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Mimicking human neuronal pathways in silico: an emergent

model on the effective connectivity

Önder Gürcan · Kemal S. Türker · Jean-Pierre Mano ·

Carole Bernon · Oğuz Dikenelli · Pierre Glize

Abstract We present a novel computational model that

detects temporal configurations of a given human neuronal

pathway and constructs its artificial replication. This poses

a great challenge since direct recordings from individual

neurons are impossible in the human central nervous sys-

tem and therefore the underlying neuronal pathway has

to be considered as a black box. For tackling this chal-

lenge, we used a branch of complex systems modeling

called artificial self-organization in which large sets of

software entities interacting locally give rise to bottom-up
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collective behaviors. The result is an emergent model

where each software entity represents an integrate-and-

fire neuron. We then applied the model to the reflex

responses of single motor units obtained from con-

scious human subjects. Experimental results show that

the model recovers functionality of real human neu-

ronal pathways by comparing it to appropriate surro-

gate data. What makes the model promising is the fact

that, to the best of our knowledge, it is the first real-

istic model to self-wire an artificial neuronal network

by efficiently combining neuroscience with artificial self-

organization. Although there is no evidence yet of the

model’s connectivity mapping onto the human connectiv-

ity, we anticipate this model will help neuroscientists to

learn much more about human neuronal networks, and

could also be used for predicting hypotheses to lead future

experiments.

Keywords Human studies · Self-organization ·

Agent-based simulation · Spiking neural networks ·

Integrate-and-fire model · Frequency analysis

1 Introduction

For decades, scientists have dreamed of building com-

puter systems that could replicate the human neuronal

system. Computational neuroscience is a major subdis-

cipline of neuroscience which is used for reaching this

goal by integrating theoretical and experimental informa-

tion using simulation and mathematical theory. Broadly, this

integration can be done in two different ways (Gerstner

et al. 2012; Dayan and Abbott 2005): integrating what is

known on a micro-level (e.g., properties of ion channels,

see (Colquhoun and Hawkes 1990)) to explain phenomena



observed on a macro-level (e.g., generation of action poten-

tials, see (Hodgkin and Huxley 1952; Koch and Segev 1989;

Mainen et al. 1995; Hay et al. 2011)) – namely bottom-up

approaches, or starting with macro-level functions of the

nervous system (e.g. working memory) and deduce from

them how micro-level components need to behave in order

to achieve these functions (e.g., neurons or groups of neu-

rons) – namely top-down approaches. Both bottom-up and

top-down approaches increased our understanding espe-

cially at the microscopic scales, however, the transition from

microscopic to macroscopic scales still relies on mathemat-

ical arguments (Gerstner et al. 2012). Thus, simply “build-

ing” a human neuronal system from bottom-up by replicat-

ing its parts, connections, and organization fails to capture

its macro-level complex behavior (Izhikevich and Edelman

2008). Hence, it is still unknown which microscopic rules

under which conditions are useful at the macroscopic level.

Studies for filling this gap are still missing.

In this study, our aim is to fill this gap by mimicking

human neuronal pathways without assuming the transi-

tion from microscopic to macroscopic scales depend upon

mathematical arguments (Gürcan et al. 2010a, b). Human

neuronal pathways are natural complex systems in which

large sets of neurons interact locally and give bottom-

up rise to collective macroscopic behaviors. In this sense,

correct knowledge of the synaptic functional connections

between neurons is a key prerequisite for relating them

to the operation of their central nervous system (CNS).

However, estimating these functional connections between

neurons in the human CNS poses a great challenge since

direct recordings are impossible. Consequently, the network

between human neurons is often expressed as a black box

and the properties of connections between neurons are esti-

mated using indirect methods (Türker and Powers 2005).

In indirect methods a particular receptor system is stimu-

lated and the responses of neurons that are affected by the

stimulus recorded to estimate the properties of the circuit

(Rossi et al. 2003; Misiaszek 2003; Grande and Cafarelli

2003). However, these neuronal circuits in human subjects

are only estimations and their existence cannot be directly

proven. Furthermore, there is no satisfactory theory on how

these unknown parts of the CNS operate. Therefore, we

need techniques that are able to learn inside this black box

preserving both microscopic and macroscopic properties

as biologically plausible as possible. However, success of

such a technique would not be possible without an efficient

effective connectivity1 analysis method that successfully

1The actual coupling that we are trying to model is referred to as

effective connectivity. In some studies the term functional connectiv-

ity is also used but this term more refers to the statistical correlations

between nodes (for a review see (Friston 2011)). In this sense, we used

the term effective connectivity throughout this article.

captures some of the essential functional principles of bio-

logical behaviors. Once we establish correctly how neurons

are connected, by using the benefits of the resulting com-

plex network representation and its spatially and temporally

correlated signals, we can extract features that may be infor-

mative for the underlying dynamic processes. In this way,

we can increase our understanding about the modulation

of synaptic input during movement and learning, and also

we can find new methods for diagnoses and treatment of

disorders of the CNS.

Standing on these observations, we propose a novel

computational model2 based on the principles of artifi-

cial self-organizing systems. The goal of this model is

to integrate knowledge from neuroscience and artificial

self-organization to derive from it the fundamental prin-

ciples that govern CNS function and its simulation, and

ultimately, to reconstruct the human CNS pathways in sil-

ico. Self-organization essentially refers to a spontaneous,

dynamically produced organization in a system without any

external control (Serugendo et al. 2011). From the behav-

ior of dynamically evolving natural systems perspective,3

self-organization is a set of dynamical mechanisms whereby

(spatial, temporal and/or functional) structures appear at the

macro-level of a system as a result of interactions among its

micro-level components (Bonabeau et al. 1999). The rules

specifying these interactions are executed on the basis of

purely local information, without reference to any macro-

level pattern. Considering these definitions, in computer

science, the term artificial self-organization refers to a pro-

cess enabling a software system to dynamically alter its

internal organization (structure and functionality) during

its execution time without any explicit external directing

mechanism (Serugendo et al. 2011).

The artificially self-organizing computational model

proposed here uses temporal data collected from human

subjects as an emergent macro-level description of the

underlying neuronal pathway. Dynamic activity and spik-

ing are modeled at the individual neuron (cell) scale. This

scale was chosen since it represents the best compromise

between dynamics, complexity and observability for sim-

ulating the effective connectivity of neuronal networks

(Buibas and Silva 2011).4 Consequently, the local infor-

mation in the model is the knowledge about the behavior

of individual neurons, such as generation of spikes and

transmission of these spikes to their postsynaptic neurons.

2Part of this work was previously published in a conference proceeding

(Gürcan et al. 2012).
3There are various definitions of the concept of self-organization from

different perspectives and disciplines. For a list of most common

definitions in the literature see Section 3.2.2 in (Serugendo et al. 2011).
4However, it is still unknown what level of biological detail is needed

in order to mimic the way CNS behaves.



The effect of a spike on a target neuron is defined as a

temporal membrane potential change in response to the

influence of a source neuron that connects to it. That

influence is not instantaneous, and is delayed by the phys-

ical distance between neurons (the speed of transmission

is assumed the same for all connections). However, the

interactions of neurons that result in macro-level emergent

behaviors are unknown and obviously neurons alone are not

able to deal with this information. To this end, we defined

mechanisms of artificial self-organization for individual

neurons based on biological knowledge. Moreover, to be

able to specify purely local information about the reference

macro-level pattern, we used the peristimulus frequency

(PSF) analysis method (Türker and Powers 2005). This

way, using a self-organizing model and reference data

encoded as PSF, the model is able to build an artificial

neuronal network from an initial setting that is functionally

equivalent to its reference biological network.

The accuracy of this new model has been proved using

recorded discharge rates of motoneurons in human subjects.

Driven by intermittent activations of sensory neuron(s) and

the spontaneous activity of the motoneuron(s), an artificial

neuronal pathway emerges through recruitment, dismission

and modification of neurons and synapses until it reaches a

state where further organizational changes do not occur. The

outcome is a final neuronal pathway, the emergent behav-

ior and underlying neuronal dynamics of which can now be

studied in ideal conditions. The results obtained show that

the model simulates remarkably similar networks to their

reference human neuronal pathways from the point of view

of functionality.

Besides, it is worth pointing out the main contributions

of this article as follows:

– We have, for the first time, used artificial self-organi-

zation for mimicking human neuronal pathways. This

led us to generate artificial replications of real human

neuronal pathways without defining the transition from

microscopic to macroscopic scales using mathemati-

cal arguments. The micro-level entities of the system,

individual neurons, find their right organizationwithout

knowing the macro-level function.

– We have, for the first time, used the PSF technique

for mimicking human neuronal pathways in a computa-

tional simulation study. The PSF records obtained from

humans are used as a reference macro-level function for

the entire system.

– The principal advantage of our model is that it is flexi-

ble and not bound to particular pathways, therefore can

learn new pathways.

We view the impact of this work as twofold. First, it

provides a practical approach for mimicking human neu-

ronal pathways, which are often expressed as black box, by

automating the neuronal network design step that is prac-

tically impossible. Second, it opportunistically combines

the strengths of neuroscience and artificial self-organizing

systems into a single approach. Though the neuroscience

and artificial self-organization communities are mostly dis-

joint and focus on somewhat different problems, we find

that each can benefit from the progress of the other. On

the one hand, we show that methods for artificial self-

organization can help mimicking human neuronal pathways

successfully. On the other hand, we show that established

techniques from the neuroscience community can make

artificial self-organization applicable to real neuroscience

problems.

In what follows, we first provide the background of

our artificially self-organizing neural network model. Then,

based on this background we present our model. The key

idea in our model is that the artificial self-organization

scheme places plausible biological constraints (of the sort

that apply to neurons) on the models that emerge from this

process. The example we use to illustrate the approach is the

construction of neuronal circuits that reproduce the distribu-

tion of neuronal firing in response to an external (sensory)

stimulation. The crucial aspect of this process is that the

number of elements (neurons) and connections (synapses)

is optimized in a self-supervised way, thereby exploring a

potentially large space of models automatically, using sim-

ple and local rules. Finally, we discuss our model from

several perspectives and conclude the article.

2 Foundations of the model

This section presents the fundamentals for understanding

the proposed model, which are the concepts related to

artificial self-organization and the peristimulus frequency

analysis, and notations used in the rest of the paper.

2.1 Artificial self-organization

Artificial self-organizing systems are those built from the

beginning with embedded self-organization capabilities for

enabling the engineering of underspecified software. There

are various artificial self-organization approaches whose

mechanisms are borrowed from existing natural systems,

and/or created explicitly for that purpose (Serugendo et

al. 2011).

The approach proposed here to make the neuronal path-

ways find the right wiring to reflect experimental data and

then be able to explain how neurons link together, is based

on multi-agent systems (MAS). A MAS is an artificial (or

physical) system made up of lower-level entities, called

agents, which are able to behave autonomously and inter-

act in order to realize a collective behavior at the system



higher-level (Wooldridge 2002). More precisely, MAS con-

sidered here are adaptive ones and developed based on

the Adaptive Multi-Agent Systems (AMAS) theory (Capera

et al. 2003). The AMAS theory has successfully been

applied to various application domains such as ambi-

ent systems (Guivarch et al. 2012), manufacturing control

(Kaddoum and Georgé 2012), maritime surveillance (Brax

et al. 2012), optimization (Combettes et al. 2012), bio-

processes control (Videau et al. 2011), crisis management

(Lacouture et al. 2011), user profiling (Lemouzy et al.

2010), simulation of the functional behavior of a yeast cell

(Bernon et al. 2009), aircraft/avionics design (Welcomme

et al. 2009), dynamic ontologies (Ottens et al. 2007) and

aeronautical mechanisms design (Capera et al. 2004).

Adaptation is commonly defined by the capability a sys-

tem has to modify its behavior to accurately predict its

environment, especially when the environment is changing.

Considering that each part of a system carries out a partial

function, the global function of this system results from a

combination of the partial functions which mainly depends

on the current organization of the parts. Therefore, if the

parts are autonomously able to change their interactions,

and therefore their organization, the global function is also

modified.

In AMAS, cooperation is the criterion that makes an

agent decide to modify its behavior and/or interactions with

others in order to indirectly adapt the function performed

at the collective level (Georgé et al. 2004). This collective

function is not hard-coded in the system but emerges from

the interactions at the agent-level.

2.1.1 AMAS model description

In the AMAS approach, the system is composed of a set

of dynamic number of autonomous cooperative agentsA =

{a0, a1, ...}. In this approach, a system is said to be func-

tionally adequate if it produces the function for which it was

designed, according to the viewpoint of an external observer

who knows its finality.5 To reach a functional adequacy,

it has been proven that each autonomous agent ai ∈ A

must keep relations as cooperative as possible with its social

(other agents) and physical environment (Capera et al. 2003;

Camps et al. 1998). Cooperation can be defined as the abil-

ity agents possess to work together in order to realize a

common global goal.6 Cooperative agents try, on the one

hand, to anticipate cooperation problems and, on the other

hand, to detect cooperation failures and try to repair them

(Picard and Gleizes 2005).

5Considering their global scope, emergent (functional) phenomena can

generally be identified by some observer located outside the system

that produces them (de Haan 2006; Goldstein 1999).
6For a detailed discussion on cooperation refer to (Georgé et al. 2011).

A non-desired configuration of inputs causes a non-

cooperative situation (NCS) to occur. An agent ai is able to

memorize, forget and spontaneously send feedbacks related

to desired or non-desired configurations of inputs coming

from other agents. We denote the set of feedbacks as F and

we model sending a feedback fa ∈ F using an action of the

form send(fa,R) where a is the source of f and R ⊂ A \

{a} is the set of receiver agents. A feedback fa ∈ F can be

about increasing the value of the input (fa↑), decreasing the

value of the input (fa↓) or informing that the input is good

(fa≈).

When a feedback about a NCS is received by an agent,

at any time during its lifecycle, it acts in order to overcome

this situation or subsequently avoid it (Bernon et al. 2009)

for coming back to a cooperative state. This provides an

agent with learning capabilities which is therefore able to

constantly adapt to new situations that are judged harmful.

Consequently, the behaviors that agents are using for adap-

tation purposes are called adaptive behaviors. In case an

agent cannot overcome a NCS using its adaptive behaviors,

it keeps track of this situation by using a level of annoy-

ance valueψfa where fa is the feedback about this NCS and

propagates fa (or an interpretation of fa) to all or some of

its neighbor agents that may handle it. When a NCS is over-

come using an adaptive behavior, ψfa is set to 0, otherwise

it is increased by 1 until it reaches an annoyance threshold,

which may cause execution of another adaptive behavior

that makes an immediate organizational change.7 The first

adaptive behavior an agent tries to adopt to overcome a NCS

is a tuning behavior in which it tries to adjust its internal

parameters without changing the organization. If this tuning

is impossible because a limit is reached or the agent knows

that a worse situation will occur if it adjusts in a given way,

it may propagate the feedback (or an interpretation of it) to

other agents that may handle it. If such a behavior of tuning

fails many times and ψfa crosses the reorganization annoy-

ance thresholdψreorganization (reorganization condition), an

agent adopts a reorganization behavior for trying to change

the way in which it interacts with others (e.g., by changing

a link with another agent, by creating a new one, by chang-

ing the way in which it communicates with another one and

so on).8 In the same way, for many reasons, this behavior

7This idea is based on physical self-organizing systems where there

exists some critical threshold which causes an immediate change to the

system state when reached (Nicolis and Prigogine 1977). Thus, adap-

tive behaviors are typically governed by a power law (Heylighen 1999)

which states that large adjustments are possible but they are much less

probable than small adjustments.
8The term reorganization in terms of self-organization was first used

by Koestler in late 1960s (Koestler 1967). In his study, he defines

holons and holarchies where order can result from disorder with

progressive reorganization of relations between complex structural

elements (see (Serugendo et al. 2011) referring to (Koestler 1967)).



may fail counteracting the NCS and a last kind of behav-

ior may be adopted by the agent: evolution behavior. This is

detected when ψfa crosses the evolution annoyance thresh-

old ψevolution (evolution condition).
9 In the evolution step,

an agent may create a new agent (e.g., for helping itself

because it found nobody else) or may accept to disappear

(e.g., it was totally useless and decides to leave the sys-

tem). In these two last levels, propagation of a problem to

other agents is always possible if a local processing is not

achieved. The overall algorithm for suppressing a NCS by

an agent is given in Algorithm 1.

The AMAS approach is a proscriptive one because each

agent must first of all anticipate, avoid and repair NCSs.

By contrast, the designer, according to the problem to be

solved, has: 1) to determine what an agent is, then 2) to

define the nominal behavior which represents an agent’s

behavior when no NCS exist, then 3) to deduce the NCSs

the agent can be faced with, and finally 4) to define the

cooperative behavior (tuning, reorganization and/or evolu-

tion) the agent has to perform when faced with each NCS in

order to come back to a cooperative state. This is the pro-

cess adopted in the design of the proposed computational

model.

Moreover, to build a real self-adaptive system, the

designer has to keep in mind that agents only have a local

view of their environment and that they do not have to base

their reasoning on the collective function that the system

must achieve.

9Naturally ψevolution > ψreorganization > 0.

2.2 Effective connectivity analysis of human neuronal

pathways

In this subsection, we provide a brief overview of the tech-

niques that can be used for extracting a comprehensible

information about effective connectivity of human neuronal

pathways.

The ability to record motor unit activity in human sub-

jects has provided a wealth of information about the neural

control of motoneurons, and in particular has allowed the

study of how reflex and descending control of motoneurons

change as a function of task, during fatigue and following

nervous system injury. Although synaptic potentials cannot

be directly recorded in human motoneurons, their charac-

teristics can be inferred from measurements of the effects

of activating a set of peripheral or descending fibers on the

discharge probability of one or more motoneurons.

There are several techniques for quantifying stimulus-

evoked changes in responses of neurons. The three most

common are full-wave rectification and averaging of the

electromyography (EMG) record around the time of stim-

ulation (Jenner and Stephens 1982), compiling peristimulus

time histograms (PSTHs) from single motor unit (SMU)

records (Stephens et al. 1976) and compiling a peristimulus

frequency-gram (PSF) that uses the instantaneous discharge

rates of single motor units for estimating the synaptic poten-

tials produced by afferent stimulation (Türker and Powers

1999, 2003, 2005). The PSF plots instantaneous discharge

rates against the time of the stimulus and is used to examine

reflex effects on motoneurons, as well as the sign of the

net common input that underlies the synchronous discharge

of human motor units. The instantaneous discharge rates

comprising the PSF should not necessarily be affected

by previous (prestimulus) activity at any particular time.

However, since the discharge rate of a motoneuron reflects

the net synaptic current reaching its soma (Powers et al.

1992; Gydikov et al. 1977), any significant change in the

poststimulus discharge rate should indicate the sign and

the profile of the net input. Consequently, PSF has been

established to be a superior method for studying synaptic

potential in human subjects where all estimations have

to be performed indirectly (see Fig. 1). Other methods

such as the rectified surface electromyography (EMG) and

peristimulus time histogram (PSTH) rely upon probability

of spike occurrence and hence introduce several count

and synchronization type errors (reviewed in (Türker and

Powers 2005)). Consequently, since the discharge-rate-

based method was superior to the other methods, it was

used in the proposed model to indicate synaptic connections

between neurons and for generating the artificial neuronal

network.

Nevertheless, the accuracy of the reference discharge-

rate data and their efficient interpretation are important as



Fig. 1 PSF and PSTH methods: To examine how a sensory nerve

(afferent) that transmit information from a sensory receptor (such as

touch, temperature, etc) is connected to a motor neuron, we stimulate

the nerve and record the response of the motor neuron to this stimulus

by inserting a needle into a muscle that carries information from the

motor neuron within the central nervous system. Therefore, we deliver

an input into the system and record its response. Using the charac-

teristics of this response, we work out the pathway that connects the

stimulated afferent nerve to the motor neuron that connect to the mus-

cle single unit that we record from. This figure illustrates responses of

a single motor unit (SMU) to a simulus delivered at time zero (arrow;

red traces in PSTH and PSF records represent stimulus induced synap-

tic potentials that develop in the motor neuron membrane). Single

motor unit (SMU) action potentials (spikes) are recorded using intra-

muscular wire electrodes (bipolar configuration) around the time of

the stimulus (top trace). Peristimulus time histogram (PSTH) converts

each SMU spike (top trace) into acceptance pulses and indicates them

as counts exactly at each bin they occur (second trace from the top).

When a large number of stimuli are delivered and SMU acceptance

pulses are piled up, we obtain PSTH (middle trace). Interspike inter-

vals (ISI) of SMU spikes are measured in seconds and converted into

instantaneous discharge rates (1/ISI=Hz). To measure ISI we need two

spikes and the discharge rate value is indicated exactly in the same bin

of the second spike. Since the very first SMU spike in the PSF trace

(second trace from bottom) does not have a preceding spike, it has no

discharge rate value. The other ISIs are converted into Hz and indi-

cated as shown. When a large number of instantaneous discharge rates

are superimposed (not piled up as the PSTH records), we obtain the

PSF (bottom trace). The red traces in PSTH and PSF represent actual

injected current measured from a living motor neuron during the pro-

cess in the development of the PSF technique (for details see (Türker

and Powers 1999)). In the brain slice experiments similar injected

currents induced similar PSTHs and PSFs that are represented in this

diagram. As can be seen, the PSTH does not indicate the actual injected

current into a motor neuron. Even worse, it generates secondary peaks

and troughs that are not due to the injected current but due to the count

and synchronization errors that are applied to this method. PSF on the

other hand, very closely represents the profile of the actual injected

current (synaptic potential) developed on the motor neuron. For this

very reason, we used PSF to represent the synaptic potential in our

system which indicates not only the number of synapses in the system

(using the latency of the response) but also the sign and strength of

the connection (using the profile of the response) in the neuronal

pathway

they affect the correctness of the feedbacks in the model. In

this sense, to determine significant deflections, the cumula-

tive sum (CUSUM) of PSF record is used (see Fig. 2a and

b). The CUSUM is calculated by subtracting the mean pre-

stimulus baseline from the values in each bin and integrating

the remainder (Ellaway 1978). Stimulus-induced effects are

considered significant if the poststimulus CUSUM values

exceed the maximum prestimulus CUSUM deviation from

zero (i.e. the error box (Türker et al. 1997; Brinkworth and

Türker 2003), indicated by the horizontal lines in Fig. 2b).

As can be seen from this figure, there is an early and

long-lasting excitation (LLE) indicated by the increased

discharge rate from about 40 ms poststimulus to about

100 ms. After this LLE there is a period of long-lasting

inhibition (LLI) going from about 100 ms poststimulus to

about 300 ms. However, since after 200 ms of stimula-

tion the subject is able to change the discharge rate of

his/her motor unit voluntarily (minimum reaction time), the

events later than 200 ms cannot be considered as reflex

events. Only before 200 ms of poststimulus discharge rates

might give exact information about the network of the

motoneuron. However, CUSUM does not give comprehen-

sible local information from the point of view of a motor

neuron. For tackling this problem, a solution could be

calculating the derivative values of PSF-CUSUM values

(Fig. 2c). The derivative values at each time t give (local)

information about the instant pre-synaptic effects on a

motoneuron.



Fig. 2 Motoneuron responses to single post-synaptic potential (PSP)

compiled by recording the motoneuron discharges from human soleus

muscle using a surface electrode. a shows the Peristimulus frequency-

gram (PSF) that plots the instant discharge rate values of these

responses (red dots) to their occurence latency against the stimuli

applied (the horizontal blue line represents the mean-prestimulus base-

line), b shows the cumulative sum (CUSUM) of the PSF given in (a),

and (c) shows the derivative values obtained from the CUSUM in (b)

3 The computational model

This section describes the computational neuronal network

model which is based on the AMAS theory. The right

number of neurons composing the network as well as the

links between them will emerge enabling this network to

self-build.

The basic design of this model was previously endorsed

by the artificial self-organizing systems community (Gürcan

et al. 2012). Here we present its improved version by tak-

ing into account more details and validating its results on

various different data sets.

3.1 Identification of agents and their nominal behaviors

We model the computational model Sim basically capturing

all taken design decisions based on the AMAS theory as

Sim = (G, ν) where G is the agent-based neuronal network

and ν is the viewer agent. The agent-based neuronal network

G is presented in Section 3.1.1. For clarity, the viewer agent

ν is presented separately in Section 3.1.2.

3.1.1 Agent-based neuronal network model

In this subsection, we present a model of biological neuronal

networks. Since network theory is a subset of graph the-

ory, we model the neuronal network as a dynamic directed

graph G(t) = (N (t),S(t)) where N (t) ⊂ A denotes the

time varying neuron agent (vertex) set and S(t) denotes

the time varying synapse (edge) set. The set of excitatory

(respectively inhibitory) neuron agents at time t is denoted

by N+(t) (resp. N−(t)) where N (t) = N+(t) ∪ N−(t).

The nominal behavior of neuron agents is spike firing. A

neuron agent n fires a spike when its membrane potential pn

crosses the firing threshold. We define N spike(t) to be the

set of neuron agents that fired their last spike at time t . We

also denote tn for indicating the last spike firing time of the

neuron agent n where n ∈ N spike(tn).

When a neuron agent n fires a spike, this spike is emitted

through its synapses to the postsynaptic neuron agents. We

denote the set of presynaptic neighbors of a neuron agent

n at time t as Pren(t) = {m ∈ N (t)|{m, n} ∈ S(t)} and

the set of postsynaptic neighbors of a neuron agent n ∈ N

at time t as Postn(t) = {k ∈ N (t)|{n, k} ∈ S(t)}. Apart

from pre- and postsynaptic neighbors, a neuron agent has

also another type of neighborhood, called friends, which

contains all the neuron agents it has contacted during its

lifetime, even the synapses in between removed after some

time. Formally, a friend agent m of a neuron agent n at

time t is denoted by there exists some time t ′ ≤ t such

that m ∈ Pren(t
′) or m ∈ Postn(t

′). All friends of n at

time t are denoted by Friendn(t). The set of presynaptic

neuron agents that contributes to the activation of a postsy-

naptic neuron n at time tn is modeled as Contn(tn) where

Contn(tn) ⊆ Pren(tn) and tn > tk > tn − dpsp
10 for

all k ∈ Contn(tn). Lastly, a neuron agent has to know the

friends who activated temporally closest to its activation.

Formally, a temporally closest friend agent m of a neu-

ron agent n at time t is denoted by there exists some time

t ′ < tn ≤ t such that m ∈ Friendn(t), t
′ = tm and there is

no t ′ < t ′′ < tn such that for all k ∈ Friendn(t), t
′′ = tk .

All temporally closest friends of n at time t are denoted by

T empn(t).

A synapse {n, m} conducts a spike from n to m through

the interval [tn, t ′] if n ∈ N spike(tn), and t ′ = tn + dnm

where dnm is the delay for delivering the spike from n to

m. We denote the spike delay as dnm = dax
nm + dden

nm where

dax
nm is the axonal delay of {n, m} and dden

nm is the synap-

tic processing time. We assume that for all {n, m} ∈ S(t),

dden
nm = 0.5 ms (Kandel et al. 2000). The axonal delay

dax
nm, on the other hand, may change depending on the

length and type of the axon. When a spike transmitted by n

10It is assumed that the post-synaptic potential (PSP) duration dpsp =

4.0 ms.



reaches {n, m}, a postsynaptic potential (PSP) occurs on m

for 4.0 ms (PSP duration). The PSP for a unitary synapse

can range from 0.07 mV to 0.60 mV (see Figure 4 in Iansek

and Redman 1973). Thus, we say that a synapse {n, m}

potentiates (respectively depresses) the membrane poten-

tial p of m with a synaptic strength η at time t ′ where

0.07 ≤ |η| ≤ 0.60 during the PSP duration dpsp = 4.0 ms

if n ∈ N+ (resp. n ∈ N−) andm is not removed at any time

during the interval[t ′, t ′ + dpsp].

We model the set of sensory neuron agents at time t as

K(t) ⊂ N+(t) where for all s ∈ K(t), we have Pres(t) =

∅ and Posts(t) �= ∅. Since Pres(t) = ∅, they have a

nominal action of the form activate() triggered by the viewer

agent (see next subsection) in order to be able to fire.

We model the set of motoneuron agents at time t as

M(t) ⊂ N+(t) where for all m ∈ M(t), we have

Prem(t) �= ∅ and Postm(t) = ∅. Motoneurons are toni-

cally active and are affected by neurons connected to them.

Hundreds of EPSPs and IPSPs from sensory neurons and

interneurons arrive at different times onto a motoneuron.

This busy traffic of inputs create the ’synaptic noise’ on

the membrane of the motoneuron. As the consequence of

this noise, spikes occur at nearly random times (Fig. 3).

For mimicking such a noisy nominal behavior, the motoneu-

ron agent m uses the prestimulus part of the reference data.

When the reference data are provided to m, it calculates a

statistical distribution using the prestimulus discharge rate

values. Then using the statistical parameters of this distri-

bution, a discharge rate generator, which is used to generate

consecutive interspike interval (ISI) values for m, is cre-

ated. Each time a new ISI value is calculated using this

generator, the instant membrane potential increase �p is

calculated as �p = AHPm/ISI where AHPm is the after-

hyperpolarization (AHP) level of m and at each tick, pm is

increased by�p ∗ tick. As a result, the AHP time course of

m is a straight line as shown in Fig. 3.

Finally, we model the set of interneuron agents as I ⊂ N

where for all n ∈ I , we have Pren �= ∅, Postn �= ∅ and

dax = 0 since their axonal delays are extremely low.

3.1.2 The viewer agent

The viewer agent ν is designed to trigger the modification

of synaptic connections and the effective connectivity of the

agent-based neuronal network G. It knows the experimental

reference data but it does not know why and how G sim-

ulates the behavior of the real system. The viewer agent

ν acts like a surface electrode and gives inputs to G by

coordinating random activation of all sensory neuron agents

s ∈ K (by triggering their activate() action). Meanwhile, it

Fig. 3 Tonic firing of a neuron (modified from (Türker and Miles

1991)). During tonic firing, a neuron receives continuous current and

hence its membrane potential continuously rises to the firing threshold

and makes the neuron fire spontaneous spikes (a). The time intervals

between consecutive spikes are called interspike intervals (ISI) and the

instantaneous rate of a spike is calculated as f = 1000/ISI . While an

EPSP induces a phase forward movement of the next spike (and thus

increases the instant rate) (b), IPSP delays the occurrence of the next

spike (and thus decreases the instant rate) (c)



monitors and records the outputs of the motoneuron agents

m ∈ M that take place over time to the simulated data ES

for comparing them with reference data ER . This compari-

son takes place between the latency of the beginning (lbegin)

and the end (lend ) of the network where lend > lbegin > 0.

According to this comparison, ν makes assessments about

the behavior of m for detecting if it is functionally ade-

quate to the reference real motoneuron or not. If the output

observed at the latency l is generated between lbegin and lend

where lend ≥ l ≥ lbegin, ν sends an appropriate instant dis-

charge rate feedback f ∈ Fdr to m. Otherwise, ν considers

this output as a nominal behavior of m and does not send

any feedback.

In detail, the above comparison is conducted as fol-

lows. When an output is observed by ν at time t , first the

latency of this output (l) is calculated (Algorithm 2, line

1). Then, to be able to determine the similarity between

the reference output at latency l and the simulated output

at latency l, firstly both ER and ES are converted into their

respective PSF-CUSUM values CR and CS (Algorithm 2,

line 3). The discharge rate of motor units integrates the

excitatory and inhibitory synaptic activities (Gydikov et al.

1977) and these activities can be identified by calculating

the derivative values of PSF-CUSUM of the motoneuron

as described in Section 2.2. Thus, the derivative values for

each PSF-CUSUM diagram (C′
R and C

′
S) are then calculated

(Algorithm 2, line 4). However, these values involve also the

noisy behavior of the motoneuron. In this sense, the mov-

ing averages of C ′
R and C

′
S are calculated (Algorithm 2, line

5) in order to reduce the noise of the motoneuron. However,

comparison of these moving average values is not reliable

since both moving average diagrams may not be statistically

identical: they may have different prestimulus means and

different standard deviations (σ ). In this sense, the similarity

of the average values at the latency l is calculated in terms

of their prestimulus standard deviations (Algorithm 2, line

6) and is set to δ. This δ value is then compared to a toler-

ance of τ , and finally an appropriate feedback is sent to m

(Algorithm 2, lines 7, 8 and 9).

In order to provide a good feedbackmechanism, the mov-

ing average PSF-CUSUM derivative diagram is developed

in 4 stages: (1) the bins in the PSF diagram with no dis-

charge rate value are given the values in the preceding bin.

This is to ensure that the discharge rate CUSUM value does

not suddenly drop down in these bins (Türker and Cheng

1994). This approach assumes that empty bins represent

the same rate as the preceding bin even though they fail

to be filled due to the low number of trials and/or due to

the chance. However, it is also possible that a large PSP

may cause a large number of consecutive empty bins. To

overcome this phenomenon, a histogram of the consecu-

tive empty bins is built. For a given number of trials, the

distribution of the empty bins illustrates the occurence of

consecutive empty bins. It was found by Türker and Cheng

(1994) that some of the large numbers could be interpreted

as forming the tail of a normal distribution. The occurences

that are larger than “the mean +3 standard deviations” are

taken to indicate that these empty bins did not occur by

chance and/or low number of trials. When this occured, the

position of these empty bins is not filled in with the values

in the preceeding bin. (2) Then the CUSUM of this filtered

record of the PSF is calculated using the rate values in each

bin (from -400ms to 200ms – 600ms bandwidth).11 (3) The

derivative values in each bin is then calculated by using the

PSF-CUSUM record. (4) Finally, the PSF-CUSUM deriva-

tive record is filtered by the moving averager using 8 bin

average and smoothed 10 times.

Additionally, ν is responsible for stopping the simula-

tion run when the evolution of the neuronal network ends.

ν detects this situation by evaluating the output of m. For-

mally, G is said to be stable at time t ′ if for all t1, t2 ∈ R
+

where t2 > t1 ≥ t ′, for all feedbacks f , we have f ∈ Fdr ≈.

3.2 Identification of non-cooperative situations

and feedbacks

The proposed agent-based neuronal network model, in

which neuron agents and synapses can be inserted or

11This bandwidth is chosen to make sure that the poststimulus ’event’

is larger than the maximum possible prestimulus variations in both

directions (above and below the line of equity). We double the length

of the prestimulus time to account for the by chance ’excitation’ and

’inhibition’ as the CUSUM can go both directions.



removed, is subjected to NCSs. All NCSs are identified by

analyzing the possible bad situations of real human motor

units.

3.2.1 Bad temporal integration

The temporal integration of the inputs provided by synapses

affects what a neuron agent does. For an interneuron agent

n, these inputs affect whether n can fire or not, while for a

motoneuron agentm they affect the instant discharge rate of

the spikes ofm sincem is tonically active. Sensory neurons,

however, never detect this situation since they do not need

input neurons in order to fire. Consequently, when this tem-

poral integration is bad, a neuron agent either cannot fire or

have a bad firing behavior. When such a situation is detected

at time t , the neuron agent should improve its existing inputs

or should search for new inputs with the right timing. To

do so, it sends a temporal integration increase or decrease

feedback (f ∈ Ft i↑ or f ∈ Ft i↓) to some or all of its neigh-

bor neuron agents. Otherwise, the temporal integration is

good and a temporal integration good feedback (f ∈ Ft i≈)

is sent to Pren(t).

An interneuron agent detects a bad temporal integration

NCS at time t if during the interval [t − �tmax , t] it did

not generate any spike where �tmax is the maximum time

slice an interneuron agent can stay without spiking. How-

ever, the motoneuron agent m is unable to detect the same

situation by itself. It detects when it receives an instant dis-

charge rate feedback fν ∈ Fdr at time t about its last spike

at time tm (see Section 3.2.2). Since this spike is related to

the temporal integration of its own membrane potential and

its presynapses, there are two cases: (1) Contm(tm) = ∅,

and (2) Contm(tm) �= ∅. In the first case, m sends a feed-

back fm ∈ Fdr to its temporally closest friend neurons

T empm(tm) to be able to have contributor synapses. In the

second case, the problem can be turned into a temporal

integration problem (see Fig. 3b and c) and a temporal inte-

gration feedback fm ∈ Ft i is sent to its temporally closest

contributed neurons T empm(tm).

3.2.2 Bad instant discharge rate

A motoneuron agent fires continuously and its firing behav-

ior might be affected by its pre-synapses when a stimulation

is given to the sensory neuron agents. The motoneuron agent

is expected to generate discharge rates similar to the refer-

ence data. When the motoneuron agent emits a spike, the

viewer agent observes it and calculates the instant discharge

rate value for that spike using the previously emitted spike.

However, it is not logical to compare an individual discharge

rate information to the reference data since there can be

many discharge rate values at a specific time and the ref-

erence data contain the noisy behavior of the motoneuron.

In this sense, to reduce the noise and to facilitate the com-

parison, the moving average discharge rate values are used.

Consequently, the average discharge rate at time of spike is

expected to be close enough to the average discharge rate of

the reference data. As a result of this comparison, the viewer

sends an instant discharge rate is good, increase or decrease

feedback (fν ∈ Fdr↑, fν ∈ Fdr↓ or fν ∈ Fdr≈) to the

motoneuron agent.

3.3 Cooperative behaviors

The tuning behavior of neuron agents is modelled using

an action of the form tune({n,m}, f ) for n, m ∈ N (t) and

f ∈ F , which correspond to the adjustment of {n, m}.η

by f at time t . An autonomous and cooperative neuron

agent must be able to decide by itself the modification of

its synapse. By contrast, this action can only be executed

by n over {n, m}. Moreover it is ensured that no opposite

adjustment is done at the same time by n. The reorganiza-

tion behaviors of neuron agents are modeled using actions

of the form add({n,m}) and remove({n,m}) for n, m ∈ N (t),

which correspond to the formation and suppression (respec-

tively) of {n, m} at time t . It is assumed that no synapse

is both added and removed at the same time. The evolu-

tion behaviors of neuron agents are modelled using actions

of the form create(n,m), createInverse(n,m) and remove(n) for

n, m ∈ N (t). The create(n,m) action corresponds to the cre-

ation of a neuron agent between n and m by n having the

same type of n. The createInverse(n,m) action corresponds to

the creation of a neuron agent between n andm by n having

the opposite type of n. The remove(n) action corresponds to

the suppression of the neuron agent n by itself. It is assumed

that no neuron agent is both added and removed at the

same time. Figure 4 presents examples of these cooperative

actions.

NCSs are suppressed by processing the aforementioned

actions as described in the following subsections.

3.3.1 Suppression of “bad instant discharge rate” NCS

When the motoneuron agent m receives fν ∈ Fdr from ν

about its last spike (tm) at time t , it evaluates fν taking into

account T empm(tm) in a temporal manner. There might be

two cases: some n ∈ T empm(tm) that affect the last spike

of m in the right time exists or not. If there exists some n ∈

T empm(tm) where tn = tm − dnm,
12 m turns the problem

into a temporal integration problem and sends fm ∈ Ft i to

all n ∈ T empm(tm). Otherwise, m propagates fν as fm ∈

Fdr to all n ∈ T empm(tm).

12In other words, if m spiked as soon as the spike coming from n

reached its membrane.



Fig. 4 Examples of cooperative behaviors for modifying the structure

of the network. In (a), the strength of the synapse {c, e}, shown with a

thicker yellow line, is increased. In (b), neuron b creates a new synapse

with neuron e. In (c), neuron e removes its synapse with neuron g. In

(d), excitatory neuron c creates a new excitatory neuron whose post-

synaptic neuron is e. In (e), excitatory neuron c creates a new inhibitory

neuron whose post-synaptic neuron is e. In (f), neuron h removes

itself

When a feedback fm ∈ Fdr is received by a neuron agent

n, it understands thatm needs a temporarily closer neighbor.

Since n cannot provide such a neighbor to m by tuning or

reorganization, it directly executes its evolution behavior:

it creates a new excitatory interneuron agent by including

itself as a presynaptic neuron of this new neuron (Algorithm

3, line 2). Therefore, this new neuron will likely fire after n

and there will be a time shift in the network. If n is unable to

help (e.g., n ∈ N−), it propagates the feedback fm to all its

temporally closest friends T empn(tn) (Algorithm 3, line 4).

3.3.2 Suppression of “bad temporal integration” NCS

When a feedback fm ∈ Ft i is received by a neuron agent

n, it first tries to tune the synaptic strength {n, m}.η if m ∈

Postm (Algorithm 4, line 2). If n cannot helpm by tuning, it

tries reorganization: either by adding a synapse in between

if there is no synapse, or removing the existing synapse. A

neuron n ∈ N+ (respectively n ∈ N−) adds a new synapse

(Algorithm 4, line 10) if fm ↑ (resp. fm ↓ ) and removes

the existing synapse (Algorithm 4, line 6) if fm ↓ (resp.

fm ↑ ). As a last resort, n creates a new neuron for m. A

neuron n ∈ N+ (respectively n ∈ helpingN−) creates a

new neuron n ∈ N+ (resp. n ∈ N−) (Algorithm 4, line 15)

if fm ↑ (resp. fm ↓ ) and creates a new neuron n ∈ N−

(resp. n ∈ N+) (Algorithm 4, line 19) if fm ↓ (resp.

fm ↑ ).



When n is unable to help, it propagates the feedback fm

to all its temporally closest friends T empn(tn) (Algorithm

4, line 24).13 As mentioned before, the bad temporal inte-

gration NCS can be detected by both interneuron agents

and the motoneuron agent. When detected by an interneu-

ron agent, any synaptic strength change within a dpsp (4.0

ms) time range is welcome, since the objective is to activate

the interneuron agent. Thus, when a neuron agent cannot

suppress such a situation, it asks its presynaptic or post-

synaptic neighbors. For the motoneuron agent, however,

the objective is to have a synaptic strength change at a

specific time. By contrast, when a neuron agent cannot sup-

press such a situation, it asks its temporally closest friend

neurons. This way, the feedback propagates through the

network.

3.4 Implementation

The model is implemented using RePast Symphony 2.0.0

beta, an agent-based simulation environment written in Java

(North et al. 2006). The implemented model is then ver-

ified and validated by using the model testing framework

given in (Gürcan et al. 2011, 2013). The dynamic tun-

ing of the strengths of synapses, is implemented using

the parameter evolution technique described in (Lemouzy

et al. 2011).

For the statistical calculations, the SSJ14 (Stochastic

Simulation in Java) library is used. To increase the reliabil-

ity of the motoneuron agent, the goodness-of-fit test for the

tonic firing behavior is also performed using the aforemen-

tioned testing framework (Gürcan et al. 2011, 2013).15

4 Simulation results

In this section, we present the experimental setups and

the results in order to evaluate the proposed computational

model.

4.1 Ethical statement

The data are taken from experiments at Kemal S. Türker’s

laboratory at Ege University. Ethical approval for the

13The idea here is quite similar to spike-timing-dependent plasticity

(Song et al. 2000) since neurons are trying to increase the temporal

correlations between their spikes and the spikes of their presynaptic

neurons.
14http://www.iro.umontreal.ca/∼simardr/ssj/indexe.html, last access

on 1 April 2013.
15The case study given in (Gürcan et al. 2013) is comprehensively

describing this test.

procedures of these experiments are taken from the Human

Ethics Committee, Izmir, Turkey.

4.2 General configurations

To test our model we have chosen to simulate the neuronal

circuitry of single motor units using the data obtained from

low-threshold stimulation experiments on human soleus

and tibialis-anterior muscles. In these experiments, despite

rhythmic stimulation, the stimuli are randomly distributed

within the ISI due to the variability of motoneuron firing.

The interstimulus intervals were chosen from 1000 ms to

3000 ms random intervals so that the after-effects of the

synchronization induced by a stimulus disappears before the

delivery of the next stimulus.

The exact information we used about the underlying

pathways is that sensory neurons make monosynaptic con-

nections with the alpha motoneuron. In this sense, we

considered this path as the shortest path in the underly-

ing network and defined its duration as l. Therefore, we

initialized the simulations as N (0) = {s, m}, S(0) =

{{s, m}, {m,∅}} and dsm = dm∅ = l/2 where s ∈ K,

m ∈ M and l is the latency of the estimated beginning of the

pathway extracted from the PSF-CUSUM of the reference

experimental data by the simulation scientist. In this sense,

lbegin is set to l since the earliest stimulus-evoked change

of the motoneuron behavior can be observed at l and lend is

set to 200.0 ms (see Section 2.2). The viewer agent ν stimu-

lates all sensory neuron agents s ∈ K using from 1000 ms to

3000 ms random intervals as it is the case for the real exper-

iments. Moreover, the tolerance value τ , which is used by ν

to compare the ouputs, is set to 0.5.

Although it is well known that neurons need to receive

thousands of synapses to be able to cross their firing

thereshold, interneurons are most of the time ready to react

to disturbances that could raise a reflex (Capaday 2002;

Lam and Pearson 2002; Misiaszek 2006). Consequently, we

allowed the AHP level of interneurons a low value (1.0

mV), so that they can activate with a small number of

synapses. This choice also increased the convergence speed

of the model. Although, it is unclear that this should be

the case for real single motor units, it does not affect the

recruitment of presynaptic neuron agents of the motoneuron

agent.

Besides, in several intracellular studies of tonically active

motoneurons (e.g., (Calvin and Schwindt 1972; Schwindt

and Crill 1982)), it has been reported that the amplitude of

AHP is 10 mV. Consequently, we allowed the AHP level of

interneurons to be 10.0 mV.

Since the minimum processing time, the synaptic pro-

cessing time dden, is 0.5 ms in the model, the simulation of

the model proceeds 0.5 ms time steps. From the same rea-

son, the bin size for the PSF diagrams is also set to 0.5 ms.



4.3 Simulation experiments

Before assessing the macro-level behaviors of simulations,

we first need to be sure that the simulation of the motoneu-

ron agent works fine. To this end, we plotted the ISI dis-

tributions for a human alpha-motoneuron and its simulation

(Fig. 5). The distribution of ISIs has nearly identical mean

and variance and the right-skewed shape occurs in both dis-

tributions. The distribution parameters were set to achieve

these distributions. Once we ensure that the motorneuron

agent is able to discharge at similar characteristics as the

real human motor neuron, we can perform simulations for

human single motor unit (SMU) pathways.

For illustration, we simulated the model by using 9 differ-

ent human SMU pathways with different macro-level func-

tional behaviors. As shown in Table 1, the data about these

pathways are obtained with various numbers of trials (Trial

N.) and various total number of consecutive empty bins

(Tot. C.E.B.). In order to perform reliable simulation experi-

ments, we separated these human data into training data and

test data in terms of trials. In this sense, for each simula-

tion experiment, we first divided each human data into 2n

trial segments and then select randomly n trial segments for

forming training data and used the remaining n as test data.

Training data are then given to the Viewer agent as refer-

ence data. In our simulation experiments, we have chosen

2n=10 and used the human data whose number of trials are

more than 200 since the PSF better represents the profile of

the postsynaptic potential caused by the stimulus when there

are at least 100 trials (Türker and Powers 2005). After the

simulations end, the results are analyzed in order to ensure

that the generated networks are functionally equivalent to

the reference real networks. To calculate the similarity of

two networks, a Pearson-correlation analysis is performed

between the simulated and the test PSF-CUSUMs. This cor-

relation is a proxy for evidence that reflects the accuracy of

the model in terms of its coefficient of determination. The

correlation r yields a 0 when there is no correlation (totally

uncorrelated) and a 1 for total correlation (totally corre-

lated). The degree of similarity is then calculated as r2 (M.

Sim. in Table 1). This information is sufficient to claim that

the two underlying networks are functionally equivalent in

the sense of PSF analysis since our objective was to obtain

a response pattern from an artificial single motor unit that

is comparable with the response of the real human single

motor unit.

For each human neuronal pathway (HNP), simulation

experiments were repeated 10 times (Table 1). The 6 out-

puts of these experiments are shown in Fig. 6. Similarities

of PSF-CUSUM diagrams show that the model can mimick

HNPs with different macroscopic patterns. In other words,

an initial network successfully converges to a solution net-

work whose macroscopic behavior conforms to its reference

biological network.

When a network finishes organizing itself, the correct

organization of neurons is said to be found. Now the

question is, are we sure that the emergent neural net-

work continues adequately generating the macro-level func-

tional behavior with its reference HNP? In our case, where

stimulus-evoked changes on motoneuron discharge rates are

monitored, we fed the emergent network with the similar

random input during its learning process (with an inter-

stimulus interval of 1000 ms to 3000 ms as described in

Section 4.2). What we expected was a fairly similar macro-

scopic output (not exactly the same of course because of

the noise) to its reference biological network. We performed

such tests by continuously stimulating the final networks for

a long time. An illustration of this test for the SS-1-1-1 data

is shown in Fig. 7.

The detailed results for one of the simulation experi-

ments for SS-1-1-1 data are shown in Fig. 8. At the end

of the simulation, there is a strong positive correlation

between PSF-CUSUMs (Fig. 8a). To provide this similarity

the model creates excitatory and inhibitory synapses on the

Fig. 5 Inter-spike-interval (ISI) probability distributions of (a) a human alpha-motoneuron and (b) its simulation



Table 1 Results for simulation experiments of 9 different human neuronal reflex pathways (HNP) obtained from soleus and tibialis-anterior

muscles with various numbers of trials (Trial N.) and total number of consecutive empty bins (Tot. C.E.B.). For each HNP, simulations were

conducted 10 times and, the mean similarity obtained (M. Sim.), the mean number of excitatory (Exc. N.) and inhibitory neurons (Inh. N), and the

mean total number of neurons (Tot. N.) are presented

HNP Trial N. Tot. C.E.B. M. Sim. (%) Exc. N. Inh. N. Tot. N.

AO-2-3-1 303 13 77.62 411 138 549

BU-1-1-1 323 50 93.49 366 6 372

BU-1-3-1 232 43 96.14 348 0 348

NK-3-2-1 697 28 96.16 355 159 514

OS-3-1-1 510 88 83.78 298 0 298

OS-3-3-1 510 88 86.84 340 7 347

OS-4-2-1 987 25 94.69 317 19 336

OS-4-3-1 986 45 91.51 359 13 372

SS-1-1-1 783 0 93.81 391 169 560

mean 592.3 42.2 90.44 353.8 56.7 410.6

motoneuron agent. The number and temporal distribution of

these synapses are plotted in Fig. 8b. Another striking fea-

ture of the model, illustrated in Fig. 8c, is that it is able to

extract the presynaptic activity on a motoneuron. This activ-

ity is not uniform, but consists of multiple temporal PSPs

that appear and disappear at various times.

Besides, we are able to plot and analyze generated neu-

ronal networks by exporting their graph representation via

GraphML language.16 Then Gephi (Bastian et al. 2009) is

used to visualize this graph17 as shown in Fig. 8d.

5 Discussion and conclusions

5.1 Biological interpretation

The model presented here uses integrate-and-fire neurons

and PSF reflex recordings together with artificial self-

organization, to the best of our knowledge for the first time,

for generating an artificial neuronal network that mimicks

its reference biological neuronal network. We used reflex

responses of human single motor units not only because we

could record them during conscious contractions but also

as they directly represent the discharges of motoneurons in

the human spinal cord. To be able to show that the model is

robust to biological variability, it has been rigorously tested

as described in the results section.

The results show that the developedmodel is able to learn

and simulate the functional behavior of human single motor

units. The mean similarity observed is between 77.62 %

and 96.16 %, the mean number of neuron agents is between

16http://graphml.graphdrawing.org/, last access on 1 April 2013.
17https://gephi.org/, last access on 1 April 2013.

298 and 560 (Table 1). For most of the data sets the mean

similarity is more than 90 %. This success indicates that the

proposed computational neuronal network model is a poten-

tial candidate for mimicking neuronal networks. However,

for some data sets it is contrary and the model is unable to

mimick the functional behavior in that success. The worst

one is AO-2-3-1 with an average similarity of 77.62 % and

its ouput is shown in Fig. 6a. This situation is most probably

caused by higher level of synaptic noise in those motoneu-

ron membranes. This noise makes much harder for the

viewer agent to give the right feedback. In such a case, the

underlying SMU must be stimulated much more while col-

lecting data from the human subject since noise is inversely

proportional to the stimulation count in PSF-CUSUM dia-

grams. The other relatively worse simulation results belong

to OS-3-1-1 with an average similarity of 83.78 % and OS-

3-3-1 with an average similarity of 86.84 % (see Fig. 6b

and c respectively). In these experiments, the numbers of

stimulations are higher and thus there is less noise. How-

ever, unlike AO-2-3-1 and other HNPs, the experimental

data contain the highest number of consecutive empty bins.

Since these bins provide no information to the viewer agent,

it is harder to make the correct evaluations.

After attaining functional adequacy – in terms of pre-

dicting empirical responses, the structure of the resulting

networks can be analyzed to see to what extent they are bio-

logically plausible. In this sense, the first criterion can be

the number of neurons. As seen from Table 1, the average

number of neurons observed at the end of simulations is not

an implausible value for a human single motor unit pathway

(SMU). One may think that it is necessary to justify these

numbers – because such numbers can be judged too far from

real values. However, the biological constraints given in the

model do not currently prevent creation of such a number

of neurons. On the other hand, we know that each neuron



Fig. 6 The reference (red) and resulting simulated (blue) PSF and

PSF-CUSUM diagrams for 6 out of 9 simulation experiments of

human neuronal pathways. Reference data are compiled from the

reflex response of the soleus muscle motor units. The simulated data

are compiled from the motoneuron agent responses of a simulation

experiment. The results (a), (b) and (c) present the three worst sim-

ilarities obtained, and the result (d), (e) and (f) show the three best

similarities obtained. They belong to human data AO-2-3-1, OS-3-1-1,

OS-3-3-1, BU-1-3-1, NK-3-2-1 and SS-1-1-1 respectively

is created for a biological reason. Thus, we think that these

numbers may relate to the possible long loops in the reflex

pathways since it is known that some of the reflex responses

of the human motor units occur at longer latencies as it is

shown in Fig. 6. In this sense, what is remarkable here is that

the simulations give us such possible long loops (in Fig. 8d

they are represented as interneuronal loops made from yel-

low dots) that could account for these longer latency reflex

events, even though they were not a priori defined in the

model (initially there was only a sensory neuron agent and



Fig. 7 (a), (b) and (c) illustrate there separate tests performed after the convergence of SS-1-1-1 data. These tests show that after the network

finishes organizing itself, it retains the same macro-level behavior

a motoneuron agent). Lengths of these loops possibly repre-

sent (1) the latencies of the reflex responses as the stimulus

induced action potentials have to go through many interneu-

rons to elicit the long latency reflex responses, or (2) the

latency of an action potential travelling on one long axon to

the cortex and on another long axon back from the cortex.

If the latter is happening, the number of interneurons would

decrease dramatically. However, at present this cannot be

known without further human experiments.

Remembering that going across each synapse takes about

0.5 ms, for a reflex response that occurs at for example

20 ms after the first phase of the reflex action poten-

tial will have to jump through 40 synapses involving that

many interneurons. In Fig. 8d therefore, there must be five

separate reflex responses after the first reflex event.

Conceptually, an instant significant increase (and dec-

rease) of PSF-CUSUM value indicates instant EPSPs (and

IPSPs respectively) on motoneuron membrane. Moreover,

since we restrict the PSP weights of individual synapses

to the biological evidences on human studies, the number

of excitatory and inhibitory synapses on the motoneuron

are self-extracted by the simulation model (see Fig. 8b).

However, we note that these numbers are only estimations

and their correctness cannot be directly proven. For exam-

ple, for some pathways the simulations do not find any

inhibitory interneurons (see Table 1), which is biologically

impossible. A possible explanation is that, there is a high

level of synaptic noise in their data. The model is there-

fore unable to distinguish whether it is an inhibition or a

noise when there is decrease in the CUSUMs (see e.g.,

Fig. 6b and d).

In PSF technique, it is common practice to keep the num-

ber of trials as high as possible to ensure that the empty bins

are not due to chance and really empty because of inhibi-

tions. In other words, we can say that as the number of trials

increases, the information about the PSF also increases. The

results show that there is no correlation between the number

of trials and the average success of the simulations so long

as the number of trials is more than 116 (232/2 = 116) in

training data (see BU-1-3-1 dataset Table 1).

5.2 Artificial self-organization

Artificial self-organization of the agents proceeds in a com-

pletely unsupervised way thanks to the AMAS theory. The

NCSs of the agents is at the heart of this mechanism. Hence,

giving the accurate feedback to the right agents is important.

Without such a feedback mechanism, the networks would

not converge and their internal representation would keep

changing. Consequently, since the moving average of the

PSF-CUSUM derivative is used as the feedback, the calcula-

tion of the PSF-CUSUM derivative must be performed care-

fully as it affects the correct modification procedure of the

network. The calculation should be done without displacing

the peaks and throughs significantly. During our preliminary

investigations, it has been observed that when the PSF-

CUSUM derivative is smoothed too much, the information

about the dynamics of the system was lost. On the other

hand, when the smoothing was not sufficient, the noise of

the motoneuron agent prevented the interneuron agents to

learn the right dynamics. Besides, the tolerance value τ is

also an important parameter as it is closely related to the cor-

rect feedback. Similar to smoothing, when τ is higher, the

information about the dynamics of the system is lost, and

when τ is smaller, it is harder to detect good outputs.

5.3 Comparison with existing models

Our computational model can be contrasted to self-

organizing and evolutionary network models that aim to

find the right network structure, and existing effective con-

nectivity investigations in the literature. On the one hand,

comparisons with self-organizing and evolutionary neural

network models are given to show what led us to design a

new emergent neural network model since emergence is cru-

cial to be able to define the transition frommicro-level to the

macro-levelwithout relying on mathematical arguments. On

the other hand, comparisons with existing effective connec-

tivity studies are given to show that these techniques cannot

be used for estimating the effective connectivity in human

neuronal pathways using motor unit analysis.



Fig. 8 This figure illustrates the results that came out of a simulation

run at the end of its effort to learn the global pattern obtained from

the human reflex experiment SS-1-1-1. (a) PSF-CUSUM diagrams of

the reference data (red line) and its simulated replication (blue line).

Pearson-correlation of these lines is 0.98 and thus their similarity is

97.29 %. (b) The temporal distribution of created excitatory (red) and

inhibitory (blue) synapses on the motoneuron. (c) The net PSP on

motoneuron caused by its presynaptic connections given in (b). (d)

The cinematic representation of the evolution of the neural network

from the initial configuration towards the final configuration together

with the number and the sign (excitatory or inhibitory) of neurons that

came throughout the simulation run. Note also that, in the final con-

figuration, the extent of the pathways that represent the long latency

reflex responses are emerging as neuronal loops in the figure. The big

red dot, the big white dot, the big blue dot, the small black dots and the

small yellow dots illustrate respectively the muscle, the sensory recep-

tor, the motor neuron, the inhibitory interneurons and the excitatory

interneurons



5.3.1 Self-organizing neural networks

There are various self-organizing neural network models in

the literature that do not have a predefined structure and

size. Most of these models add new neuron(s) to support the

neuron that has accumulated the highest error during previ-

ous iterations or to support topological structures (Villmann

et al. 1997; Fritzke 1994; Fahlman and Lebiere 1990). In

these models, new neuron(s) are added every λ iterations,

where λ is a constant. Apart from these models, (Marsland

et al. 2002) proposed another network model that grows

when required (GWR). In GWR, both the nodes (neurons)

and edges (synapses) can be created and destroyed during

the learning process. Rather than adding a new neuron after

every λ inputs, new neurons can be added at any time. The

new neurons are positioned dependent on the input and the

current best neuron, rather than adding themwhere the accu-

mulated error is the highest. In this sense, altough GWR is

an unsupervised algorithm, it needs access to global infor-

mation unlike our model (since selecting the best matching

neuron is not possible from the point of view of a single

neuron). Such a global view prevent the system being emer-

gent, unlike our model. New synapses, on the other hand, are

added if there is not a connection between the best match-

ing neuron, and the second best. In GWR, for removal of

synapses, they have an associated ”age”. This is originally

set to zero, and is incremented at each time step for each

synapse that is connected to the winning neuron. Synapses

that exceeds some constant agemax are removed from the

network. The removal of synapses seems quite similar to our

model in the sense that there is a threshold, however both

addition and removel of synapses in GWR requires a global

view of the system.

Besides, there are self-organizing neural network mod-

els that use biological rules for changing the organization of

the network. (Lazar et al. 2009) propose a self-organizing

recurrent neural network model, SORN, that combines three

distinct forms of biological local plasticity18 to learn spatio-

temporal patterns. In SORN, initially connections are sparse

and random with a degree of probability. Moreover, direct

connections between inhibitory neurons are not present.

(Martin and Reggia 2010), on the other hand, focus on

the self-assembly of recurrent neural network architectures

using swarm intelligence. Their method involves network

growth in a three-dimensional space, and cell migration

and division, along with axon-axon interactions, play an

important role in the growth process. However, rather than

functionality, they are more focused on self-assembly in

physical space involving geometrical relations.

18STDP (Song et al. 2000), synaptic scaling of the excitatory-

excitatory connections (Turrigiano et al. 1998), and intrinsic plasticity

regulating the thresholds of excitatory units.

5.3.2 Evolutionary neural networks

Evolutionary systems consist of machine learning optimiza-

tion and classification paradigms that are roughly based on

evolution mechanisms such as biological genetics and nat-

ural selection. In a typical neuroevolutionary system (Yao

1999; Floreano et al. 2008; Stanley 2004), the weights of

a neural network are strung together to form an individual

genome. A population of such genomes is then evolved by

evaluating each one and selectively reproducing the fittest

individuals through crossover and mutation.Most neuroevo-

lutionary systems require the designer to manually deter-

mine the networks topology (i.e. how many hidden nodes

there are and how they are connected). In contrast, (Stanley

and Miikkulainen 2002; Stanley 2004) proposed NeuroEvo-

lution of Augmenting Topologies (NEAT) approach in order

to automate the search for appropriate topologies and initial

weights of neural network function approximators. NEAT

automatically evolves the topology to fit the complexity of

the problem by combining the usual search for network

weights with evolution of the network structure. However,

NEAT does not attempt to learn a value function. Instead,

it finds good policies directly by training action selectors,

which map states to the action the agent should take in that

state.

However, to create networks that will adapt to the prob-

lem at hand, autonomously, without knowing the capacity

(in terms of neurons) required to handle the complexity of

the problem, we need evolutionary function approximation

methods. To this end, there are various methods in the liter-

ature (Chatzidimitriou and Mitkas 2013; Roeschies and Igel

2010; Whiteson and Stone 2006). Basically, these methods

select automatically function approximator representations

that enable efficient individual learning. They begin with an

initial network and evolve individuals that are better able to

learn. This evolution takes place with some degree of prob-

ability. Neurons can be removed through crossover if for

example the fittest network is chosen from the two parents to

hold the offspring and it happens to be the smaller of the two

parents. Synapses can also be removed through crossover or

they can be removed in order to adjust the network to the

density defined in the genome which is (number of active

connections / N2), where N is the number of neurons in the

network.

Our model differs from NEAT studies in several aspects.

First of all, there is neither randomness nor probability

in our model. Each neuron and synapse are added and/or

removed due to NCSs of agents. Secondly, although like

NEAT models, our model begins with a simple initial

network, unlike them, this is not for minimizing the dimen-

sionality of the network. Rather, it is because of the lack

of our knowledge about the underlying reference neural

network. Minimizing the dimensionality in our model can



only be provided by defining NCSs in a better way. Finally,

our work differs from existing NEAT works in that (a) it

applies cooperation rules to make the structure of the net-

work evolve, (b) our focus is mainly on biological neural

networks rather than artificial neural networks and thus (c)

it uses an established neuroscience method (PSF) to extract

local information. So, at least to the best of our knowledge,

such a synergy has not been examined before.

5.3.3 Dynamic causal modeling

In the neurosciences, a common way to model neuronal

circuits - given metabolic or electrophysiological data - is

to use Dynamic Causal Modeling (DCM) (Friston et al.

2003). In DCM, biologically plausible generative models

are optimized to best explain observed neuronal responses.

For example, DCM for event-related potentials (ERP) tries

to explain ERPs that are formally similar to the peris-

timulus frequency-grams used in our work (Garrido et al.

2007; David et al. 2006; Kiebel et al. 2006). Crucially, the

objective of DCM is to find the model with the greatest evi-

dence; where evidence is the probability of the data given a

model. This usually involves exploring large model spaces

by adding or subtracting nodes and edges from graphical

models of neuronal circuits generating observed responses.

At present, this exploration of model space is usually spec-

ified by hand. In contrast, the artificial self-organization

procedures we have described in this article provide an auto-

matic and principled way to perform greedy searches over

model space. It is also possible that the same objective func-

tion used in DCM – the evidence for a particular model –

could be employed in artificial self-organization.

5.3.4 Effective connectivity investigations

Buibas and Silva (2011) present a formal modeling frame-

work for using real-world data to map the functional topol-

ogy of complex dynamic networks. The framework formally

defines key features of cellular neural network signalling

and experimental constraints associated with observation

and stimulus control, and can accommodate any appropriate

model intracellular dynamics. They claim that, the frame-

work is particularly well-suited for estimating the functional

connectivity in biological neural networks from experimen-

tally observable temporal data. However, the framework

is unable to estimate and map the effective topology of

complex networks with unknown connectivities. There are

also approaches for estimating parameters and dynamics of

small groups of neurons (Eldawlatly et al. 2010; Makarov

et al. 2005), Eldawlatly et al. (2010) use dynamic bayesian

networks in reconstructing functional neuronal networks

from spike train ensembles. Their model can discriminate

between mono- and polysynaptic links between spiking

cortical neurons. Makarov et al. (2005) present a determin-

istic model for neural networks whose dynamic behavior

fits experimental data. They also use spike trains and their

model permits to infer properties of the ensemble that can-

not be directly obtained from the observed spike trains.

However, these studies are far from establishing a complete

effective connectivity of larger networks.

5.4 Limitations of the model

The threshold-crossing model, used for the simulations pre-

sented in this paper, is a simple one and does not include all

membrane mechanisms, which may influence motor neu-

ron excitability. The AHP time course is described simply

as a straight line although in reality the membrane poten-

tial reaches the threshold in the random walk process where

noise increases with time (Warren et al. 1992). In this sense,

for increasing the success, the reality and the reliability,

the motoneuron models which are verified by the experi-

mental results obtained from human experiments, like the

one proposed in (Kuraszkiewicz et al. 2012), should be

used.

Besides, in this work, we have simply used the PSF-

CUSUM correlation between the observed and predicted

responses as a proxy for the quality of the model produced.

Although PSF analysis is certainly ’a’ measure of network

behavior, there are lots of other possibilities as well, and just

computing a correlation on this value does not allow us to

claim that the emergent model and its underlying HNP are

functionally equivalent. This does not accommodate model

complexity that is an inherent part of model evidence. In

other words, in future work, we could consider not just a

measure of accuracy or correlation but a penalized measure

such as the Akaike information criteria (Akaike 1974) or

free energy bounds on Bayesian model evidence (Friston

2009).

In addition, the model presented in this article is only

based on temporal constraints: no steric regulation of prolif-

eration due to physical contact between membrane, neither

any local chemical regulation of neurons activity due to their

proximity with glial cells (Takata and Hirase 2008). First

mechanism, inspired from morphogenesis modelling as in

(Marsland et al. 2002), should help neurons in finding right

accointancies and so increase significantly the number of

cycles necessary for the network to get a correct functional

structure. Moreover, in vivo, neurons are not the only cells

implied in information treatment (Perea and Araque 2010).

Glial cells are known to regulate synaptic plasticity, this reg-

ulation can be integrated in modeled synapses, what is done

today, but what is still to construct is local transmission of

regulation from synapses to groups of neurons in a glial

neighborhood that may be different from a strict functional

neuronal neighborhood (Fellin 2009).



5.5 Conclusions

So far, our simulations display dynamics with strongmacro-

and micro-level functional similarities to real human sin-

gle motor unit pathways. Since the theory used at the

micro-level is not mathematically related to the macro-level

functionality, all resulting networks generated by our model

can be qualified as emergent. Furthermore, these networks

can be regarded as biologically plausible, because the nom-

inal behaviors of the agents conform to their corresponding

biological elements (they are all verified and validated).

Hence, the results allowed us to make predictions about the

underlying neuronal pathways. However, these findings do

not constitute a proof that the simulated neural networks are

exactly as their reference biological networks.

Consequently, it is not currently possible to generalize

our model as a generic facility that could allow mimick-

ing any part of neuronal pathways. Such generalization can

only be obtained when a particular simulation scenario does

not fit the data at hand. This is why model optimization

based upon model evidence (as in Dynamic Causal Mod-

eling) penalizes overly complicated models with too many

degrees of freedom. Clearly, the next step in our work is to

assess the generalization of our computational model. This

would normally involve seeing how well the model pre-

dicted responses to new patterns of stimulation. We have not

really addressed this issue in the current work. We hope to

be able to use other data in future analyses to address (and

possibly optimize) generalization; for example, optimizing

one simulation scenario given the observed responses to a

single stimulation pulse (like we did in this article) and

then seeing how well it predicted responses to another sce-

nario; for example a pair of stimulation pulses that were

separated by a short interval. In terms of scenario selection,

this is known as establishing predictive validity and usually

goes hand in hand with simulation scenarios that have high

evidence.

Moreover, more complex pathways (like multiple motor

unit pathways) have not yet been validated. In other words,

it is not yet clear whether our computational model can per-

form the same practical functions as the real larger-scale

pathways they model. To this end, we need two things:

(1) the discharge rates of multiple motor units obtained

from the same human subject and (2) more NCSs related

to biological situations to increase biological reality (e.g.,

introducing spatial constraints). Apparently, the more bio-

logical information is provided to the model, the more

biologically correct the resulting neuronal networks would

be. The envisioned next steps involve expansion of the

project in multiple directions, some of which are related to

surmounting this limitation.

As a result of this perspective, we are planning to achieve

a generic model that could allow mimicking any part of

(human) neuronal pathways, if the PSF data can be mea-

sured and provided according to specifications. The facility

can then be used to construct the artificial replication of any

neuronal pathway, consisting of real neurons.
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