − 2 ∗





q
∑

j=i

αj



 ∗ πi







=

q
∑

i=1









1 −
i−1
∑

j=1

αj





2

+ π2
i − 2 ∗





q
∑

j=i

αj



 ∗ πi







=

q
∑

i=1





1 +





i−1
∑

j=1

αj





2

−
i−1
∑

j=1

αj − 2 ∗





q
∑

j=i

αj



 ∗ πi





 + π2
i −

i−1
∑

j=1

αj

= Cc − Isurf (cumul(π)|X)

where Cc =
∑q

i=1

(

1 + 3
2

+
(

∑i−1
j=1 αj

)2
−

∑i−1
j=1 αj

)

is independent of π . This establishes the proposition. �

Then Isurf (cumul(π)|X) is a good candidate for the possibilistic information distance since it is maximized by possibility

distributions that are cumulated functions ofp∗, and it canbe still considered as the squareddistancebetween the considered

distribution and a cumulated function of p∗. However, Proposition 3 states that Isurf (cumul(π)|X) has the same value for

any cumulated function. Thus,maximizing Isurf (cumul(π)|X) doesn’t not guarantee that theαi’s and theπi’s are in the same

order. In order to overcome this issue, we propose the following function:

Ipos(π |X) =

q
∑

i=1

πi ∗





q
∑

j=i

αj



 −
1

2

q
∑

i=1

π2
i −

q
∑

i=1

αi ∗ i (8)



Indeed, we have:

Ipos(π |X) =
1

2
∗ Isurf (cumul(π)|X) −

1

2

q
∑

i=1

αi ∗ i −
3 ∗ q

4

Ipos is nothing but Isurf of the cumulated function with an additional term that favors the possibility distributions that

respect the frequency ordering. This is established in the following proposition.

Proposition 5. Given a set of data X = {x1, . . . , xn} belonging to a discrete universe � = {C1, . . . , Cq}, the possibility

distributionπ∗ thatmaximizes the functionIpos is theprobability–possibility transformationof theoptimalprobabilitydistribution

p∗ (i.e., ∀i ∈ {1, . . . , q}, p∗
i = αi), according to Eq. (5) (i.e., π∗ = π sp).

Proof. We look for the probability distribution π∗ that maximizes Ipos.

We have:

∀i = 1 . . . q,
δIpos(π |X)

δπi

=

q
∑

j=i

αj − πi

thus

∀i = 1 . . . q,
δIpos(π |X)

δπi

= 0 ⇔ pi =

q
∑

j=i

αj.

Since the derivative of Ipos(π |X)with respect toπi (the parameters ofπ ) does not depend on the other operatorπj , j 6= i, we

obtainπ∗
i = pi =

∑q
j=i αj which corresponds to a cumulated distribution of theαi’s. Since the part

∑q
i=1 αi ∗ i ismaximized

when α1 ≥ · · · ≥ αq, the distribution π∗ corresponds exactly to Eq. (5) and we have π∗ = π sp. �

This proposition shows that Ipos is an acceptable informational distance function for possibility distributions viewed

as families of probabilities. This proposition and Proposition 4 provide an interpretation of the possibility informational

distance: if the maximization algorithm used does not prevent to have a possibility distribution that respect the frequency

ordering, the algorithm will favor the distribution that shares the maximum of area with the optimal one. As for Isurf the

informational distance depends on the surface shared between the considered possibility distribution and the optimal one.

If we only consider one piece of data x such that x ∈ Cj we obtain :

Ipos(π |x) =
1

n





j
∑

i=1

πi −
1

2

q
∑

i=1

π2
i − j



 (9)

It is worth noticing that, when optimal distributions can only be approximated, finding the best approximationwith respect

to Ipos is not equivalent to finding the best probability approximation with respect to a probabilistic informational distance

and then turning it into a possibility distribution.

Example 2. For instance, we consider X that leads to the frequency α1 = 0.5, α2 = 0.3, α3 = 0.2. We require that p3 = 0

andπ3 = 0. In this context, the optimal pwith respect to Isurf (Ilog is not applicable here) is p1 = 0.6, p2 = 0.4, p3 = 0. The

optimalπ with respect to Ipos isπ1 = 1,π2 = 0.5,π3 = 0. The transformationπ ′ of p isπ ′
1 = 1,π ′

2 = 0.4,π ′
3 = 0.We ob-

serve thatπ ′ is different thanπ and thatπ is abetter approximationof theoptimalpossibilitydistributiongiven inExample1.

This result is fundamental since it illustrates that using a probabilistic informational distance and then the probability–

possibility transformation is not an effective approach for constructing apossibility distribution fromdata. Themaximization

of Ipos is more adapted in this scope. However, if the optimization constraints or the representation bias prevent us to have

a possibility distribution that respect the frequency ordering, we may obtain the possibility distribution that shares the

maximum of area with the cumulated distribution that corresponds to the ordering of the possibility degrees.

Example 3. We again consider X that leads to the frequency α1 = 0.5, α2 = 0.3, α3 = 0.2. We now require that p2 = 0

and π2 = 0. In this context, the optimal pwith respect to Isurf (Ilog is not applicable here) is p1 = 0.65, p2 = 0, p3 = 0.35.
The optimal π with respect to Ipos is π1 = 1, π2 = 0, π3 = 0.5 which corresponds to the approximation of another

distribution.



In this paper, the optimization of Ipos is performed with a simulated annealing algorithm [9]. It is interesting to remark

that we have not restricted the state space to normalized distributions since themaximization of Ipos converges naturally to

a normalized possibility distribution. However, the function Ipos also applies to non-normalized distributions, but since it

evaluates the possibility distribution as a cumulated distribution function, normalized ones are always preferred. Then, if the

optimizationprocess returns anon-normalizeddistribution, normalizing it byfixing thegreatest value to1will automatically

increase the value of Ipos.

5. Possibilistic informational distance: continuous case

We now extend the definition of the possibilistic informational distance to the continuous case where � = R.

5.1. Definitions

In the continuous case, the considerationof thevaluesofπ in an increasingorder isnaturally replacedby the consideration

of α-cuts. Then the part
∑j

i=1(πi) − j of Eq. (9) becomes:

∫

Aπ(x)

π(t)dt − |Aπ(x)|

where Aπ(x) is the π(x)-cut of π and |Aπ(x)| its size. Naturally, the part − 1
2

∑q
i=1 π2

i becomes:

−
1

2

∫

R

π(t)2dt

Then, for one piece of data we obtain:

Ipos(π |x) =

∫

Aπ(x)

π(t)dt − |Aπ(x)| −
1

2

∫

R

π(t)2dt (10)

If we consider more than one piece of data, we obtain:

Ipos(π |X) =
1

n

n
∑

i=1

(

∫

Aπ(xi)

π(t)dt − |Aπ(xi)|

)

−

∫

R

π(t)2

2
dt (11)

Proposition 6. Assuming an infinite set of data that follows a probability distribution p, finding the possibility distributionπ that

maximizes Ipos is equivalent to find the distribution that minimizes the square of the distance to the optimal one π∗ if π respects

the ordering of p (i.e., ∀x, y ∈ R if p(x) ≤ p(y) then π(x) ≤ π(y)).

Proof. It is basically the extension of Proposition 4 where the frequency becomes density values of p. Then, we will have:

d(π∗, π)2 = C − 2 ∗ Ipos(π |p) + 2 ∗

∫

R

p(x) ∗ |Aπ(x)|dx

where C =
∫

R(π∗(x)2dx is independent of π . 2∗
∫

R p(x)∗ |Aπ(x)|dx is minimized when values xwith greater density are in

the smallest α-cuts, i.e., when values x with greater density have greater possibility values. When π respects the ordering

of p we have Aπ(x) = {y ∈ R|p(y) ≥ p(x)} which corresponds to the case when 2 ∗
∫

R p(x) ∗ |Aπ(x)|dx is minimal. �

Proposition 7. The possibility distribution π∗ that maximizes the function Ipos for data that follow a probability distribution p

is the probability–possibility transformation of the optimal probability distribution p∗ according to Eq. (4).

Proof. It is the extension of Proposition 5 where the frequency becomes density values of p. We have:

Ipos(π |p) =

∫

R

p(x)

(

∫

Aπ(x)

π(t)dt − |Aπ(x)|

)

dx −

∫

R

π(t)2

2
dt (12)

the part
∫

R p(x)
(

∫

Aπ(x)
π(t)dt

)

dx−
∫

R

π(t)2

2
dt is maximized for possibility distribution that are cumulated distribution of p

(i.e., A1−α = Iα). The part−
∫

R p(x) ∗ |Aπ(x)|dx is maximized when values xwith greater density are in the smallest α-cuts,

i.e., when values x with greater density have greater density value, thus when π respects the ordering of p. Finally, Ipos is

maximized when A1−α = I∗α , i.e., when π∗ = π sp. �



Thus, the possibilistic informational distance in the continuous case has the same understanding than in the discrete

case. It favors the possibility distribution that minimizes the distance with the probability–possibility transformation of the

distribution. However, the main advantage of this measure if that, of course, the optimal probability–possibility transfor-

mation has not to be known. Note that, having the informational distance function defined for triangular (resp. trapezoidal)

distribution, we can obtain the optimal triangular (resp. trapezoidal) by finding the parameters that maximizes Ipos. Since

this problem cannot be solved analytically, we have to use a meta heuristics such as simulated annealing [9] or particle

swarm optimization [8]. We will consider the calculus of Ipos for triangular and trapezoidal possibility distributions.

5.2. Triangular distribution

We define a triangular possibility distribution as the triple πtri = (m, l, r) wherem is the mode of the triangle and l and

r the left and the right spread respectively. We consider a piece of data x ∈ X . We note µ = πtri(x) the possibility degree of

x and [a, b] the µ-cut of πtri. The second part of the Eq. (10) is computed such as:

−

∫

R

(πtri(t))
2

2
dt = −

∫ m+r

m−l

(πtri(t))
2

2
= −

l + r

6
.

There are two cases for the term that depends on πtri(x) in (10). We consider the case of x ∈]m − l,m + r[. We have:

∫

Aµ

πtri(t)dt − |Aµ| =

∫ b

a
πtri(t)dt − (1 − µ) ∗ (l + r)

=

∫ m

a
(πtri(t))dt +

∫ b

m
(πtri(t))dt − (1 − µ) ∗ (l + r)

=

∫ m

a

(

1 −
m − t

l

)

dt +

∫ b

m

(

1 −
t − m

r

)

dt − (1 − µ) ∗ (l + r)

= −(1 − µ)2 ∗
l + r

2
.

The problem is when x 6∈ ]m − l,m + r[. In this case, the 0-cut is infinite. In the settings of the proposition 7, the interval

that has to be considered is {y ∈ R|p(y) ≥ p(x)}. If we assume that the probability decreases linearly when the distance to

the bound increases, we obtain:

∫

Aµ

πtri(t)dt − |Aµ| = −
l + r

2
− C1 ∗ min(d(x,m − l), d(x,m + r).

where C1 is a constant and d denotes the Euclidean distance. Finally, we obtain:

Ipos(πtri|x) =



















−(1 − µ)2 ∗ l+r
2

− l+r
6

if x ∈ x ∈ ]m − l,m + r[

− l+r
2

− C1 ∗ d(x,m − l) − l+r
6

if x ≤ (m − l)

− l+r
2

− C1 ∗ d(x,m + r) − l+r
6

if x ≥ (m + r)

(13)

Proposition8. Givenan infinite set of data that followsanunimodal symmetricprobabilitydistributionp, the triangularpossibility

distribution that maximizes Ipos with C1 = 2 is the one that minimizes the square of the distance to the optimal one π sp.

Proof. If the distribution is unimodal and symmetric, any triangular possibility distribution which has a mode that cor-

responds to the mode of the probability distribution will respect the ordering of p on its support. Outside the support,

the value − l+r
2

− 2 ∗ min(d(x,m − l), d(x,m + r) is equal to l+r
2

− (l + r + 2 ∗ min(d(x,m − l), d(x,m + r)).
l + r + 2 ∗ min(d(x,m − l), d(x,m + r)) is the size of the interval {y|p(y) ≥ p(x)} due to the symmetry of p. Then,

the property 6 applies. �

This proposition shows that, if the distribution is unimodal and symmetric, the triangular possibility distribution that

maximizes Ipos is the one that shares themaximal surface with the probability–possibility transformation of the considered

distribution. Moreover, it has been shown in [3] that, given an unimodal and symmetric probability distribution, for any

value of α, it exists a triangular possibility distribution for which for all β ≤ α, I∗β ⊆ A1−β . This triangular distribution can

also be obtained bymaximizing Ipos with the adequate value of C1. In fact, when C1 increases, theweight of the value outside

the support increases and then the size of the support of the optimal distributionwill increase too. Finally, themaximization

of Ipos for a triangular possibility distributions can be used for upper estimating the confidence intervals of an unimodal

and symmetric probability distribution, until a confidence level threshold. This threshold increases when C1 increases.



This result does not hold when considering asymmetric unimodal probability distribution. This is essentially due to the

fact that the confidence intervals, and then the α-cuts are not centered on the mean of the distribution (as it is considered

to be for values outside the support in Eq. (13)). We propose to adapt Eq. (13) in order to take into account this asymmetry

in the following way:

Ipos(πtri|x) =


















−(1 − µ)2 ∗ l+r
2

− l+r
6

if x ∈ x ∈]m − l,m + r[

− l+r
2

− 1
2

∗ C1 ∗
(

1 + r
l

)

∗ d(x,m − l) − l+r
6

if x ≤ (m − l)

− l+r
2

− 1
2

∗ C1 ∗
(

1 + l
r

)

∗ d(x,m + r) − l+r
6

if x ≥ (m + r)

(14)

Even if this version of Ipos does not guarantee that the results obtained for the symmetric unimodal probability distribution

remain true for asymmetric unimodal ones, we observe that it provides good approximations in most of the cases. Indeed,

the optimal triangular possibility distribution with respect to Ipos is the approximation of the cumulated distribution that

respect as much as possible the ordering of the density function (p(x) ≥ p(x′) ↔ π(x) ≥ π(x′)). Triangular distribution
can respect this ordering in the symmetric case, it is not always the case in the non symmetric case. If the probability values

are proportional to the distance of the mode (i.e., p(x + m) = c ∗ p(x − m) where m is the mode and c a constant) the

mode of optimal triangular possibility distribution will correspond to the mode of the probability distribution. The less

the probability values are proportional to the distance of the mode, the higher the distance between the mode of optimal

triangular possibility distribution and the mode of the probability distribution.

5.3. Trapezoidal distribution

We define a trapezoidal possibility distribution as the quadruple πtrap = (a, b, c, d) where [a, d] and [b, c] are respec-

tively the support and the core of the distribution. We consider a piece of data x ∈ X . We note µ = πtrap(x) the possibility

degree of x and [a, b] the µ-cut of πtrap. We also note lt = (b − a), the size of the left part of the support, rt = (d − c) the
size of the right part of the support andmt = (c − b) the size of the core. In the spirit of the triangular case we obtain:

Ipos(πtrap|x) =


















−(1 − µ)2 ∗ lt+rt
2

− lt+rt
6

− C2 ∗ mt if x ∈ x ∈]b, c[

− lt+rt
2

− 1
2

∗ C1 ∗
(

1 + rt
lt

)

∗ d(x, a) − lt+rt
6

− C2 ∗ mt if x ≤ a

− lt+rt
2

− 1
2

∗ C1 ∗
(

1 + lt
rt

)

∗ d(x, d) − lt+rt
6

− C2 ∗ mt if x ≥ d

(15)

where C2 is a constant. Formally, C2 is equal to 1. However, in such a case, the optimal distribution with respect to Ipos will

always be a triangular one (i.e., b = c). This is due to the fact that increasing the core of the distribution will never decrease

the distance with the optimal distribution. By allowing to have C2 less than 1, we allow the decreasing of the weight of the

core of the distribution and then to have a genuine trapezoidal possibility distribution that maximizes Ipos. Notice that it

is not in contradiction with the spirit of the possibilistic informational distance since the optimal trapezoidal distribution

obtained by decreasing C2 will always contain the optimal triangular one (for which C2 = 1). C1 has the same use and

meaning than in the triangular case. Finally, themaximization of Ipos for a trapezoidal possibility distributionwith adequate

values of C1 and C2, can be used for upper estimating the confidence intervals of any multi modal (with a finite number of

mode) probability distribution, until a confidence level threshold. As in the triangular case, this threshold increases when C1
increases. Unlike the discrete case, the use of triangular distribution guarantee by construction that the distribution obtained

by optimization of Ipos is normalized even the definition of Ipos is still relevant if the distribution is not normalized.

6. Illustrations

In this section, we use the possibilistic informational distance function in order to a build possibility distribution from a

set of data. In each case,wewill consider a different probability distribution. Thus,we construct a set of data that corresponds

as much as possible to the probability distribution chosen. In order to do that, we discretize the density function on a fixed

interval. After a normalization step, we obtain a discrete probability distribution. We then maximize the sum of the Ipos for

each of these points weighted by their probability degree. We choose this approach rather than a sampling because, with

a sufficient high discretization range, the result obtained is very close to the optimization of Ipos for an infinite set of data

that follows the chosen probability distribution. Of course, the method is still applicable to any sample set. As pointed out

previously, we have to use ameta heuristic (simulated annealing here) in order to find themaximal triangular or trapezoidal

distribution thatmaximize Ipos. For each probability distribution,wediscretize the density functionwith 500 divisions of the

interval [−6, 6]. On each figure, the probability distribution is in green, its probability–possibility transformation is in blue



Fig. 3. Triangular possibility distributions that maximize Ipos with respect to a set of data that follows a Gaussian distribution.

Fig. 4. Triangular possibility distributions that maximize Ipos with respect to a set of data that follows a triangular probability distribution.

and optimal possibility distributions are in red. A figure may contain multiple possibility distributions which correspond to

different values of the constants C1 and C2.

In the following, for illustration purpose we suppose that we know the shape of the probability distribution. Obviously,

in this case, the squared distance with the probability–possibility transformation can be computed directly. However, Ipos
does not require the knowledge of the shape of the distribution. Moreover, the result is obtained by summing up the local

evaluations of Ipos on each piece of data, while the method based on the square of the surface relies on a global evaluation.

Contrarily to the method based on the square of the surface, the optimization of Ipos still applies when having a finite (even

small) amount of data, without knowing the shape of the distribution.

6.1. Unimodal symmetric distributions

First, we consider a unimodal symmetric distribution. Fig. 3 corresponds to the building of triangular possibility distri-

bution that maximize Ipos with C1 = 2, C1 = 4 and C1 = 10 (from light red to dark red) 1 for data that follow a Gaussian

distribution with mean equal to 0 and standard deviation equal to 1. We can first notice that the mode of the triangular

distribution corresponds to the mode of the Gaussian distribution. The triangular distribution with C1 = 2 is very close

to the optimal one. As expected, when C1 increases, the threshold α for which ∀β ≤ α, I∗β ⊆ A1−β increases too. In the

1 For interpretation of colour in figure artwork, the reader is referred to the web version of this article.



Fig. 5. Triangular possibility distributions that maximize Ipos with respect to a set of data that follows a skewed normal probability distribution.

following, we will name domination level the value α. Of course we have πC1=2 � πC1=4 � πC1=10. For πC1=2, πC1=4 and

πC1=10, the domination levels are respectively 0.76, 0.93 and 0.97.

Fig. 4 presents the same approachwith data that follow a triangular probability distribution. The results are similar to the

ones observed with a Gaussian distribution. The domination levels are very close (respectively 0.76, 0.93 and 0.97). As for
the discrete case, this figure illustrates the fact that maximizing possibilistic informational distance provides results that are

different from the ones obtained by approximating the probability distribution and then applying the probability–possibility

transformation. This is obvious here since the probability–possibility transformation of a triangular probability distribution

is not a triangular possibility distribution.

What is interesting to remark here is that the maximum possibilistic informational distance principle allows us to elic-

itate triangular possibility distributions that upper bound the confidence intervals of any unknown unimodal symmetric

probability distribution.

6.2. Unimodal non symmetric distributions

We perform the same experience than the previous one with a skewed normal distribution which is unimodal and

asymmetric (see Fig. 5). Although the distribution is not symmetric, we can observe similar results to the ones observed

with the Gaussian distribution, except that the mode is not identified exactly. Thus, πC1=2 upper bounds the confidence

intervals I∗α for 0.2 ≤ α ≤ 0.76, πC1=4 for 0.1 ≤ α ≤ 0.94 and πC1=10 for 0.07 ≤ α ≤ 0.98.
We can observe that, even if the results are not as precise as the previous ones, maximum possibilistic informational

distance principle is still able to upper bound unknown unimodal distributions that are not symmetric. We can also observe

that, even the choice of C1 is empirical at this time, the dominance level remains relatively stable for a given value of C1,

regardless to the type of the distribution.

6.3. Multimodal symmetric distributions

In Figs. 6–8, the distribution is multi modal. In Fig. 6 we have C2 = 1, and from light red to dark red C1 = 2, C1 = 4

and C1 = 10. As expected, we obtain, we obtain triangular distributions. We can observe that the mode of the triangular

distribution is close the highest mode of the probability distribution. When C2 = 0.8 (Fig. 7), we obtain genuine trapezoidal

distributions, but they still do not upperbound the confidence intervals. A possibility distribution that upper bounds the

confidence intervals I∗α for α ≤ 0.98 is obtained with C1 = 10 and C2 = 0.67 (Fig. 8). This illustrates the fact that, for

adequate values of C1 and C2, the maximum possibilistic informational distance principle allows us to elicitate trapezoidal

possibility distributions that upper bound the confidence intervals of any unknown probability distribution that has a finite

number of modes. As for C1, the effect of the value of C2 does not highly depend on the type of the distribution and then the

values C1 = 10 and C2 = 0.67 perform well in most of the cases.



Fig. 6. Trapezoidal possibility distributions that maximize Ipos (C2 = 1) with respect to a set of data that follows a Gaussian probability distribution.

Fig. 7. Trapezoidal possibility distributions that maximize Ipos (C2 = 0.8) with respect to a set of data that follows a Gaussian probability distribution.

7. Conclusion

In this paper we have proposed a definition of possibilistic informational distance that agrees with the view of possi-

bility distributions as families of probability distributions and with the probability–possibility transformation based on the

maximum-specificity principle. We have defined this possibilistic informational distance function both for discrete and for

continuous universes. The calculus is described for the cases of triangular and trapezoidal possibility distributions. We have

shown that the possibilistic informational distance is related to the distance between the considered possibility distribution

and the probability–possibility transformation of the unknown probability distribution that has generated the data. More

precisely, by maximizing Ipos (under some constraints, such as triangular shaped possibility distributions) we obtain the

possibility distribution that respects asmuch as possible the ordering of the probabilities, and that shares amaximal surface

with the cumulated distribution that respects the possibilistic ordering.

This type of function is interesting in many respects. It can be used for comparing the faithfulness of two possibility

distributions with respect to a set of data. Moreover, the good properties of triangular possibility distributions for bounding

the confidence intervals of a unimodal probability distribution makes the building of possibility distributions by optimiza-

tion of Ipos a good approach when no a priori information on the type of distribution is available. In the same way, we can

use maximum possibilistic informational distance principle for upper bounding the confidence intervals of any unknown

probability distribution that has a finite number of modes.



Fig. 8. Trapezoidal possibility distribution that maximizes Ipos (C1 = 10, C2 = 0.67) with respect to a set of data that follows a Gaussian probability distribution.

Possibilistic informational distance is particularly promising in the area of machine learning. Indeed, it is common in

machine learning to have to estimate probability distributions with few data and without a priori knowledge about the

shape of the distribution. It may happen for instance in Bayesian learning or in k-nearest neighbor approaches. In this case,

possibilistic informational distance may be a cautious and valuable tool for upper bounding the confidence intervals of

these unknown distributions. It this scope, maximizing the possibilistic informational distance is the core of the imprecise

regression method [14] that allows us to predict a possibility distribution of the output value from a crisp vector of input

values. A similar approach to possibilistic classification is worth investigating too.

In the future, it would be useful to look for alternatives to the meta heuristics that are used in the optimization process

since these algorithms are heavy to tune and require high amounts of computation. This may rely on analytical solutions of

the optimization problems, on the use of lighter algorithms that provide good approximations. Moreover, another practical

issue is the tuning of the parameters C1 and C2 and the study of their properties. Lastly, it may desirable to take into account

the quantity of data available. Indeed, if only one value is available, the best possibility distribution is a Dirac, and there

will be no difference with the case where a thousand of identical values are available. Less data should lead to less specific

distributions. This should be taken into account in the computation of the possibilistic informational distance.
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