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Abstract – This paper deals with a new smart algorithm allowing open-circuit and reversed 

polarity faults prognosis in photovoltaic generators. Its contribution lies on the optimization of 

support vector regression (SVR) technique by a k-NN regression tool (k-NNR) for undetermined 

outputs. 
 

To testing the performance of the proposed algorithm, we used a significant data base 

containing the generator functioning history, and as indicators we selected variance, standard 

deviation, Confidence interval, absolute and relative errors. 
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Nomenclature 
 

PV Photovoltaic 

SVM Support Vector Machines 

SVR Support Vector Regression 

k-NNR k-Nearest Neighbor Regression 

X SVR input vector 

Y SVR output vector 

f Linear function 

Ф Nonlinear mapping function 

w Weight vector 

e Squared loss function 

x Problem variable 

x* New problem variable 

α Lagrange multipliers 

N Number of classes 

m Number of index of minimum distances 

I / V Current / Voltage 

IPH Photocurrent 

I. Introduction 

The performance index is a value independent of 

place and measuring the PV system production [1]-[3]. 

Really, this performance index is often called the quality 

factor. It indicated as a percentage, means the ratio 

between the actual and the theoretical PV system energy. 

So, it shows the share of the available actually energy, 

after deducting the specific operating consumption by the 

installation, and the energy losses (thermal and 

conduction losses). 
 

So, these energy losses can be caused by the presence 

of defects, like the open-circuit and reversed polarity. 

However, provided a better prognosis [9]-[12] and 

diagnosis [14]-[16] functions of the generator can 

stabilize its performance and ensure its availability and 

reliability. 
 

In this context, the paper objective is the 

development of an algorithm for the prognosis of a 

photovoltaic generator state, under open-circuit and 

reversed polarity faults. Indeed, the paper contributions 

are twofold: 1) development an algorithm for the 

detection and the localization of the open-circuit and 

reversed polarity faults at the PV generator components: 

cells, bypass and blocking diodes, it bases on the analysis 

of the operating parameters of the generator. 2) 

Development of a smart prognosis algorithm for the 

characterization of the open-circuit and reversed polarity 

faults, regardless of their localization. It bases on the 

support vector regression (SVR) [19]-[22] optimized by 

the k-nearest neighbor method [23]-[26]. 

II. Classical Diagnosis Algorithm 

This new proposed algorithm is for objective to 

detecting and locating the open-circuit and reversed 

polarity faults on the generator components: PV cells, 

bypass and blocking diodes. 
 

The following figure shows the studied generator 

(Fig.1), which contains five strings in parallel, where 

each string comprises five modules in series, and ended 

by blocking diode. Each module contains two groups in 

series. Finally, each group composes of eighteen cells in 

series regrouped by one bypass diode in parallel. 
 

This new proposed algorithm consist mainly four 

steps: 



 
 

Fig.1 . Photovoltaic generator described 

 

A) Step1: if the generator characteristic is 
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indicates that the generator is open-circuit. But, if its 

characteristic is 
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mains that the generator is subjected to a reversed 

polarity fault. Also, if its characteristic is 
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designates that the generator contains at least one string 

with components in reversed polarity fault. 
 

B) Step2: if the string characteristic is 
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indicates the presence of at least one of these defects: 

connections between modules open-circuit, blocking 

diode open-circuit or modules open-circuit. But, if its 

characteristic is 
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mains that its blocking diode under reversed polarity. 

Also, if its characteristic is 
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designates that this string contains at least one module 

under reversed polarity. 
 

C) Step3: if the module characteristic is 
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mains the presence of at least one of group open-circuit, 

or connection between groups open-circuit. But, if its 

characteristic is 
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designates the presence of module in reversed polarity. 
 

D) Step4: the PV group is open-circuit if 
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Also, if its characteristic is 
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designates the existence of cells open-circuit, Or 

connections between cells open-circuit. In addition, if its 

characteristic is 
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indicates that this group contains a bypass diode open-

circuit. But, if the group characteristic is 
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mains the presence of group contains at least cell under 

reversed polarity, with the number of healthy cells is 

greater than the defective ones. Also, if its characteristic 

is 
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designates the existence of group contains at least half of 

its cells under reversed polarity. And finally, if its 

characteristic is 
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Indicates that this group is grouped by a bypass diode in 

reversed polarity. 

III. Intelligent Prognosis Algorithm 
 

III.1. SVR Algorithm 
 

Regression by support vector machines (Support 

Vector Regression) is an extension of support vector 

machines developed by the VAPNIK group. The purpose 

of this approach is to determine the optimal hyper-plane 

representing the dataset. This hyper-plane must 

interpolate the observations with some margin, which 

defined by the insensitivity loss function. The main 

advantages of this approach are its robustness against 

noise and errors, also the possibility of its use in the 

nonlinear case through the kernel functions. 
 

Consider a set of data: {(x1,y1),…, (xn,yn)} X, where 

X represents the data space. In support vector regression, 

the objective is to find the function f(x), which has at 

most a deviation of ε, compared to the yi targets of all 

dataset, and at the same time which is flat as possible. 
 

SVR general pattern of regression in its linear and 

nonlinear cases is as follows 
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The aim therefore at this point is to determine the 

function parameters, which is the weight w, and the bias 

b, which minimize the SVR margin, this leads to a least 

squares to simplify the SVR problem to a system of 

linear equalities. The regression problem becomes then 

as follows. 
 

 

         

1 2

1

If the problem is linearly separable

, , ,

Else

, ,

N

N

f x x x x x x x b

f x x x x x b




     


           

 (16) 

 

As all regression techniques, this tool has some 

disadvantages that can degrade its effectiveness, among 

them the existence of indeterminate outputs for some 

observations. The outputs of the regression model are 

generally of good quality when they are determinate. 
 

Consequently, we are proposed and after a research 

bibliography interesting as solution the k-nearest 

neighbors, thanks to its advantages in the regression area. 

The use of this tool is for the outputs approximations of 

these some observations have indeterminate outputs by 

SVR. 
 

III.2. k-NN Regression Algorithm 
 

k-NN is a method based on memory, which unlike 

other statistical methods does not require any learning 

(that is to say there is no model to adjust). It belongs to 

the Prototypes methods category. It operates on the 

intuitive principle, which the nearest objects are most 

likely to belong to the same category. Thus, with the k-

NN method, the forecasts are based on a set of prototypes 

examples, which are used to predict new data, based on 

the average for the regression of the k nearest prototypes. 
 

The choice of k is essential in the k-NN model 

construction, because it can strongly influence the 

forecasts quality. For a given problem, a low value of k 

will lead to a large variance in the forecast. Contrary, if 

you assign a high k value, you will introduce significant 

bias in the model, because it can minimize the regression 

error probability. 
 

After selecting the k value, the forecasts assignment 

is based on the examples of k-NN. For regression 

problems, forecasts k-NNs are calculated as the average 

of the k nearest neighbors. 
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Where yi is the ith sample observation of examples, 

and y is the forecast (result) of the query point. 

 

 

 



III.3. The Proposed Smart Algorithm 
 

In this section, we proposed a new smart algorithm 

allowing smart prognosis of a PV generator. This new 

model is firstly used SVR technique bases on its kernel 

function on Gaussien type, for all observations have 

determined outputs. And secondly, it used k-NNR tool 

that aims to approximate the observations outputs that 

have undetermined outputs predict by SVR technique. 

The hybridization of these two methods leads to the 

following formulation. 
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 = 0 for determined SVR results, else  = 1. i=1:1:N. 

IV. Simulations Results 
 

IV.1. Faulted PV Generator Characterization 
 

The results simulations of classical diagnosis 

algorithm by Lab-VIEW software are shown in the 

following Figs. 2 to 7. 
 

 
 

Fig2. Open circuit cells influence on the PV generator operation. 
 

1) Fig. 2 presents the future operation of the defective 

PV generator subjected successively to 1, 2, 3 defective 

groups, where everyone contains a cell open-circuit. It 

shows that the open-circuit influence is not remarkable 

on the generator current, except where one of its strings 

all its groups are defective. But, it can increase the 

generator voltage, if all its strings are defective, and it 

increased in proportion to the increase in the number of 

its faulty groups, until it reaches its open-circuit value, 

and its current becomes zero. 
 

 
 

Fig3. Cells reversed polarity influence on the PV generator operation. 
 

2) Fig. 3 presents the future operation of the PV 

generator in the presence of successively 5, 10, 15 cells 

reversed polarity. It shows that the generator power 

decreases proportionally to the number of defective cells, 

until will be null in the case where half of its cells are 

defective. Also, the PV generator absorbs power if the 

number of its defective cells greater that the healthy 

ones. 
 

3) Fig. 4 shows an operating mode of the faulty PV 

generator with a power output as the normal operation, 

but it subjected to the presence of successively 10, 20, 50 

bypass diodes reversed polarity. Therefore, the absence 

of the photocurrent on the last group of each string in the 

third phase of the PV generator operation discovers the 



presence of bypass diodes open-circuit. Consequently, 

the bypass diode open-circuit defect is classified among 

the major flaws, because its detection is difficult and 

requires to other parameters such as the sunlight. So, we 

concluded that the influence of this defect is not 

remarkable on the characterization of the generator, as 

long as the cells group assembled by these defective 

diodes is in the normal functioning. 
 

 
 

Fig4. Open circuit bypass diodes influence on the PV generator 

operation. 
 

4) Fig. 5 shows the presence influence of 

successively 2, 3, 8 faulty groups, where each one 

contains one bypass diode reversed polarity on the future 

operation of the PV generator. It shows that the bypass 

diode reversed polarity has a greater impact on the PV 

generator performance, because it can cancel outright its 

group voltage. 
 

 
 

Fig5. Bypass diodes reversed polarity influence on the PV generator 

operation 
 

Fig. 6 shows the future operation of PV generator 

contains successively the presence of 2, 3, 4 defective 

blocking diodes open-circuit. It shows that the open-

circuit defect can cut the current flowing across the 

faulty string, and therefore increases its voltage to its 

open-circuit value. Its influence is not remarkable on the 

generator voltage contains at least one good string, but 

its current is reduced in proportion to the increase in the 

number of blocking diode open-circuit, up to becomes 

zero, thereby its voltage takes its open-circuit value. 
 

 
 

Fig6. Blocking diode open circuit influence on the PV generator 

operation. 
 

Fig. 7 presents the case of the presence of 

successively 1, 2, 3 blocking diodes reversed polarity in 

the future operation of the PV generator. It shows that 

the reversed polarity defect can degrade the generator 

power, because the existence of one defective blocking 

diode can affect the string current flow, and this string 

behaves in the open-circuit mode. 
 

 
 

Fig7. Blocking diode reversed polarity influence on the PV generator 

operation. 
 

IV.2. Smart Algorithm Tests 
 

In this context, three 50 identical samples are selected 

(total sum = 150 samples), each sample containing 950 

observations, each observation constituted six parameters 

which are: current I, voltage V, power P, series resistance 

Rs, temperature T and photocurrent Iph, but this 

observation is presented in this simulation by its center 

of gravity ‗x’, so the 47500 observations (50 samples * 

950 observations) are distributed on four classes types 

which are: normal functioning, cells open-circuit and 

reversed polarity, bypass diodes open-circuit and 

reversed polarity and finally blocking diodes open-circuit 

and reversed polarity [27]-[28]. In this application, we 

are used for each 50 samples one of the three regression 



tools used for comparison purposes: SVR, k-NNR, and 

the proposed model SVR optimized by k-NNR. 
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Fig. 8. Absolute and relative errors vs prediction tools. 
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Fig. 9. Variance and standard deviation vs prediction tools. 
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Fig. 10. Confidence interval vs prediction tools. 

 

Fig. 8 illustrates the prediction performance in terms 

of absolute and relative errors. It shows that the k-NNR 

has a greater absolute and relative error. Then, in a 

descending orders successively the SVR tool, and finally 

the proposed model that provides the smallest absolute 

and relative error in these all tools. This means that the 

proposed model achieves the best prediction 

performance. 
 

Fig. 9 illustrates the second criterion used for the 

prediction performance evaluation: variance and standard 

deviation. It shows that the k-NNR has the greater 

standard deviation and variance. Then, in a descending 

orders successively SVR, and finally the proposed 

model, which has a smallest standard deviation and 

variance. This means that the predicted results of the 

proposed method are more homogeneous. 
 

The third evaluation criterion used is the confidence 

interval. In this case, Fig. 10 shows that the k-NNR 

provides a larger confidence interval, then SVR tool, 

then finally the proposed model that has the confidence 

interval the most optimized. This means that the 

predicted results of the proposed method are more 

reliable. 

V. Conclusion 

In this article, we are proposed a new smart prognosis 

algorithm for the open-circuit and reversed polarity 

faults, in a photovoltaic generator. The proposed 

prognosis (prediction) approach is based on the use of 

SVR tool, optimized by k-NNR for undetermined 

outputs. 
 

The study and analysis of the results obtained from 

the simulation based on the determination of the absolute 

and relative error, standard deviation and variance, and 

finally the confidence margin, shows that the new 

contribution achieves the best prediction performance 

with more homogeneous and reliable prediction results. 
 

The future work of this algorithm lies in the 

prognosis of the hybridization of the two defects open-

circuit and reversed polarity, which can present at the 

same component and in the same time. 
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