
HAL Id: hal-01154188
https://hal.science/hal-01154188

Submitted on 21 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A graph based approach to trace models composition
Youness Laghouaouta, Adil Anwar, Mahmoud Nassar, Bernard Coulette

To cite this version:
Youness Laghouaouta, Adil Anwar, Mahmoud Nassar, Bernard Coulette. A graph based ap-
proach to trace models composition. Journal of Software, 2014, vol. 9 (n° 11), pp. 2813-2822.
�10.4304/jsw.9.11.2813-2822�. �hal-01154188�

https://hal.science/hal-01154188
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13073

To link to this article : DOI:10.4304/jsw.9.11.2813-2822

URL : http://dx.doi.org/10.4304/jsw.9.11.2813-2822

To cite this version : Laghouaouta, Youness and Anwar, Adil and Nassar,
Mahmoud and Coulette, Bernard A graph based approach to trace models
composition. (2014) Journal of Software, vol. 9 (n° 11). pp. 2813-2822.
ISSN 1796-217X

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Graph Based Approach to Trace Models

Composition

Youness Laghouaoutaa, Adil Anwarb, Mahmoud Nassara, Bernard Coulettec
a IMS-SIME ENSIAS, Mohamed Vth Soussi University, Rabat, Morocco

Email: y.laghouaouta@um5s.net.ma, nassar@ensias.ma
b Siweb, EMI, Mohamed Vth Agdal Universtity, Rabat, Morocco

Email: anwar@emi.ac.ma
c IRIT-UTM, University of Toulouse II, Toulouse, France

Email: coulette@univ-tlse2.fr

Abstract— A model driven engineering process involves dif-
ferent and heterogeneous models that represent various
perspectives of the system under development. The model
composition operation allows combining those sub-models
into an integrated view, but remains a tedious activity.
For that, traceability information must be maintained to
comprehend the composition effects and better manage the
operation itself. Against this context, the current paper
describes a framework for model composition traceability.
We consider the traces generation concern as a crosscutting
concern where the weaving mechanism is performed using
graph transformations. A composition specification case
study is presented to illustrate our contribution.

Index Terms— traceability, model composition, model trans-
formation, aspect oriented modeling, graph transformation.

I. INTRODUCTION

One of the main Model Driven Engineering (MDE)

principles is to reduce system complexity by raising the

abstraction level. In MDE, the primary focus is on models

rather than computing concepts. Models represent all

artifacts handled by the software development process

and can be used as first class entities in dedicated model

management operations. Therefore, the gap between the

requirements definition and the solution is reduced by

metamodeling and transformation tools [1].

Usually, complex and large systems are built based on

different models; each one representing a view of the

system according to a different perspective, a different set

of concerns, and a different group of components [2]. The

main purpose is to separate concerns in order to represent

the software system as a set of less complex sub-models.

Hence, the complexity of the analysis/design activities is

reduced in the earlier phase of the software development

process.

However, several issues are raised, among them the

need to synchronize contributing models. This task can be

handled through the generation of views that cross differ-

ent perspectives in order to propagate changes occurring

in sub-models. Combining those models can be performed

using a model composition approach. Nevertheless, even

if model-oriented decomposition is interesting; model

composition remains a laborious activity.

Traceability is a necessary system characteristic [3] that

reveals the software process maturity. Model composition,

as all other model management operations, requires a

traceability mechanism for manifold uses: model vali-

dation, co-evolution of models and model composition

optimization. Indeed, traceability management provides

support to better manage the composition operation. It

specifies how source artifacts participate in the production

of the composed model. Those links detail the flow of

execution and are useful to analyze the impact of changing

sub-models during the evolution of the system and help

to optimize composition chains.

This paper deals with the tracing of the composition of

heterogeneous models. Our approach is based on a generic

and extensible metamodel accounting for structuring trace

links. Essentially, we aim at minimizing the trace links

management effort and expressing highly configurable

trace models. This paper extends our initial work pre-

sented in [4]. It focuses on the generation of traces by

using aspect oriented modeling (AOM) principles [5]

and graph transformations [6]. In fact, the weaving of

the traceability aspect is specified by a set of graph

transformation rules.

Graph transformations theory provides a formal support

for defining some activities related to model management

such as: model transformation, model refactoring and

model integration. We intend to populate our traceability

metamodel regardless of the composition language. To

that end, we believe that graph transformation is a pow-

erful technology for specifying and applying the weaving

mechanism of the traces generation code in a composition

specification in a more abstract manner.

The rest of the paper is organized as follows: in Section

II we review related approaches concerning model trans-

formation traceability; Section III represents an overview

of our approach, while Section IV details the generation

of the trace model. Thereafter, in Section V we present

a concrete working example, followed by a discussion

of our contribution in Section VI. Finally Section VII

summarizes this paper and presents future works.

II. BACKGROUND AND RELATED WORK

A. Traceability management in MDE

Traceability is recognized as an essential issue in

software engineering, and model driven engineering is no

exception. In the literature there are several definitions

of traceability, which, differ depending on the artifacts

abstraction level and the traceability intensions. The IEEE

Standard Glossary of Software Engineering Terminology

[7] defines traceability as: the degree to which relationship

can be established between two or more products of

the development process, especially products having a

predecessor-successor or master-subordinate relationship

to one other; for example, the degree to which the

requirements and design of a given software component

match.

More definitions concerning model transformation

traceability have been proposed, notably:

• Dirvalos et al. [3] consider traceability as: Any rela-

tionship that exists between artifacts involved in the

software engineering life cycle.

• Grammel and Voigt [8] define traceability as: The

runtime footprint of model transformation .Essen-

tially, trace links provide this kind of information

by associating source and target model element

with respect of the execution of a certain model

transformation.

Traceability refers to the ability to capture and reuse

links between a set of artifacts handled by a model driven

development operation. This information represents the

changes that have occurred in these elements and reveals

the complexity of logical relations [9] existing among

them. In MDE, traceability is a matter of three concerns

[10]:

• What: Decide which concepts described in the mod-

els will be traced.

• How: Determine how to generate, represent and

manage trace links.

• Why: Identify the intentions of capturing trace links.

B. Related work

Several researches address model transformation trace-

ability issue. In this section we briefly outline the main

approaches.

Jouault [11] presents an approach to trace transfor-

mations written in the ATL language. It addresses the

problem of implicit traceability persistence. This approach

is the basis for several future researches addressing trace-

ability management. The author considers traces as a

model generated in the same way as other target models.

The traces generation code can be automatically inserted

into any existing ATL program, through the application

of a higher order transformation called traceAdder [11].

Since the author uses a simple metamodel to represent

the trace model structure, traces are not configurable.

Nevertheless, the use of the traceAdder transformation

enhances scalability and allows reusability of the trace

model stored externally.

Falleri et al. [12] suggest a framework for traceability of

imperative model transformations written in the Kermeta

language. The authors consider the trace model as a

bipartite graph where the nodes are of two types: source

nodes and target nodes. Trace links are stored in a separate

model conforms to a generic traceability metamodel and

can be reused. Besides, the manual adding of the traces

generation code allows the user to select elements to trace,

but this reduces scalability.

Amar et al. [13] propose a traceability framework for

imperative transformations. The authors present a generic

traceability metamodel based on the ”composite” design

pattern, while the trace generation is based on aspect-

oriented programming using AspectJ. Thus, it builds

traces without modifying the transformation code and

supports scalability and reusability of aspects too. The

framework defines categories of traceable operations and

their respective poincuts. Since it does not take into

account all the operations to trace, the programmer can

define new custom categories or restrict the predefined

ones. Furthermore, the application of the ”composite”

design pattern as well as the link type concept, allow

defining configurable trace models.

Grammel and Kastenholz [14] have defined a generic

traceability framework for model transformation ap-

proaches. It is based on a generic metamodel exten-

sible through facets to simplify hierarchical structure.

The approach offers two mechanisms for traces gen-

eration: transformation of the implicit trace model to

another model conforms to the suggested metamodel and

generation of traceability data based on aspect oriented

programming. These two mechanisms make the approach

scalable and enhance reusability. As for the trace model

configuration, it entails the choice of artifacts to trace and

the granularity level through the use of facets.

The confusion between model transformation and

model composition is a debate topic. Some researches

perceive model composition as a transformation with two

input models and one output model, when others discern

model transformation as a specific model composition

which computes the source model with an empty model

to produce the target one. Therefore, the presented ap-

proaches can be used to trace the model composition

operation; however, we judge that the proposal for a

model composition traceability approach proves advan-

tageous. Actually, model composition has specific inten-

sions (model synchronization, model integration. . .) and

a particular process (matching step, merging step. . .) that

have to drive the traceability approach.

C. Traceability requirements

In [4], we have detailed an evaluation of the presented

approaches based on three comparison criteria: configura-

tion, portability, and scalability. These criteria are inspired

from the traceability challenges stated by the Center of

Excellence for Software Traceability [15]. According to

the results of this analysis, we derived four traceability

requirements that have driven our approach.

Figure 1. The trace generation process

• In order to address the scalability challenge, the

trace model generation must be automatic; so as to

reduce the effort required to achieve traceability. Fur-

thermore, human intervention is useful to configure

model elements to trace.

• The code necessary to generate traces must not be

intrusive in the primary transformation in order to

allow its reuse.

• Traceability data has to be stored in a separate model

which conforms to a generic metamodel to reduce

trace links management effort. Thus, it supports

reusability of the trace model.

• The traceability metamodel has to be expanded with

an extensibility mechanism. Essentially, this mecha-

nism allows expressing configurable trace links de-

pending on the traceability scenario and the models

specifications.

In our approach, we propose to achieve the two first

requirements by using graph transformation rules to gen-

erate the trace model. The other points are achieved

by using generic composition traceability metamodel to

represent the traceability data structure.

III. OVERVIEW OF THE APPROACH

A. Trace generation process

We consider the trace model as an additional target

model of the composition operation (Fig. 1). To generate

it, we propose to use a weaving mechanism of the code

responsible of creating traceability elements in the compo-

sition specification. We describe in section IV the aspect

weaving process in more details. The trace model can be

visualized as a graph, or invoked by a selection request.

Furthermore, it can be used to validate the composition

by checking the consistency and the completeness of the

composed model. The co-evolution of models [16] can

be supported by analyzing the impact of changing source

elements through their corresponding trace links. Finally,

Figure 2. Composition traceability metamodel

we aim to optimize model composition chains; indeed,

some trace links are valuable for following steps.

B. The composition traceability metamodel

Several approaches address the model composition

operation: AMW [17], EML [18], Kompose [19]. We

take into account the typical composition process which

involves two major steps: matching and merging. During

the first step, similarities between left and right model

elements are calculated. Matching elements are merged

while other elements are eventually transformed to target

model elements or temporary modified to be merged.

We propose a traceability metamodel (see Fig. 2),

which defines the different kinds of relationships between

model elements independently from any given application

domain. We have extended the core traceability meta-

model proposed in [4] to support composition traceability

requirements and complement it with well-formedness

rules. Hereafter, we present the key elements of this

metamodel.

A MergingLink element connects the left and right

elements to the composed element, while a transforma-

tionLink element represents a transition from each left or

right element to the target one. A transformation link may

have no source or target element to allow tracing a deleted

element or a newly created one. Moreover, we represent

multi-scaled trace model that show the imbrications of

the rule calls, through a parent-child relation among trace

links. The nesting of traces allows the final user to

configure the granularity degree he desires.

In order to enhance the trace model semantic rich-

ness, we use the Context concept to assign additional

information to trace links depending on the traceability

point of view and the models to compose specifications.

Indeed, this extensibility mechanism is based on the

definition of the relevant context attributes that capture the

further expressiveness data to be assigned to a sub-set of

traces, such as: the composition rule name, the traceability

intention. . .

We present thereafter some well-formedness rules spec-

ifying the static semantics of the traceability metamodel.

1) A merging link must have two source elements and

one target element.

context TraceLink

inv : self.oclIsTypeOf(MergingLink)

implies self.left->notEmpty() and self

.right->notEmpty() and self.target

->notEmpty()

2) A transformation link has at most one source ele-

ment.

context TraceLink

inv : self.oclIsTypeOf(

TransformationLink)

implies self.left.oclIsUndefined() or

self.left.oclIsUndefined()

3) There is one and only one root trace link of type

MergingLink.

context TraceModel

inv : let root:TraceLink = self.root

in

if root.oclIsUndefined()

then true

else

root.oclIsTypeOf(MergingLink) and root

.parent.ocIsUndefined()

endif

We illustrate a simple trace model in Fig. 3. The

purpose of the composition to trace is to merge two simple

class diagrams (Left model and Right model) each one

containing one class A. The trace model contains one

root element of type MergingLink that links the source

class diagrams with the target one. Childs of this element

represent the merging of the classes A and the types

int in the source models. Finally the copy of the class

attributes to the target model is represented by two nested

transformation links.

IV. TRACE MODEL GENERATION

In this section, we describe how we can use aspect

oriented modeling with graph transformations to trace the

model composition operation. Our objective is to address

our traceability requirements in order to automatically

build the trace model without modifying the code of the

composition specification by hand. Indeed, we consider

the insertion of the trace generation code as a weaving of

the base model (which represents the composition speci-

fication) with the aspect model (describes the traceability

concern). This weaving scenario is specified by graph

transformation rules.

A. AOM and graph transformations concepts

Aspect oriented modeling applies aspect oriented pro-

gramming [20] in the context of MDE, and focuses on

modularizing and composing crosscutting concerns during

Figure 3. A simple trace model

the design phase of a software system. Indeed, the aspect

that encapsulates the crosscutting structure and the base

model it crosscuts are both models. An aspect is defined

principally by:

• A pointcut: it is a predicate over a model used to

determine the places where the aspect should be

applied (joinpoints).

• An advice: It is the new structure that replaces the

relevant jointpoints.

A graph rewriting rule consists of two parts, a left-hand

side (LHS) and a right-hand side (RHS). A rule is applied

by substituting the objects of the left-hand side with the

objects of the right-hand side, only if the pattern of the

left-hand side can be matched to a given graph [21].

A formal definition of a graph transformation rule is

given in [22]: A graph transformation is a rule r : L → R

from a left-hand side (LHS) graph L to a right-hand side

(RHS) graph R. The process of applying r to a graph G

involves finding a graph morphism, h, from L to G and

replacing h(L) in G with h(R). To avoid dangling edges

i.e., edges with a missing source or target node h(R) must

be pasted into G in such a way that all edges connected to

a removed node in h(L) are reconnected to a replacement

node in h(R).
We establish the following correspondences to simulate

aspect weaving operation with graph transformation rules:

A set of rules correspond to an aspect, the LHS part

defines the points where the aspect should be applied

(the pointcut), and the RHS part defines the crosscutting

structure that should be inserted at those points (the

advice). Note that we have chosen the Henshin project

[23] to implement the weaving process.

Henshin is a transformation language and tool environ-

ment based on graph transformation concepts and operat-

ing on EMF models [23]. It provides features needed to

express complex transformation such as: negative appli-

cation conditions (NACs) which specify the non-existence

of model patterns in certain contexts and transformation

units to control the rules application sequence.

B. The weaving operation

We have chosen the Epsilon Merging Language EML

[18] as an example of dedicated composition language,

which is used to express a model merging specification.

EML belongs to the Epsilon platform, which is a model

driven framework for developing integrated languages for

model management tasks such as comparison, transfor-

mation, validation, etc. This language proposes to merge

models through three categories of rules: match rules,

merge rules and transformation rules.

An EML specification can be represented as a graph,

since the abstract syntax of EML can be considered as a

graph. Hence, the transformation of an EML module to

another EML module, which contains traceability gener-

ation code, can be considered as a graph transformation.

Fig. 4 depicts an excerpt of the EML abstract syntax

[24]. Note that the definition of some model elements

has been modified to simplify the specification of graph

transformations that deal with the generation task.

1) Trace link declaration for merge rules: The rule

presented in Fig. 5 allows declaring the traceability

element that captures the correspondence between the

two source elements matched by the application of an

EML merge rule and the merged one. This rule searches

for a MergeRule node with its connected parameters

corresponding to the left, right and target parameters.

Thereafter, it adds a new ParameterDeclaration node

stereotyped with create, referencing the merging link to

be generated. Besides, the added AssignStatement nodes

attribute the reference of the corresponding element to the

appropriate trace link property (left, right, and target).

2) Trace link declaration for transformation rules:

The graph transformation rule presented in Fig. 6 aims

to add the trace link declaration to EML transformation

rules. As with merge rules, it searches for a Transforma-

tionRule node and appends to it a new parameter of type

TransformationLink. This newly added parameter allows

generating a trace link that captures the transition from the

source element to the target one. Furthermore, the added

assign statements attribute the references of the matched

ParameterDeclaration nodes stereotyped with preserve to

the generated trace link.

Note that in the EML abstract syntax, no distinction

is made between the left and the right elements (the

transformation rule connects the source element to the

target one). Consequently, we can’t automatically resolve

Figure 4. Excerpt of the EML abstract syntax

the origin of the element (left or right model) without

user’s assistance.

3) Trace links nesting rule: Within EML, the rule

call is implicitly performed using the equivalent opera-

tion that automatically resolves source elements to their

transformed counterparts in the target models [24]. This

target equivalent is produced by an anterior application of

a given rule. We propose to structure traces conforming

to the rule invocation sequence. Indeed, the application

of the two previous rules allows generating extra-outputs

corresponding to trace links that are resolved as potential

target equivalents. Hence, we trace a rule call by assigning

the trace link generated by the called rule as a child of

the link generated by the calling rule.

Accordingly, the rule depicted in Fig. 7 searches for a

call of the equivalent operation. Thereafter, it copies the

reference of the element to resolve (which corresponds

to the source of the SimpleOperationCallExpression node

stereotyped with delete) to the variable named element.

Then, the target equivalents are divided on two subsets:

those corresponding to the traceability data that are used

to bind the traceability element to its parent and the other

element used to copy the original call of the equivalent

operation. This filtering mechanism is made by applying

the select operation.

Figure 5. Trace link declaration for merge rules

Figure 7. Trace links nesting rule

C. The tool architecture

Fig. 8 depicts a high level view of the tool architecture.

Basically, it contains two major layers: the composition

and traceability layer and the serialization and visual-

ization layer. The first layer constitutes the core of our

architecture while the second one offers facilities to

perform the traceability management.

The serialization service is implemented using the

EMFText project [25]; it involves a text to model parser

and a model to text printer for the EML language.

Essentially, this allows transforming the textual EML

specification to the corresponding model conforms to the

EML abstract syntax. Thereafter, a specific graph transfor-

mation unit (which is specified using the Henshin project

cf. Section IV-B) weaves the traces generation patterns

in the corresponding model. Finally, we reproduce the

concrete specification by using the model to text printer.

The execution of the resulting specification generates

exta-outputs corresponding to the traceability elements

Figure 6. Trace link declaration for transformation rules

while producing the composed model. Besides, the vi-

sualization service provides support to transform the

generated trace model in a human friendly representation.

V. CASE STUDY

In this section, we provide an example to illustrate

the application of our approach. The merging scenario

we have chosen is the merging of two UML models

represented by class diagrams into a target model. The

source models as well as the merged model are displayed

in Fig. 9. Listing 1 represents the EML rule that merges

two source classes, while Listing 2 depicts the resulting

modifications over this rule.

1 rule MergeClassWithClass

2 merge l : left!Class

3 with r : right!Class

4 into t : target!Class

5 {

6 t.name = l.name;

7 t.ownedAttribute = l.ownedAttribute.includingAll

(r.ownedAttribute).equivalent();

8 }

Listing 1. Merge two classes rule

Depending on the rule type (merge or transformation),

the two first rules of the traces generation weaving unit,

declare the traceability parameter as another target param-

eter, and assign the traceability information to it (Listing

Figure 8. The tool architecture

Figure 9. Illustrative example

2: lines 8,11-13). Besides, the call of the equivalent op-

eration (Listing 1: line 7) has been captured and replaced

with the fragment that divides its return to trace model

elements and default target elements (Listing 2: lines 1-

4,14-16). The first sub-set is used to copy the original call

of the equivalent operation (Listing 2: line 15), while the

traceability element is assigned as a child of current trace

link (Listing 2: line 16).

1 pre

2 {

3 var element : new Any ;

4 }

5 rule MergeClassWithClass

6 merge l : left!Class

7 with r : right!Class

8 into t : target!Class , tr:trace!MergingLink

9 {

10 t.name = l.name;

11 tr.left=l;

12 tr.right=r;

13 tr.target=t;

14 element = l.ownedAttribute.includingAll(r.

ownedAttribute);

15 t.ownedAttribute = element.equivalent().select(

it | not it.isKindOf(trace!TraceLink));

16 tr.child = element.equivalent().select(it | it.

isKindOf(trace!TraceLink));

17 }

Listing 2. Merge two classes with traces generation

Fig. 10 depicts an excerpt of the generated trace model.

This model conforms to our composition traceability

metamodel and contains two types of trace links (merging

links and transformation links) that are generated with

respect to the composition relationships kinds. Those links

are nested with respect to the rules invocation sequence.

Essentially, the multi-scaled character of trace links allows

the user to navigate over the trace model, from rough to

precise. Note that we have used the Emf2gv project1 to

visualize the trace model.

VI. DISCUSSION

As presented in section II, traceability involves three

concerns: what to trace, how to manage the traceability

information, and why we require it. Our approach allows

the user to identify a subset of elements to trace through

the selection of the relevant aspects (graph transformation

rules) to apply. On the other hand, the use of aspect

oriented modeling and graph transformation rules au-

tomatically insert the code responsible for generating

the traceability information. In order to reduce effort to

achieve traceability and support reusability of aspects, the

trace model conforms to a generic metamodel. Besides,

our metamodel is extensible to express traces regarding

traceability scenarios. Finally, we identified three major

intensions of capturing traces: validation in model compo-

sition, co-evolution of models and optimization of compo-

sition chains. These intensions will guide our future work.

We consider that the challenge is to make our approach

aware of the ”why”, in order to automatically select the

1See http://sourceforge.net/projects/emf2gv.

elements to trace and configure the trace management

process depending on the user’s intension.

The use of graph transformation proves to be ad-

vantageous for augmenting composition tools with a

traceability support, since, existing graph based tools as

Henshin project can perform this operation. It provides

features needed to express complex transformation such

as: application conditions and the control flow of graph

transformation rules. Furthermore, the plurality of the

composition languages and their characteristics (textual,

model-based, and graph-based) make traceability difficult

to manage; however, we believe that the exploration of

graph transformation options provides ways to overcome

this problem.

We aim to abstract as much as possible the composition

specification to the corresponding graph. Thereby, our ap-

proach can be used to trace model composition regardless

its nature: textual specifications written in EML, model-

based specification in ATL, and graph based composition

[2]. However, our contribution is currently a language

dependent approach, since the definition of the graph

transformation rules takes into account the composition

language. As a solution, we are considering a pivot

language.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach dedicated to

manage the traceability concern in a model composition

operation. Our solution fits a set of traceability require-

ments we have deduced from the analysis of the main

model transformation traceability approaches. Indeed, we

consider traceability as a cross-cutting concern and we

generate the trace model automatically based on the

aspect oriented paradigm. The aspect weaving is imple-

mented using graph transformation rules. Moreover, we

use a generic and extensible traceability metamodel that

deals with the configuration challenge.

Several perspectives to our work are under considera-

tion. We are completing the visualization of the generated

trace model in a human-friendly representation using

the graphviz tool [26]. Besides, we intend to work on

a pre-configuration tool support to generate the trace

model according to the user’s requirements. Finally, we

believe that traceability data is useful for optimizing the

establishment of correspondences between contributing

models, by automatically refining the matching model.

REFERENCES

[1] S. Kent, “Model driven engineering,” in Integrated formal
methods. Springer, 2002, pp. 286–298.

[2] A. Anwar, A. Benelallam, M. Nassar, and B. Coulette,
“A graphical specification of model composition with
triple graph grammars,” in Model-Based Methodologies for
Pervasive and Embedded Software. Springer, 2013, pp.
1–18.

[3] N. Drivalos, R. F. Paige, K. J. Fernandes, and D. S.
Kolovos, “Towards rigorously defined model-to-model
traceability,” in ECMDA Traceability Workshop (ECMDA-
TW’08), 2008, pp. 17–26.

Figure 10. Excerpt of generated trace model

[4] Y. Laghouaouta, A. Anwar, and M. Nassar, “A traceability
approach for model composition,” in 2013 ACS Interna-
tional Conference on Computer Systems and Applications
(AICCSA). IEEE, 2013, pp. 1–4.

[5] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-
oriented approach to early design modelling,” IEE
Proceedings-Software, vol. 151, no. 4, pp. 173–185, 2004.

[6] G. Rozenberg and H. Ehrig, Handbook of graph grammars
and computing by graph transformation. World Scientific
Singapore, 1997, vol. 1.

[7] J. Radatz, A. Geraci, and F. Katki, “Ieee standard glos-
sary of software engineering terminology,” IEEE Std, vol.
610121990, p. 121990, 1990.

[8] B. Grammel and K. Voigt, “Foundations for a generic
traceability framework in model-driven software engineer-
ing,” in ECMDA Traceability Workshop (ECMDA-TW’09),
2009.

[9] N. Anquetil, B. Grammel, I. Galvão, J. Noppen, S. S.
Khan, H. Arboleda, A. Rashid, et al., “Traceability for
model driven, software product line engineering,” in
ECMDA Traceability Workshop (ECMDA-TW’08), 2008,
pp. 77–86.

[10] G. Spanoudakis and A. Zisman, “Software traceability: a
roadmap,” Handbook of Software Engineering and Knowl-
edge Engineering, vol. 3, pp. 395–428, 2005.

[11] F. Jouault, “Loosely coupled traceability for atl,” in
ECMDA Traceability Workshop (ECMDA-TW’05), vol. 91.
Citeseer, 2005.

[12] J.-R. Falleri, M. Huchard, C. Nebut, et al., “Towards
a traceability framework for model transformations in
kermeta,” in ECMDA Traceability Workshop (ECMDA-
TW’08, 2006, pp. 31–40.

[13] B. Amar, H. Leblanc, and B. Coulette, “A traceability
engine dedicated to model transformation for software
engineering,” in ECMDA Traceability Workshop (ECMDA-
TW’08), 2008, pp. 7–16.

[14] B. Grammel and S. Kastenholz, “A generic traceability
framework for facet-based traceability data extraction in
model-driven software development,” in ECMDA Trace-
ability Workshop (ECMDA-TW’10), 2010, pp. 7–14.

[15] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grünbacher, A. Dekhtyar, G. Antoniol, and
J. Maletic, “The grand challenge of traceability (v1. 0),”
in Software and Systems Traceability. Springer, 2012, pp.
343–409.

[16] B. Amar, H. Le Blanc, P. Dhaussy, B. Coulette, et al.,
“Trace transformation reuse to guide co-evolution of mod-
els,” in 5th Int. Conference on Software and Data Tech-
nologies (ICSOFT’10), 2010.

[17] M. D. Del Fabro, J. Bézivin, F. Jouault, E. Breton,
G. Gueltas, et al., “Amw: a generic model weaver,” Procs.
of IDM05, 2005.

[18] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Merging
models with the epsilon merging language (eml),” in Model
Driven Engineering Languages and Systems. Springer,
2006, pp. 215–229.

[19] F. Fleurey, B. Baudry, R. France, and S. Ghosh, “A generic
approach for automatic model composition,” in Models
in Software Engineering: Workshops and Symposia at
MODELS 2007, vol. 5002. Springer, 2008, p. 7.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in ECOOP, 1997, pp. 220–242.

[21] L. Lambers, H. Ehrig, and F. Orejas, “Conflict detection for
graph transformation with negative application conditions,”
in Graph Transformations. Springer, 2006, pp. 61–76.

[22] J. Whittle, J. Araújo, and A. Moreira, “Composing aspect
models with graph transformations,” in Proceedings of the
2006 international workshop on Early aspects at ICSE.
ACM, 2006, pp. 59–65.

[23] T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer, “Henshin: advanced concepts and tools for
in-place emf model transformations,” in Model Driven
Engineering Languages and Systems. Springer, 2010, pp.
121–135.

[24] D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez,
“The epsilon book,” Structure, vol. 178, 2010.

[25] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende, “Derivation and refinement of textual syntax for
models,” in Model Driven Architecture-Foundations and

Applications. Springer, 2009, pp. 114–129.
[26] E. R. Gansner, “Drawing graphs with graphviz,” Technical

report, AT&T Bell Laboratories, Murray, Tech. Rep., 2009.

Youness Laghouaouta received the Engineer of state degree
in Software Engineering from National High School of Com-
puter Science and Systems Analysis (ENSIAS) in 2009. He is
currently a PhD student in the IMS (Models and Systems Engi-
neering) Team of SIME Laboratory at ENSIAS. His research
interests are model traceability, model composition, Aspect
Oriented Engineering, and Model-Driven Engineering.

Adil Anwar works as an assistant professor in computer science
at the university of Mohammed-V Rabat, and as a member of
the Siweb research team of Mohammadia school of engineers.
In 2009, he received a Ph.D degree in Computer Science at the
University of Toulouse. He is interested in software engineering,
including model driven software engineering, mainly by hetero-
geneous software language modelling, traceability management
in MDE, combining formal and semi-formals methods in soft-
ware development.

Mahmoud Nassar is Professor and Head of the Software En-
gineering Department at National Higher School for Computer
Science and Systems Analysis (ENSIAS), Rabat, Morocco. He
is also Head of IMS (Models and Systems Engineering) Team
of SIME Laboratory. He received his PhD in Computer Science
from the INPT Institute of Toulouse, France. His research
interests are integration of viewpoints in Object-Oriented Anal-
ysis/Design (VUML profile), Model-Driven Engineering, and
Context-Aware Service-Oriented Computing.

Bernard Coulette works as a full professor at the University
of Toulouse, and as a member of the MACAO team of IRIT
laboratory. His research fields of interest are mainly integration
of viewpoints in Object-Oriented Analysis/Design (VUML pro-
file), modeling and enactment of Model Driven Processes. He
has directed several PHD thesis in the context of international
collaborations (Vietnam, Morocco).

